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Abstract: With the aggravation and evolution of global warming, natural disasters such as hurricanes
occur more frequently, posing a great challenge to large-scale power systems. Therefore, the pre-
position and reconfiguration of the microgrid defense resources by means of Mobile Energy Storage
Vehicles (MEVs) and tie lines in damaged scenarios have attracted more and more attention. This
paper proposes a novel two-stage optimization model with the consideration of MEVs and tie lines to
minimize the shed loads and the outage duration of loads according to their proportional priorities.
In the first stage, tie lines addition and MEVs pre-position are decided prior to a natural disaster; in
the second stage, the switches of tie lines and original lines are operated and MEVs are allocated
from staging locations to allocation nodes according to the specific damaged scenarios after the
natural disaster strikes. The proposed load restoration method exploits the benefits of MEVs and ties
lines by microgrid formation to pick up more critical loads. The progressive hedging algorithm is
employed to solve the proposed scenario-based two-stage stochastic optimization problem. Finally,
the effectiveness and superiority of the proposed model and applied algorithm are validated on an
IEEE 33-bus test case.

Keywords: microgrid reconfiguration; stochastic programming; mobile energy storage vehicle;
tie line

1. Introduction

In recent years, hurricanes, earthquakes, and other natural disasters have caused
large-scale power interruptions for a long time, which has brought huge economic losses
to society. For example, in 2008, China’s extreme snow and ice disaster damaged power
grid components in 13 provinces, with a total of 36,740 line faults, 2018 substations affected,
and power grids in some areas collapsed and even entered isolated network operation [1].
Hurricane Sandy in 2012 destroyed the elevated distribution system in New York, resulting
in the loss of nearly 1000 power poles and more than 900 transformers, and the power
failure of 8,371,242 customers [2]. It can be seen from the power outage events in recent
years that the power production, transmission, and distribution modes of centralized
power generation and long-distance transmission of large units can not fully meet the
power demand. Therefore, research on the resilient power grid that can quickly respond
to natural disasters has become a trending topic among scholars and has also become an
urgent demand for a stable and reliable energy supply in today’s society. As a kind of
Distributed Generation (DG), Mobile Energy Storage Vehicles (MEVs) play a pivotal role in
the construction of resilient microgrids. With the characteristics of flexibility and stability,
MEVs can quickly move to the damaged areas and supply power to the isolated nodes by
forming multi-microgrids after a natural disaster occurs, greatly reducing the blackout time.
However, due to the high cost of mobile energy storage vehicles, it is uneconomical to use
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them in large quantities. In addition to the installation of mobile energy storage vehicles,
another measure to enhance resilience is the addition of tie lines. When some of the original
transmission lines are damaged and failed, the tie lines can be closed remotely to restore
those isolated island nodes, which costs less than the installation of mobile vehicles. Thus,
by the usage of tie lines and MEVs, when the fault occurs, MEVs and tie lines can be used
to reconstruct the power grid to form a local power supply area, so as to realize the rapid
recovery of power loss load.

Most literature focuses on the planning of defense resources before power system dam-
age and the allocation of reconfiguration resources and network topology reconfiguration
after power system damage. Lei et al. [3] proposed a two-stage microgrid reconfiguration
model which contained pre-positioning and real-time allocation of mobile generators. Fur-
thermore, different from [3], only critical line switches were considered available in network
reconfiguration. In [4], a distributed multiagent coordination scheme of communication
network besides the reconfiguration of electric network was proposed for autonomous
communication. Gilani et al. [5] considered different types of DGs in microgrid formation
and used the time series forecasting method to model the load uncertainty.

A series of models have been proposed to formulate this issue. In [6], Guo et al.
formulated the distribution network reconfiguration as a mixed-integer quadratic pro-
gramming problem by using electric vehicles and remote-controlled switches to minimize
energy loss and switching operation times, with considering the battery degradation cost.
Ma et al. [7] proposed a two-stage stochastic mixed-integer linear program model by taking
measures such as line hardening, installing DGs, and adding switches in transmission lines.
Ranjbar et al. [8] built a two-stage stochastic planning model by using distributed energy
resources and considering the different operation modes in normal and emergency condi-
tions and classified the emergency scenarios into medium, serious and complete damage
according to the degree of damage. In [9], Ghasemi et al. proposed a three-stage stochastic
planning model by hardening lines and placing DGs. They also considered line damage un-
certainty compared to the traditional two-stage planning model. Baghbanzadeh et al. [10]
built a tri-level Defender–Attacker–Defender (DAD) model by using distribution genera-
tion to enhance the resilience of distribution networks. Lei et al. [11] built a multi-period
DAD model to realize the defense resources planning and allocation with the optimization
objective of minimizing the shed loads. Mousavizadeh et al. [12] firstly defined the index
of power system resilience, and then constructed a two-stage linear model using DGs
such as renewable energy which studied the optimal management of energy storage units
and DG units and evaluated the resilience of the system. Agrawa et al. [13] proposed a
three-stage self-healing method with distributed energy resources to restore maximum
priority loads. To sum up, these models can be roughly classified as either deterministic or
stochastic. Since the damaged scenario is uncertain, stochastic methods are better suited
for the solutions of the microgrid reconfiguration problem.

Accordingly, some algorithms were designed to solve these problems. Ding et al. [14]
used a heuristic algorithm to solve the mixed-integer linear programming problem of power
grid reconfiguration, which resulted in multiple solutions with different rules and interests.
Huang et al. [15] provided a targeted algorithm based on the nested column-and-constraint
generation decomposition to solve a two-stage robust mixed-integer optimization model.
Chanda et al. [16] used a two-stage reconfiguration algorithm to enhance the resiliency of
the power system after developing a new method to quantify the resiliency which was
based on complex network analysis and network percolation theory. In [17], the traditional
distribution system was transformed into multiple autonomous microgrids by optimiz-
ing the scale and location of DGs to improve the resiliency of the distribution system,
and particle swarm optimization and genetic algorithm were used to solve the problem.
In [18], the key infrastructure nodes in the network were sorted according to their priorities,
and a customized PSO algorithm to allocate DGs was designed to maximize resilience and
minimize power loss. Khalili et al. [19] proposed a multi-objective optimization model to
construct multi-microgrids, which was solved by an exchange market algorithm.



Sensors 2022, 22, 6046 3 of 16

With regard to the use of reconfiguration resources, Taheri et al. [20] not only con-
sidered the pre-positioning and scheduling of mobile energy storage vehicles but also
crews who could operate switches. Zhou et al. [21] proposed a distributed fixed-time
secondary control scheme that was based on a general directed communication graph.
Xu et al. [22] considered the dispatch of repair crews in addition to mobile power sources
in the transportation system to restore critical loads. Zhang et al. [23] built a three-stage
stochastic planning model for mobile emergency generator allocation which added a ca-
pacity decision-making procedure in the first stage compared with the two-stage model.
Erenouglu et al. [24] proposed a mixed-integer quadratic programming model for dispatch-
ing and scheduling multiple types of sources including mobile energy storage systems,
mobile emergency generators, and repair crews. Combing through the literature found that
mobile energy storage vehicles as a kind of DG were widely studied and applied to the
microgrid reconfiguration. However, few studies focused on the application of tie lines,
and they only studied the use of existing tie lines in the power system without considering
the addition of tie lines. Shi et al. [25] considered the use of tie lines in addition to original
line switches for network reconfiguration, and proposed an algorithm that was based on an
incidence matrix to identify radial network topology. In [26], tie lines were also utilized in
network reconfiguration, and the master–slave control method was deployed to overcome
the challenge of voltage loops.

Based on the above discussion, a scenario-based stochastic two-stage mixed-integer
linear program model based on hybrid microgrid defense resources is proposed in this
paper. This model includes the pre-position of the MEVs and the location selection of tie
line addition before damage, and the dynamic dispatching of MEVs and operation of added
tie lines after damage. A more detailed problem statement will be presented in Section 2.

The major contributions of this study can be summarized as:

(1) The multi-stage application of tie lines including addition and operation is firstly pro-
posed and studied. This novel method effectively enhances power system resilience
and the diversity of reconfiguration resources;

(2) A two-stage framework for the combination use of microgrid defense resources by
dispatching MEVs and employing tie lines is firstly proposed, which can restore
the critical loads immediately with the limited use of MEVs in severely damaged
scenarios;

(3) A scenario-based two-stage mixed-integer linear program model is formulated and
explained in detail, which is generalizable and easy to understand.

(4) Several experiments have been conducted to compare the performance of the pro-
posed method with other methods, demonstrating that the combined optimization
model with MEVs and tie lines is competitive.

The remainder of this paper is organized as follows. Section 2 describes the action
mechanisms of MEVs and tie lines on power grid restoration and proposes a two-stage
microgrid reconfiguration framework. Section 3 formulates the two-stage model. In
Section 4 the progressive hedging algorithm is discussed, followed by Section 5 which
presents numerical case studies. Finally, the paper is concluded in Section 6.

2. Problem Statement

In this section, we first depict how natural disasters damage the power grid. Based on
this, the action mechanisms of MEVs and tie lines on power grid restoration are described,
and a two-stage microgrid reconfiguration framework of combination use of MEVs and tie
lines is proposed and illustrated.

2.1. Mechanism of MEVs on Power Grid Restoration

Natural disasters and man-made attacks can usually destroy parts of lines in the
power system, causing some nodes to lose connection with the main network and become
isolated island loads. As shown in Figure 1, after the attack from the outside world,
the distribution system is split into four areas, of which the orange area is the normal
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power supply area connected with the feeder root node, and the three green areas are island
loads. The traditional restoration method only changes the topology of the power system
by operating the line or node switches, which may not completely restore the island loads.
Moreover, it takes a lot of time to repair the damaged lines manually, which will cause
huge losses to critical nodes that do not have backup power. DG is a promising new energy
utilization tool of microgrid, which has the advantages of low environmental pollution
and flexible control means. In all kinds of DGs, MEVs can move between different load
nodes, and provide load supply, voltage regulation, and other services. When users cannot
fully access the main power grid, MEVs are the key resources that can quickly restore
power supply for some important loads and realize the rapid restoration of power services
across the power system. Especially after the microgrid is attacked, MEVs combined with
transmission line switches can be used to form multi-microgrids to restore power supply
for important loads, shortening the outage time and reducing the outage scope. As shown
in Figure 2, the 3 green areas turn into yellow due to the use of MEVs, and the nodes
connected with MEVs become power nodes to supply power for themselves and other
load nodes.

Feeder root node

Load node

Figure 1. The attacked network topology.

Feeder root node

Node connected 

with MEV

Load node

Figure 2. Network reconfiguration with MEVs.

2.2. Mechanism of Tie Lines on Power Grid Restoration

As shown in Figure 3, the three red dashed lines represent the added tie lines, of which
the status is closed. Therefore, the three green areas representing island loads in Figure 1
turn into two blue areas which represent the island loads that are restored. It is obvious
that the use of tie lines can quickly change the topology of the power network and make
the unserved loads connect to the main network to get supplied immediately. In this work,
we add limited tie lines (default to open) between some nodes in the first stage and decide
whether to close the switches of them in the second stage by optimizing the proposed
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model. Thus, once the original transmission lines are damaged, the tie lines as backup lines
can be closed in very little time to change the topology to restore loads.

Feeder root node

Load node

Figure 3. Network reconfiguration with tie lines.

2.3. A Two-Stage Framework: Combination Use of MEVs and Tie Lines

In the new mode of microgrid reconfiguration with the combination use of MEVs
and tie lines, after the original line faults occur, several local power supply areas can be
formed by the deployment of MEVs and tie lines more flexibly, so as to realize the rapid
restoration of unsupplied loads. As shown in Figure 4, in the first stage (pre-positioning
stage), limited MEVs are pre-positioned to some staging location nodes and limited tie lines
are added between some node pairs. In the second stage (dynamic allocation stage), each
MEV will be sent to the allocation node. Each tie line’s status will be decided to be kept
open or closed. We assume that the hardened tie lines will not be damaged in the second
stage. Consequently, it is a two-stage microgrid reconfiguration problem considering MEVs
dispatching and tie lines usage. Compared with the traditional reconfiguration method,
the model proposed in this paper is more complex than those which only consider the use
of DGs or topology reconfiguration by changing the status of line switches. Due to the use
of tie lines, the radial topology constraint is also an important issue to be figured out.

First Stage
Feeder rood 

node
Add tie line

(default to open)

Close tie line

Pre-
positioning

Second Stage Feeder rood

node

Dynamic 
allocation

Figure 4. The illustration of the two-stage framework.
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3. Problem Formulation

In this section, the model formulation for the proposed problem is proposed.

3.1. Pre-Positioning Stage
3.1.1. Objective Function

min ∑
n∈N

wn

{
∑
i∈B

αi pi[a1 ∑
k∈D

∑
s∈S

∑
m∈M

vmskntskn + a2 ∑
i∈B

slin]

}
(1)

The objective (1) is to minimize the expected outage time of loads and the amount of
loads to be shed, considering the weight of each scenario. The two goals are expressed as
the first and second terms in square brackets, respectively. The energy demand of the loads
and the corresponding weight are indicated outside the square brackets. Specifically, the
first term ∑

k∈D
∑

s∈S
∑

m∈M
vmskntskn refers to the time required to recover nodes by using MEVs.

Since tie lines are deployed before natural disasters, the time of operating the switches
of tie lies is negligible. Considering adding tie lies and dispatching MEVs require high
investment costs, one of the goals of this stage is to make the average shed loads as small as
possible when limited reconfiguration resources are used. Thus, the second term slin is the
shed loads on node i under scenario n. Overall, the optimization objective of this problem
is to restore more loads in the shortest possible time. a1 and a2 represent the weight of the
two objectives which are decided by decision-makers.

3.1.2. Constraints

The defined objective is subject to the following constraints which are divided into
several groups as follows:

Constraints (2)–(4) referring to [3] represent the pre-positioning constraints of MEVs.
Constraints (2) maintain that the total number of MEVs pre-positioned in the staging
location nodes is no more than their maximum capacity. Constraints (3) ensure that every
single MEV can only be pre-positioned to one staging location node. Constraints (4) ensure
that the number of MEVs pre-positioned in the first stage can not exceed their budgets.

∑
m∈M

ums ≤As, ∀s (2)

∑
s∈S

ums = 1, ∀m (3)

∑
m∈M,s∈S

ums ≤Mn (4)

Constraints (5) and (6) referring to [3] represent the dynamic allocation constraints
of MEVs. After each MEV is pre-positioned in a specific staging location node in the first
stage, constraints (5) declare that only if there is any MEV m in a staging location node, the
MEV m can be allocated to one of the allocation nodes in each scenario in the second stage.
Constraints (6) ensure that every single MEV can only be allocated to one allocation node k
from the staging location node s.

∑
k∈D

vmskn ≤ ums, ∀s, ∀m, ∀n (5)

∑
s∈S

∑
m∈M

vmskn ≤ 1, ∀k, ∀n (6)

Constraints (7)–(11) represent the topology reconfiguration constraints that guarantee
the topology of the power system keeps radial all the time. Constraints (7) mean that if
there is any MEV allocated to candidate node k, then the node k is a power node supplied by
MEVs. It is noted that the candidate locations include the staging locations and allocation
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locations where the MEVs can connect to the nodes on them. Constraints (8) mean that if
the node k is a feeder root node, then the node has a power source. Constraints (9) and (10)
mean that the numbers of damaged lines and tie lines must be less than their budgets.
Based on graph theory, if the graph is radial, the following two conditions must be satisfied
at the same time: (a) the number of closed branches equals the number of buses minus the
number of sub-graphs; (b) the connectivity of each sub-graph is ensured. Thus, the number
of closed branches including closed original transmission lines and tie lines equals the
number of buses minus the number of sub-graphs in constraints (11). We use a depth-first
traversal algorithm to find the connected components of an undirected graph in this paper.
After traversing from one vertex denoted as node1, all vertices that can be reached through
the graph adjacency will be accessed from this vertex. Starting from one of the unreachable
vertices, another connected component can be found. Repeating this process until all
vertices are accessed, all connected components will be identified. Based on depth-first-
search algorithm framework, the specific flowchart of the algorithm to find the sub-graphs
of an undirected graph is shown in Algorithm 1.

wakn= ∑
s∈S

∑
m∈M

vmskn, ∀k ∈ D, ∀n (7)

wbkn= 1, ∀k ∈ C, ∀n (8)

∑
i,j∈B

ALijn ≤ BA, ∀i, ∀n (9)

∑
i,j∈B

TLijn ≤ BT, ∀i, ∀n (10)

∑
i,j∈B

yijn + ∑
i,j∈B

STLijn =Bn−Gn, ∀i, ∀k, ∀n (11)

Algorithm 1: Algorithm For Finding Sub-graphs.

1 Initialization: queue = [], order = [], seenArray = [], queue.append (node1);
2 while queue do
3 v = queue.pop()
4 order.append (v)
5 for w in G.adj[v] do
6 if w not in order and w not in queue then
7 queue.append (w);
8 end
9 end

10 Return order;
11 end
12 for v in G do
13 if v not in seenArray then
14 seenArray.extend (order);
15 end
16 Return the number of elements of seenArray;
17 end
18 Notes: node1 denotes the initial traversal node; G.adj denotes graph adjacency

object holding the neighbors of each node; queue.pop() denotes removing an
item from the queue.

Constraints (12)–(16) represent the power balance constraints. Constraint (12) refer-
ring to [11] ensures the inflow and outflow on node i are equal to realize power balance.
Constraint (13) determines the power flows according to the node phase angles, with
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binary variables representing line status. If there is a closed transmission line that is not
damaged or a tie line between nodes i and j, then (yijn + STLijn)(1− ALijn) is 1, otherwise
0. Note that there is a nonlinear term on the right side of the equation. For linearization,
we introduce the continuous variable λijn to replace (yijn + STLijn)[δo(lij) − δd(lij)], so this
constraint can be transformed into the following constraints (17)–(20) equivalently by using
the big-M approach. Constraint (14) guarantees that the shed loads on node i is between 0
and the demand at the node. Constraints (15) and (16) keep the power supply on node i as
nonnegative and do not exceed its capacity if there is an MEV or if it is a feeder root node.

gain + gbin − ∑
lij|o(lij)=i

plij + ∑
lij|d(lij)=i

plij + slin − pi = 0, ∀i, ∀n
(12)

plij rlij= (yijn+STLijn)(1− ALijn)[δo(lij)−δd(lij)], ∀i, ∀n (13)

0 ≤ slin≤pi, ∀i, ∀n (14)

0 ≤ gain≤ waknGa, ∀i, ∀n (15)

0 ≤ gbin≤ wbknGb, ∀i, ∀n (16)

−M[(1− (yijn + STLijn))] ≤ λijn − [δo(lij) − δd(lij)] ≤ M[(1− (yijn + STLijn))] (17)

−M(yijn + STLijn) ≤ λijn ≤ M(yijn + STLijn) (18)

−MALijn ≤ plij rlij − λijn ≤ MALijn (19)

−M(1− ALijn) ≤ plij rlij ≤ M(1− ALijn) (20)

Constraints (21)–(24) represent the line status constraints. Among them, constraints
(21) and (22) are self-explanatory. Constraints (23) depict that the tie line should not be
added if there is an original transmission line between the node pair (i, j). Constraints (24)
describe that the switches of tie lines may be closed only if there exists any tie line.

yijn= 0, ∀lij∈ DL, ∀n (21)

ALijn= 1, ∀lij∈ DL, ∀n (22)

TLijn= 0, (i, j) ∈ L, ∀i, ∀j, ∀n (23)

STLijn≤ TLijn, ∀i, ∀j, ∀n (24)

3.2. Real-Time Allocation Stage

min

{
∑
i∈B

αi pi[a1 ∑
k∈D

∑
s∈S

∑
m∈M

vmskntskn + a2 ∑
i∈B

slin]

}
(25)

s.t. (2)–(24)

In the first stage, we have determined the optimal pre-positioning decisions of MEVs
ums and the decisions of adding tie lines TLijn. In the second stage, according to the
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damaged lines detected after natural disasters, the dynamic allocation of MEVs from
staging locations will be carried out, and the status of tie lines will be decided. The
optimization goal of this stage is to minimize the weighted time of load recovery and load
shedding when scenario n occurs.

4. Progressive Hedging Algorithm

The proposed two-stage microgrid optimization problem is where some of the decision
variables are binary variables and the data is uncertain is a multi-stage mixed-integer
stochastic programming problem, which is difficult to solve in a short time. To represent
the uncertainty in data, we use the common approach by formulating a finite number of
scenarios with corresponding probabilities for the values of uncertain parameters in this
paper. Since the Progressive Hedging Algorithm (PHA) has proved an effective method for
solving multi-stage stochastic programming problems [27,28], especially those with discrete
decision variables in every stage [29], we apply this algorithm to solve this scenario-based
two-stage stochastic optimization problem. Based on [3], the implementation of the PHA
is described in Algorithm 2. The PHA decomposes the extended form according to the
scenario and iteratively solves the penalized versions of the sub-problems to gradually
enhance the realizability, thus reducing the computational difficulty related to large problem
instances.

Algorithm 2: Progressive Hedging Algorithm.

1 Initialization: Let UB← +∞, LB← −∞, S = ∅, x∗ = ∅, λ← ∅ ;
2 while consensus criteria are not met do
3 for n ∈ N do
4 Solve αn = min

{
fn(xn, yn) + λTAnxn : xn ∈ Θ \ S, yn ∈ Ωn

}
,

5 let x∗ be an optimal solution;
6 end
7 update λ;
8 end

9 Update: LB←
N
∑

i=1
wnαn − λ>b, Ŝ = ∪N

i=1{x∗n}, S = S ∪ Ŝ;

10 for x̂ ∈ Ŝ do
11 for n ∈ N do
12 Solve βn = min

{
fn

(
x̂ , yn

)
: yn ∈ Ωn

}
;

13 if UB ≥
N
∑

i=1
wnβn then

14 update UB =
N
∑

i=1
wnβn, x∗ = x̂;

15 end
16 end
17 end
18 if (UB− LB)/LB ≥ convergence_tolerance then
19 Let λ = 0, go to step2;
20 else
21 Return x∗, yn;
22 end

We consider the stochastic program of the following form:

min

{
N

∑
i=1

fn(x, yn) : x ∈ Θ , yn ∈ Ωn

}
(26)
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where x, yn, fn denote first-stage decision variables, second-stage decision variables, and
second-stage objective function, respectively. Θ is the feasible set of x defined by con-
straints such as (2), (3) and (10), Ωn is the feasible set of yn defined by other constraints.
Since the first-stage decisions are independent of specific scenarios, we introduce the
non-anticipativity constraints to make use of the block-diagonal structure of the problem.
Therefore, the scenario-based two-stage stochastic optimization problem can be reformu-
lated as:

min

{
N

∑
i=1

fn(xn, yn) : xn ∈ Θ, yn ∈ Ωn,
N

∑
i=1

Anxn = b

}
(27)

where the equation
N
∑

i=1
Anxn = b is the non-anticipativity constraint enforcing x1 = x2 =

. . . = xn. By dualizing these non-anticipativity constraints, the form of the Lagrangian
duality problem is as follows:

max
λ

{
LB(λ) :=

N

∑
i=1

wn min
{

fn(xn, yn) + λTAnxn : x ∈ Θ, yn ∈ Ωn

}
− λ>b

}
(28)

where λ is the dual vector; wn is the weight of scenario n. As for the consensus criteria in
step2, it is based on the average per-scenario deviation from the average denoted as pd:

pd = ∑
l,n

|xn(l)− xn(l)|
N

≤ pd (29)

where pd denotes a threshold set as 0.1 in this paper; xn denotes the weighted average of xn
in the previous iteration; l denotes the lth element of the corresponding vector; N denotes
the number of scenarios.

5. Numerical Cases and Analyses
5.1. Experimental Setup

In this section, case studies are performed in the IEEE 33-node distribution system
to validate the effectiveness and superiority of the two-stage 0-1 stochastic programming
problem. As in [26], the topology of this system is presented in Figure 5. This distribution
system consists of 33 nodes and 32 edges, where node 1 is a generation node and each
edge has a remote control switch on it. As illustrated in Figure 5, the switch of the edge
between nodes 1 and 2 is denoted as S1. The parameters of nodes and branches such as
resistance and reactance can be found in [30]. The computational tasks are performed on a
personal computer with an Intel Core i7 Processor (2.60 GHz) and 64-GB RAM, and the
code is implemented via Gurobi 9.0.3 with the default setting.
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Figure 5. A modified IEEE 33-bus test system.
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5.2. Demonstration of the Proposed Two-Stage Optimization Framework

Due to the lack of actual damaged data, this paper uses the normal distribution to ran-
domly generate 10 random damaged scenarios and load priorities (weights are set to 5, 3, 1).
Considering the influence of vehicle transport speed in different damaged scenarios, this
paper generates vehicle transport speed in the speed set {60 Km/h, 90 Km/h, 100 Km/h}
with equal probability randomly. The maximum power of MEV is set as 1000 kW. When
setting the parameters of the routing network, we first generate the adjacency matrix be-
tween nodes according to the damaged scenario and then calculate the transportation time
of each vehicle on the corresponding routing according to the given speed parameters.
In order to compare the effects of different reconfiguration strategies on the optimization
objectives, multiple comparative experiments are carried out.

As shown in Figure 6, we select a typical scenario to illustrate the proposed two-stage
reconfiguration solution. In Figure 6, the blue and red lines represent original transmission
lines and tie lines, respectively. The dotted lines and solid lines represent the open and
close status of line switches, respectively. The orange node marked F is the feeder root node,
and the yellow, green, and pink nodes marked G are the corresponding nodes connected
with MEVs 1, 2, and 3, respectively. It can be observed in Figure 6a that the MEVs are firstly
pre-positioned to staging locations of nodes 28, 16, and 21, and tie lines are added between
node pairs of {(1, 25), (8, 32), (11, 18), (15, 33)} in the first stage.
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Figure 6. Microgird reconfiguration with MEVs and tie lines for 33-bus system. (a) The first stage.
(b) The second stage.

After the extreme situation, the faulted lines in the real scenario are detected which are
marked with a cross in Figure 6b. Then MEVs are sent from staging locations to allocation
locations, and the switches of tie lines and original lines are operated to be close or open
to form microgrids to restore critical loads. The first and second stage decisions for the
demonstration case are shown in Tables 1 and 2. In the second stage, MEVs 1 and 2 continue
to stay in their staging locations, while MEV 3 is sent to node 11 from node 21. In addition,
the switches of four added tie lines are operated to close and the switches of the original
lines (2, 3) and (31, 32) are operated to open, while other switches keep closed to maintain
the radial structure of the power system. As shown in Figure 6b, the power system is
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divided into four microgrids power by nodes 1, 28, 11, and 16, respectively. For the sake of
intuitiveness, the nodes in different microgrids are represented in different colors which
are corresponding to the power nodes. For instance, the nodes of {7, 8, 9, 10, 15, 32, 33} turn
green since they are supplied by node 16, which is connected with MEV 2.

Table 1. MEV Dispatch Scheme.

MEV Staging Locations Allocation Locations

1 node 28 → node 28
2 node 16 → node 16
3 node 21 → node 11

Table 2. Tie Lines Addition and Operation Scheme.

Tine Line First Satge Second Satge

1 add tie lines (1, 25) → close the switch
2 add tie lines (8, 32) → close the switch
3 add tie lines (11, 18) → close the switch
4 add tie lines (15, 33) → close the switch

5.3. Comparisons with Other Methods

In order to further reflect the superiority of our proposed model, we compare it with
other methods which only consider using MEVs or tie lines. The models of these two
methods are easy to build according to the proposed two-stage optimization framework.

5.3.1. Model of Only Using MEVs

The objectives of the two stages are the same as objectives (1) and (25). The constraints
are a little bit different from the proposed model, which are as follows.

s.t. (2)–(9), (14)–(22)

∑
i,j∈B

yijn = Bn − Gn, ∀i, ∀k, ∀n (30)

plij rlij = yijn(1− ALijn)[δo(lij) − δd(lij)], ∀i, ∀n (31)

The optimization results of this model are shown in Figure 7. Based on the same
damaged scenarios, MEVs 1, 2, and 3 are pre-positioned in nodes 25, 16, and 14 in the first
stage, respectively. In the second stage, MEVs 1 and 3 continue to stay in their staging
locations, while MEV 2 is sent to node 14 from node 16. Thus, four microgrids are formed
to restore the critical loads. However, due to the budget limitation of MEVs, this method
results in two load islands that are not supplied and represented as black dots, i.e., (15–16),
(17–18).

5.3.2. Model of Only Using Tie lines

Since the model of only using tie lines does not include MEVs, the time of dispatching
MEVs of objectives (1) and (25) is supposed not to be considered. Its objectives in the first
and second stages and constraints that should be satisfied are as follows.

min ∑
n∈N

wn ∑
i∈B

slin (32)

min ∑
i∈B

slin (33)

s.t. (8)–(14), (16)–(24)



Sensors 2022, 22, 6046 13 of 16

2

1

3

4

5

6

7

9

8

10

11

12

13

14

15

16

17

18

19

20

21

22

26

27

28

29

30

31

32

33

23

24

25
G

G

G

F

(a)

2

1

3

4

5

6

7

9

8

10

11

12

13

14

15

16

17

18

19

20

21

22

26

27

28

29

30

31

32

33

23

24

25

G

G

G

F

(b)

Figure 7. Microgird reconfiguration with MEVs for 33-bus system. (a) The first stage. (b) The second stage.

The optimization results of this model are shown in Figure 8. In the first stage, the
four tie lines are added at node pairs of {(5, 12), (5, 17), (10, 22), (14, 24)}. After the attack
of natural disasters, there remain 5 load islands that are disconnected to the main grid,
i.e., (7–8–9–10), (11–12–13–14), (15–16), (17–18), and (23–24–25). In the second stage, the
switches of the four tie lines are operated to close, resulting in the load islands, except for
(15–16), all being restored. For example, the load island ((7–8–9–10) is restored due to the
tie line (10, 22) which makes it connect to the main power grid supplied by the feeder root
node. However, due to the budgets of tie lines, there still remain load islands (15–16) that
are not supplied.
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Figure 8. Microgird reconfiguration with tie lines for 33-bus system. (a) The first stage. (b) The second stage.
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Overall, both the methods are advantageous to load restoration. However, only
using the single configuration resource with the same budgets cannot fully restore all the
disconnected loads. The combined use of these two resources can play a greater role in
power grid restoration.

5.4. Effect of Budgets of Reconfiguration Resources on Load Restoration

In this section, the budgets of MEVs and tie lines are changed to investigate their
effects of them on the final reconfiguration results. We use load shedding to measure
the effects, which is obtained from the average results of 20 repeated experiments and
calculated by Equation (34). As seen in Table 3, when the budgets of MEVs are fixed, the
load shedding is decreasing as the budgets of tie lines increase. When the budgets of tie
lines are fixed, the load shedding is decreasing as the budgets of MEVs increase.

Load Shedding =
∑

i∈B
αislin

∑
i∈B

αi pin
, ∀i, ∀n (34)

Table 3. Load Shedding Under Different Microgrid Defense Resource budgets.

Maximum Damaged Lines Budgets of MEVs Budgets of Tie Lines Load Shedding

9

3 1 8.69%

3 2 6.38%

3 3 4.88%

3 4 2.85%

10

2 5 9.23%

3 5 6.87%

4 5 4.36%

5 5 2.71%

6. Conclusions

To rapidly recover a microgrid under damaged scenarios, this paper proposes a
novel two-stage stochastic mixed-integer model based on the combined optimization
of MEVs and tie lines, minimizing the load shedding and the outage duration of loads
according to their priorities. Numerical studies on the IEEE 33-bus distribution system
demonstrate the effectiveness of the proposed model on restoring critical loads in the
microgrid reconfiguration. Compared with the methods which only dispatch MEVs or use
tie lines, the combined optimization model can restore more loads at less cost. Moreover,
the microgrid recovery effect of the proposed approach improves with the increase of the
budgets of reconfiguration resources. In future work, we will consider other reconfiguration
resources, such as repair crews and more complex damaged scenarios after multiple extreme
events, and design more computationally efficient algorithms.
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Abbreviations
Indices and Sets
B Set of microgird nodes indexed by i.
C, D Set of feeder root nodes and candidate nodes for MEVs connection indexed

by k.
M Set of MEVs indexed by m.
S Set of staging locations for pre-positioning indexed by s.
L Set of transmission lines, lij ∈ L.
DL Set of damaged lines, lij ∈ DL.
N Set of scenarios indexed by n.
Parameters
As Maximum number of MEVs prepared at the staging location s.
Bn Number of microgird nodes.
Gn Number of sub-graphs.
Mn Budget of MEVs.
BA Budget of attacks on transmission lines.
BT Budget of tie lines.
Ga Capacity of an MEV.
Gb Capacity of feeder nodes.
tskn Travel time of an MEV from staging location s to node k under scenario n.
rlij Reactance of transmission line lij.
o(lij) Origin node of transmission line lij.
d(lij) Destination node of transmission line lij.
wn Weight of scenario n.
Pi Power demand at node i.
Plij

Power flow of transmission line lij.
Variables
gain Generation level of node i supported by the candidate nodes under scenario

n.
gbin Generation level of node i supported by the feeder nodes under scenario n.
slin

Shed loads on node i under scenario n.
lij Binary, 1 if there is a transmission line connecting node i and node j, 0

otherwise.
TLijn Binary, 1 if there is a tie line(defaults to open) connecting node i and node j

under scenario n, 0 otherwise.
STLijn Binary, 1 if the switch of the tie line TLijn is closed, 0 otherwise.
ALijn Binary, 1 if line (i, j) is attacked under scenario n, 0 otherwise.
ums Binary, 1 if MEV m is pre-positioned to staging location s, 0 otherwise.
vmskn Binary, 1 if MEV m is real-time allocated (sent) from staging location s to

node k under scenario n, 0 otherwise.
wakn Binary, 1 if an MEV is connected to node k under scenario n, 0 otherwise.
wbkn Binary, 1 if node k is a feeder root node under scenario n, 0 otherwise.
yijn Binary, 1 if line (i, j) is closed under scenario n, 0 otherwise.
λ The auxiliary binary variable to replace the nonlinear term (yijn +

STLijn)[δo(lij) − δd(lij)].
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