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Abstract: The Industrial Revolution 4.0 (IR 4.0) has drastically impacted how the world operates.
The Internet of Things (IoT), encompassed significantly by the Wireless Sensor Networks (WSNs),
is an important subsection component of the IR 4.0. WSN’s are a good demonstration of an ambient
intelligence vision, in which the environment becomes intelligent and aware of its surroundings.
WSN has unique features which create its own distinct network attributes and is deployed widely
for critical real-time applications that require stringent prerequisites when dealing with faults to
ensure the avoidance and tolerance management of catastrophic outcomes. Thus, the respective un-
derlying Fault Tolerance (FT) structure is a critical requirement that needs to be considered when
designing any algorithm in WSNs. Moreover, with the exponential evolution of IoT systems, sub-
stantial enhancements of current FT mechanisms will ensure that the system constantly provides
high network reliability and integrity. Fault tolerance structures contain three fundamental stages:
error detection, error diagnosis, and error recovery. The emergence of analytics and the depth of
harnessing it has led to the development of new fault-tolerant structures and strategies based on
artificial intelligence and cloud-based. This survey provides an elaborate classification and analysis
of fault tolerance structures and their essential components and categorizes errors from several per-
spectives. Subsequently, an extensive analysis of existing fault tolerance techniques based on eight
constraints is presented. Many prior studies have provided classifications for fault tolerance sys-
tems. However, this research has enhanced these reviews by proposing an extensively enhanced
categorization that depends on the new and additional metrics which include the number of sensor
nodes engaged, the overall fault-tolerant approach performance, and the placement of the principal
algorithm responsible for eliminating network errors. A new taxonomy of comparison that also ex-
tensively reviews previous surveys and state-of-the-art scientific articles based on different factors
is discussed and provides the basis for the proposed open issues.

Keywords: Wireless Sensor Networks (WSNs); Fault Tolerance (FT); error detection; error diagno-
sis; error recovery

1. Introduction

The exponential growth of the Industry Revolution 4.0 (IR4.0) concept is a funda-
mental paradigm that encompasses, among other future industrial innovations, the IoT,
the Internet of Services (IoS), and WSN5s [1]. WSN is the backbone of the IoT architecture,
which allows us to detect our surroundings, collect vital statistics, and send them to the
final destination called the Base Station (BS) [2]. Therefore, the IoT is highly oriented to-
ward the WSN as a critical platform for data sensing and communication [3]. WSN offers
the infrastructure for the evolving loT involving a wide spectrum of areas and fields [4].
For example, intelligent products such as sensor devices, camera systems, and wearable
technology are used in a wide range of situations such as intelligent homes and intelligent
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transportation. Smart items are also used in various other applications such as agriculture,
smart communities, innovative medical services, and military applications [5,6].

WSNss have become more prevalent in wireless communication, generally described
as multi-hop network systems composed of a broad variety of smart sensor nodes. These
nodes consisting of dual roles, which are sensing and routing, have attributes that are
distributed auto-organizing and energy-constrained [7]. Each sensor node has the ability
to collect data from the environment required for a particular application and can also
function as a data forwarder to ensure that the data have reached their final destination.
The independent and versatile nature of WSN operations is always desired in many criti-
cal and real-time application scenarios, such as earthquake and glacial movement moni-
toring, volcano activities monitoring, forest fire monitoring, and so on [8].

The expected number of sensors that will be deployed around the world is projected
to reach one trillion by 2025 [9]. Consequently, an enormously high volume of data are
being collected from a highly diversified and wide range of WSNss [10]. Thus, parallel to
this rise in diversity and importance is the constant pressing need to address and provide
dynamic solutions. Prerequisites of data integrity, data accuracy, and data reliability are
compulsory, especially when dealing with hazardous environments [11]. Fault tolerance
is the network’s ability to proffer a desirable and required degree of functionality and
reliable data when faults are present [2]. FT is one of the essential requirements to be con-
stantly monitored and adhered to in WSNs due to the high probability of hardware fail-
ures such as sensor failure, link failure, and malicious attacks. As long as the WSN is an
error-prone network [12], well-organized fault detection is needed to locate the errors
which occur in the network. Fault tolerance structure consists of fault identification, diag-
nosis, and correction methods [13]. FT is a crucial aspect of WSN, and it is important to
embed the network with a technique for detecting measurement errors before this incor-
rect data reaches the BS.

FT is also correlated to the primary notion of network reliability [14]. Therefore, the
fault-tolerance must satisfy two main clauses. First, faults will produce erroneous read-
ings that may pose a high risk in certain situations before and when they reach the BS.
Second, these fault readings consume a huge amount of energy due to the meaningless
and additional high cost associated with the respective sending operations. In addressing
these attributes many routing protocols in WSNs contain built-in techniques for differen-
tiating between a real event and a measurement fault [15]. The spectrum of strategies to
address these attributes has provided a rich and heterogeneous repository of routing al-
gorithms. In relation to providing the analytics to extract the distinction in each of them,
this study has the following objectives to be met:

e A comprehensive and extensively analyzed literature survey of the latest and funda-
mentally critical studies that address in detail fault tolerance approaches in WSNs.

e A new taxonomy that provides a comprehensive classification for fault tolerance
techniques for research in this area was conducted within a significant time frame
that has not been previously addressed in an extensive manner, which is 2016-May
2022.

e To identify and discuss the open issues deduced from the proposed taxonomy of
comparison and the enhanced fault tolerance management architecture needed in
WSN.

The remainder of this paper is organized into eight sections. Section 2 discusses in
detail the state-of-the-art survey and motivation of fault tolerance classification methods.
Fault classifications will be addressed in Section 3. The main aspects of FT structures are
reviewed in Section 4. Proposed performance metrics within the FT techniques are pre-
sented in Section 5. In Section 6, a proposed classification of fault tolerance approaches is
presented. Comparative analysis and detail discussions of the FT approach in WSNs are
presented in Section 7. Open research issues are discussed extensively in Section 8. The
conclusion is drawn in Section 9.
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2. State of the Art Surveys and Motivation of Fault Tolerance Classification Methods

Fault tolerance is crucial in WSNss due to the high need for reliable and integral data
that will be produced from the network, no matter which kind of application this network
serves [16]. Three main digital databases have been chosen and searched to increase the
odds of getting the best search results, which are: (1) Science Direct (SD), which provides
access to a variety of journals covering a range of scientific disciplines, including science
and technology; (2) IEEE Xplore, a digital library of engineering and technology publica-
tions; and (3) Scopus, which provides access to numerous articles covering a range of dis-
ciplines. These databases were chosen based on their academic qualifications and presen-
tations in a variety of academic disciplines. The first revision step began with the selection
of an estimated (n = 4954) publications from these three databases. After selecting articles
from the range of the previous six years, a total of (n = 2413) were obtained. The third
screening stage was the scanning of titles and abstracts, which yielded a total of (1 = 242)
articles. The last filtration process involved examining the whole text of recognized arti-
cles from the previous phase and after the duplicate screening was completed. Based on
our criteria, a total of (1 = 62) publications were reviewed and has been judged to be rele-
vant to this review. These scientific studies have drawn the focus to research work from
2016 to May 2022. The research works within the mentioned timeframe were chosen care-
fully to provide a new survey that differs from previous surveys especially in encompass-
ing the trends acquired from the scientific content. Moreover, our review has also ensured
the inclusion of eighteen (18) review articles represented in Tables 1 and 2. These surveys
represent the substantial surveys on the topic since 2007.

Table 1. Surveys on Fault-Tolerant in WSNS.

Fault Tolerance Specific to a Frameworks Related
Survey Framework Error Comparative  Open Particular More Works in
Article cre Classification Study Issues Branch of the 1-20 20-40 Term of

Classification than 40 .
WSN Time
[17] v 4 v v v v 1992-2020
[18] x x v v v v 2014-2019
[19] v v v v x v 2003-2018
[20] x x x v x v 2013-2015
[21] v 4 4 x x v 2009-2018
[22] v x x x x v 20002014
[23] x x v v x v 20062014
[24] v v v v x v 20002014
[25] v v v x x v 2013-2017
[26] x x v x x v 2000-2015
[27] v 4 v x x v 2005-2017
[28] v x v x v 2008-2017
[29] v x x v x v 2002-2005
[30] x x v v x v 2004-2009
[31] v x v x x v 2002-2009
[32] x x v x x v 2002-2007
[33] 4 v v x x v 2002-2007
[34] v v v v x v 2002-2006
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Table 2. Surveys Classifications based on Year, Citation, and Main Contribution.

Survey Article

Main Contribution

[17]

Presented a comprehensive review of fault-tolerant approaches devel-
oped for Underwater Sensor Networks (USNs).

(18]

Presented new future directions and unsolved issues in routing proto-
cols for Flying Ad Hoc Network (VANET). One issue is related to the
critical need for having a high fault tolerance ability embedded with
routing protocols.

(19]

Presented a summarization and analysis of many previous fault man-
agement frameworks developed and designed for WSN.

[20]

Presented a review of the fault-tolerant strategies used to create trust-
worthy WSNSs.

[21]

Presented and analyzed a group of methods for fault detection in
WSNs. The study showed a need for a clearer, more accurate, and more
comprehensive fault detection and fault tolerance strategy that would
maximize the energy savings of the sensor nodes.

[22]

Presented a discussion on previous and fundamental in the context of
time of fault tolerance algorithms that deals with errors and radiation
effects on sensor behavior.

[23]

Presented a study on different fault recovery techniques and analyzed
their methodology in terms of energy use.

[24]

Presented a discussion of some approaches used not just for fault detec-

tion but also to prevent faults from occurring, such as data aggregation.

The authors classified the fault tolerance approaches according to only
two factors: the number of nodes and the region size.

Presented a classification of fault diagnosis approaches
(From 2013 to 2018) into three categories based on the decision
hubs and key characteristics of employed algorithms.

[26]

Presented an analysis for specific methods in fault tolerance
such as deployment, redundancy, and clustering.

[27]

Presented state of the art for self-healing techniques. The study divided
the self-healing mechanisms into four steps: information collection, fault
detection, fault classification, and fault recovery.

(28]

Presented a detail review on the sensor nodes failures detection and
fault tolerance in Ambient Assisted Living (AAL) systems based on
WSNs.

[29]

Presented a brief investigation of many problems that a sensor node
may encounter with a general classification of fault tolerance structure.

[30]

Presented a comparative study for several fault management techniques
and compared them according to dominant criteria such as overhead,
bandwidth, and scalability.

Presented a comprehensive review of several approaches to the notion
of fault tolerance. The study proposed a categorization for fault frame-
works based on the structure of task management.

[32]

Presented a summarization of the key ideas for existing fault-tolerant
techniques in routing protocols in WSNs.

[33]

Presented a review of frameworks for particular applications and then
categorized various fault management according to the types of prob-
lems that occur in each implementation.
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Presented a new approach related to the security risks that must be han-

[34] dled throughout all operating stages of a fault-tolerant system in WSN.

Tables 1 and 2 show that a substantial number of surveys have been done in this area,
providing distinct classifications [17,23]. However, analyzing these surveys in detail has
enabled several open issues pertaining to these surveys which are deliberated as follows:

1. The coverage of the articles is on certain specific areas of algorithms and classifica-
tions.

2. The time scale of the related works under examination is within a specific time period
that creates its respective constraints of future applicability.

3. The absence or the duplication of state-of-the-art open issues related to fault tolerance
in WSN.

4.  Many previous studies were related to a specific type of the WSN concept, such as
Mobile Ad Hoc Network (MANET), Flying Ad Hoc Network (FANET), and Under-
water Sensor Network (USN).

5. Many studies were on a specific type of fault tolerance, such as fault tolerance via
clustering approaches, fuzzy approaches, or statistical approaches.

As a result, with the continued exponential growth of WSN and the paradigm
changes of operating prerequisites there is a definite multifold benefit in presenting a
more comprehensive and state-of-the-art review. The pressing need is to give an exhaus-
tive examination and analysis of all the modern methods for fault tolerance that work in
WSNSs. The detailed review and analysis will address different open issues and carefully
selected performance metrics that distinctly complement but differ from other survey ar-
ticles. Thus, this paper’s key goals are as follows:

] classifying fault in a sensor network based on new metrics, which are fault pattern
and stability, network components, and fault-affected area.

] categorizing faults into five classes based on: behavior, time, components, the af-
fected area, and layers.

] categorization of fault-tolerant components into three vital stages of the fault toler-
ance architecture which are: error detection, error diagnosis, and error recovery.

*  proposing a new taxonomy for fault tolerance structure that encompasses general
classes and subclasses based on their performance.

= defining the existing fault tolerance approaches and analyzing the most important
steps in error detection, error diagnosis, and error recovery.

The primary goal of this survey is to respond to some pertinent questions which are
stated as follows:

What are the most critical faults impacting WSNs that need to be addressed?

When it comes to WSNs, what are the basic fault management procedures?

What are the main operations for each stage in WSN?

What methods may provide a thorough classification for fault tolerance structure?
What are the most significant difficulties associated with fault management?

Are there any fault tolerance systems that need to be estimated or evaluated?

Will fault management methods evolve, embracing new paradigms such as artificial
intelligence (AI) and other features in the future?

NSO E N

3. Faults Classifications in WSN

During the last years, different classifications of faults have been proposed in WSNss
[32,35-37]. A clear understanding of these various classifications provides a defined foun-
dation and enhancements to the proposed algorithms developed to address fault-related
issues. Figure 1 illustrates the various categories of errors in WSN as deliberated, respec-
tively, in [17,21,24]. Node behavioral faults, fault period, network infrastructure elements,
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the region impacted by a fault, and the layer where the error occurred are all factors con-
sidered in determining the overall categories [36,37].

~

—>’ Based on the Behavior v ¥
e N N\

Soft Faults Hard Faults
B J Y,

T3 S ——

4 B\ 4
Permanent Transient Intermittent .
Noise Faults

—>[ Based on the Time

Fanlt Types in =1 Based on the Components s I Tale Fonults
Nodes Faults gz BS Faults Backend
Faults Faults
—V[Based on the Affected Area} 3 ]

-
[Local Faults} [Global Faults

4

—»|  Based on the Layers 3 " T 3

Hardware Software || Network Application

_ Layer Faults_; | Layer Faults | | Layer Faults | | Layer Faults |
Figure 1. A taxonomy for the different fault types in WSNs.

The remainder of this section explains in detail the general classification of faults in
WSNs. Faults can be classified, depending on the behavior-base, into two types of errors.
A hard fault happens once a sensor node is unable to connect with other nodes due to
module failure for example the case of a dead node owing to energy depletion, while soft
faults occur when sensor nodes continue to function and communicate through other sen-
sor nodes but they sense, process, or send incorrect data [38,39].

Permanent, transient, intermittent, and noisy are the four types depending on the
duration of the failures. Permanent faults are long-lasting and persistent. A faulty battery,
for example, is an example of a permanent fault. On the other hand, the failure may tem-
porarily affect the node. Transient faults are not permanent or continuous; they may de-
velop due to transient environmental changes. They appear briefly and then disappear,
although they may reappear. Diagnosing and handling transitory problems is very chal-
lenging [40].

Unlike transitory errors, intermittent errors occur over an extensive length of period.
They may occur at irregular intervals and with a predictable frequency; they are easy to
detect and treat [41]. When there are noise errors, the sensor values become more variable.
Noise faults impact a series of sensor node interpretations, unlike transient faults, which
disturb one sensor node reading at a time [42].

Another type is based on network components: node, network, BS, and backend
faults [43]. The node failure is so popular in WSNs because the node plays a significant
role in the network. Two main reasons cause node errors. Firstly, hardware errors include
microcontroller failures, sensing unit failures, memory failures, and battery failures
[21,24]. Secondly, software errors have routing failures, Media Access Control (MAC) fail-
ures, and application failures. In general, node failures result in erroneous network judg-
ments, particularly when the failures are linked to cluster heads. When incorrect data are
collected, and inaccurate information is delivered to the BS, improper information will be
from the whole network. As a result, the majority of research focuses on failure detection
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and recovery in sensor nodes, particularly cluster heads, master nodes, and backbone
nodes.

One of the most serious network flaws is routing process failure, which may result
in the transmission of erroneous data or excessive delays [16]. Because all networks are
prone to a connection failure, unstable relationships between nodes result in network sep-
aration and dynamic changes in network topology. Network failures include radio inter-
ference, path faults, permanent or temporary path blockages, and simultaneous transmis-
sion. The data are sent to the backend system via the BS. This section may include errors
resulting in the loss of network-wide data. For example, a problem with the BS may pro-
hibit duties from being sent to sensors. Furthermore, congestion in a local region may
extend to the BS, affecting data reception from other areas of the network [30]. The lack of
energy in this part of the network is one of the serious faults. Because BS is often situated
distant from cities, it has limited and restricted energy and is prone to developing errors.
Furthermore, the software utilized in BS may develop faults.

Lastly, the data collected in the BS is examined and assessed in the backend faults.
Hackers may cause backend errors, resulting in defective nodes and network failure
[30,31]. This failure impacts the whole network, resulting in system inefficiencies. Brief
descriptions of faults are categorized according to their area of effect. A local fault occurs
when a fault impacts one or more nodes. Nevertheless, some key nodes, such as the cluster
head, backbone node, or manager node, have known issues regarded as global faults. Dis-
regarding efforts to correct local problems creates global errors. For example, errors in
sensor nodes lead to erroneous data being delivered to the BS.

Another perspective is that the faults are broken down into four types based on the
layers in which the errors have occurred [23]. Hardware layer errors are the first type in
this classification. The quality of the node’s component, the restricted power resource, and
the harsh environment are some examples of hardware faults in WSNs. Hence, faults in
this layer are malfunction caused by one or some node components. Software layer errors
are the second class that is represented by two parts. The system’s software, such as the
operating system, and the system’s middleware, such as the routing and aggregation pro-
cedures. Network layer errors are the third type of fault in WSNs. The network layer is
crucial because the wireless links are prone to failure in every wireless network. The errors
in this layer are caused by the harsh environment and interference phenomena among the
nodes [44].

Application layer errors are the fourth and last type in this taxonomy. Each applica-
tion has its own set of faults that are distinct from those of the other applications. The most
frequently encountered errors at the application layer relate to coverage and connectivity.

In conclusion, WSN is described as a network prone to failure, with many error types
within it. Therefore, it is compulsory to have a complete fault tolerance structure to mini-
mize the effect of these errors. The next section clarifies the concept of fault tolerance and
its main structure that deal with faults in any WSN.

4. The Main Aspects of Faults Management Structure in WSNs

FT refers to a system’s ability to handle mistakes while still delivering its optimal
performance [24,32]. The result of a combination of fault detection, diagnosis, and repair
is fault tolerance. It is a significant problem in WSN applications for delivering trustwor-
thy data. It should guarantee that a system is available for usage during a duration of a
failure or disruption. Therefore, fault tolerance improves the WSN structure’s availability,
reliability, and dependability [45]. It is necessary to review a summary of the three major
principles of fault tolerance management structures. Fault management is one of the most
popular methods for increasing fault tolerance [46].

As previously stated, the fault management structure in WSNs consists of three
stages: error detection, diagnosis, and recovery as shown in Figure 2. The following sub-
sections describe the three phases of the fault management framework.
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Error Detection
1. Centralized

- 2. Self-Supervision
3. Decentralized

Figure 2. General steps for fault tolerance structure in WSN.

4.1. Error Detection

Error or fault detection refers to identifying any unexpected failure or damaging
forces that affect a network’s or node’s optimum condition [47]. Based on their perfor-
mance, fault detection methods are divided into three categories: centralized, self-super-
vision, and decentralized [19,31,34]. They will be addressed further down.

A sensor node detects problems centrally in a centralized error detection method [48].
The central node in this approach gets status messages from other nodes regularly and
uses them to identify problematic nodes [49]. The central node in this approach gets status
messages from other nodes regularly and uses them to identify problematic nodes [35]. In
addition, as the number of nodes grows, so does the number of messages deliver to the
center. As a result, detection latency increases, making the technique unsuitable for use in
real-time settings [41]. As a result, centralized techniques cannot be used in every WSN.
In addition, a method known as self-supervision is used, whereby a sensor node examines
and evaluates its abilities and physical conditions. In addition, sensor nodes monitor the
remaining energy of their batteries and estimate the battery’s lifespan by studying and
calculating the amount of time and rate at which the battery is discharged. This technique
has a low detection latency, and it is scalable. However, since the focus of self-supervision
techniques is on persistent defects in nodes, they cannot identify all errors in a network
[25]. The use of exact assumptions and threshold values is needed in self-supervision
methods; however, it is not feasible to acquire these values in some WSNss due to technical
limitations.

The goal is to include all nodes in the detecting process in the decentralized (distrib-
uted) method [19,21]. Faults are identified in this method via the cooperation of adjacent
nodes and the use of clustering algorithms, respectively. When using the former method,
data from neighbors are used in conjunction with particular techniques, for instance, ma-
jority vote or analyzing the information obtained with the average of the information re-
ceived from neighbors [27]. Cluster Heads (CHs) are used to identify problems in cluster-
ing techniques. Because cluster heads may become inaccessible when faults arise, the de-
tection of defective clusters has piqued the attention of researchers worldwide. Nowa-
days, strategies for decentralized fault management are gaining popularity [19,25]. The
accuracy of defect detection improves as the number of nodes involved increases.
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However, updated data from neighbors are required to identify errors with neighbor-co-
operation-based techniques. In addition, as the number of participating nodes grows, so
does the amount of control messages transmitted across the network, resulting in in-
creased energy usage and congestion. Cluster-based techniques aim to increase the scala-
bility and reduce the amount of energy consumed, whereas detection latency methods are
the most compatible in WSNs [16].

4.2. Error Diagnosis

To properly fulfill the fault-tolerance principle, it is necessary to identify the kind of
error and remark faulty nodes. The source, nature, and impact of failures on the network’s
status should all be determined [50]. One well-known approach is to use specific reference
nodes in a network with particular geographical positions to assist other nodes in locating
their location. The need to monitor the WSN is raised to investigate and locate network
errors. Monitoring may be divided into four categories: passive, active, proactive, and re-
active. They will be discussed and judged further below. The passive model triggers alerts
to notify the BS whenever a fault is discovered in the passive monitoring model [51]. Be-
cause the technique does not need the transmission of consecutive messages to assess the
network, it consumes less energy and generates less traffic than active monitoring, for
example. However, it is more complex compared to the active approach [52].

In an active monitoring paradigm, sensor nodes continuously transmit updated or
aware messages to the BS, informing it of their presence and updating it on its status. With
an active diagnosis, a series of messages are sent to the BS in order to keep track of the
status of the nodes [19,28]. The delay of error diagnosis is reduced in this case; neverthe-
less, delivering consecutive messages increases the amount of traffic that must be carried
by the WSN. Furthermore, transmitting a massive number of messages mains to a rise in
the energy usage of sensor nodes, making the approach inefficient in terms of energy us-
age. In proactive diagnosis, the structure dynamically collects and analyzes data from a
network to diagnose previous occurrences and anticipate future events in order to keep
the WSN operating at peak performance levels. Compared to other techniques, this error
detection method’s accuracy is higher. However, the process of implementing training
and testing stages leads to increased latency, which is particularly noticeable in real-time
applications of WSNs. The isolation technique is achieved via reactive monitoring, which
is the last type of error diagnosis. This method collects status data from the WSN to see if
any noteworthy measures have occurred and then takes adaptive steps to reorganize the
network [53]. The management system isolates a fault once it has been located. Reactive
techniques look for faults by comparing parameters to thresholds or assessing data corre-
lation. Compared to proactive approaches, the methods are less complex but more accu-
rate [30].

4.3. Error Recovery

WSNs are restored or reconstructed so that damaged nodes do not hurt the network’s
optimum performance; this is the true meaning of the “recovery”. Recovery is defined as
the process of replacing a faulty condition with an ideal one [20]. Forward and backward
recovery are the two fault recovery techniques that may be used depending on the fault
[19].

Backward recovery is used to restore a malfunctioning network to a good condition.
This technique requires recording the network’s status at every instant and recovering it.
One of the most utilized methods to record the present status of the network is the check-
pointing technique [21]. The checkpoint technique saves data and restores them when it
changes. This method also retains data, but only changes are recorded. The primary ben-
efit of these techniques is that they are neither network nor process dependent. Their pri-
mary issue is that network recovery is costly. There is also no guarantee that the same or
comparable problems will not recur in the future. Asset aside in the checkpoint, infor-
mation is available, and recovery takes place quicker, which is the key benefit of a
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backward recovery approach. Furthermore, the cost of implementation is cheap; thus,
there is no need for redundancy. Nevertheless, it is more difficult to choose an appropriate
location to store the network status. Furthermore, the storage of the network state requires
huge messaging and thus generates a higher energy usage. In addition, the error cannot
be retrieved when the check-point is faulty. If a failure occurs in the network, a set of
redundancy devices is placed in the network and is triggered in the event of the failure.
In contrast to the previous approach, forward recovery restores the network to a normal
condition, allowing it to continue its mission without interruption. Compared to the pre-
vious technique, this one is less complicated, and it is unnecessary to know the specific
kind of error [19]. When a failure occurs in this network, the network’s state is reset to a
new state, increasing the time required for recovery. Additionally, redundancy increases
the cost of the network and cannot be incorporated into all sensor neks.

5. Proposed Performance Parameters within Fault Tolerance Technique in WSNs

In recent years, various studies have been done to enhance the fault tolerance concept
in WSNs. Numerous studies dealt with open issues and challenging matters to reach to
ideal fault tolerance structure as referred to in Table 2. Many of these studies used differ-
ent performance metrics to compare and evaluate different fault-tolerance approaches.
Moreover, some researchers are involved to optimize some specific performances during
the design stage of fault tolerance structure [54,55]. These different performance metrics
represent the main evaluation characteristics of the fault-tolerance approach design. Many
of these metrics include detection accuracy, delay, energy consumption, scalability, com-
munication cost, network lifetime, and false alarm rate [56-58]. Following is the discussion
of the main performance parameters that fault management schemes use in detail.

*  Detection Accuracy (DA): The ratio between the successfully recognized faulty sen-
sor nodes divided by the total number of actual defective nodes represents the detec-
tion accuracy [19]. Improving error detection accuracy is possible by growing the
number of nodes that involved in the fault detection process inside a specific region
[59]. Therefore, collaboration among all neighbors in the same event region for ex-
ample will enhance error detection in general. Increasing fault detection time also
increases accuracy even though it will cause greater delay and more energy cost.

*  Energy Consumption: Energy consumption is considered one of the main issues in
WSNss due to the limited power resource and the complexity or impossibility of re-
placing the power supplies for all nodes within the WSN [60]. Enhance the energy
consumption and network failure control go hand in hand. Therefore, a fault toler-
ance system is needed to identify and recover problems with low energy usage
[58,59]. Reducing the sending operations to the BS will play a vital role to improve
energy consumption [61]. Less messaging reduces energy usage in fault control while
Increasing fault detection accuracy increases energy usage.

= Delay: Is well-defined as the amount of time that elapses between the occurrence of
a fault and the discovery of the error. A longer delay increases the likelihood of a
failure spreading inside the network and affects entire network reliability as a conse-
quence of the delay [62].

] Scalability: Many important aspects in WSNs such as fault tolerance and routing,
should have the ability to be scalable. Scalability means the network’s capacity to
accept more sensor nodes or cluster heads. The fault tolerance approach must be able
to manage the high scale and small networks [24].

*  Communication Cost: Total number of messages transmitted per node is the commu-
nication cost. Because of the significant effect of this activity on the network perfor-
mance, several fault tolerance approaches have attempted to minimize communica-
tion costs to a minimum [59]. However, increased congestion, increased delay, and
increased energy usage are all consequences of high communication costs.
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*  Network Lifetime: A network’s lifespan is defined as the period between network
initiation and the moment when the first node dies in the network [63,64].

The fault-tolerance approaches have to take into account the network lifetime and try
within its functionality to avoid minimizing the network lifespan.

*=  False Alarm Rate (FAR): The ratio between the number of faulty nodes that reported
error reports to the total number of faulty nodes [59]. In many situations, there are
special cases in which some nodes produce an error report towards the BS, especially
with monitoring applications. Fault tolerance approaches have a harsh fight with the
wrong fault alarms that consume energy, congest the network, and disturb the con-
trol center with incorrect readings [65,66]. Such a fake alarm will affect the network’s
integrity and reliability.

6. Proposed Classification of Fault Tolerance Management Approaches in WSN

Generally, no single fault tolerance structure fits all WSN applications due to its va-
riety and wide use [67]. Many approaches and frameworks have been proposed for the
same primary purpose: to satisfy the fault-tolerance concept to gain a high level of relia-
bility and integrity. A general categorization of fault management mechanisms is intro-
duced in this section to make the representation of these schemes more understandable.
The suggested categorization divided fault management structures into centralized, de-
centralized, and hybrid. Each category is subdivided into many subcategories. Figure 3
illustrates the categorization of fault management schemes that have been suggested.
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Figure 3. General taxonomy of fault tolerance approaches in WSNs.

6.1. Centralized Fault Tolerance Approaches

The center administrator or BS takes responsibility for fault detection and occurrence
choices. By regularly injecting network status queries into the network to collect state in-
formation and evaluate this information to find faults, the BS identifies and handles all
errors in the WSN. Although this method is easier for smaller networks, it has several
drawbacks, including high message traffic near the BS and high energy usage [68].

Based on their effectiveness, centralized approaches may be divided into statistical-
based, soft computing-based, and time-based. With statistical methods, the statistics are
transmitted to the BS and aggregated; then, it is examined to be assessed via the fault
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tolerance framework [69]. This approach uses statistical methods to identify outliers in the
data set under consideration, such as the sigma test, median, and mean.

Methods based on soft computing are algorithms primarily focused on machine
learning methods [70]. There are two types of learning methods: supervised learning and
unsupervised learning. In supervised learning, an input-output collection is provided to
a system, and the system is instructed to train a given input to outcome pairs in the group.
To train the system, this technique needs some input data. Neural networks, support vec-
tor machines, K-nearest neighbor, Bayesian statistics, decision trees, and fuzzy logic are
examples of learning methods [21,24,31,62]. However, in certain situations, supervised
learning will not provide the desired results. Another machine learning technique is un-
supervised learning. Learning is done on un-marked raw data to uncover unseen forms
in unsupervised learning. Principal Component Analysis (PCA) and K-means clustering
are examples of unsupervised learning [71].

In time-based fault tolerance approaches, nodes utilize Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) and constantly listen to the medium while the net-
work is deployed. To begin, the BS builds a tree structure that links nodes and routes
traffic. Data from adjacent nodes is collected at this stage. Finally, the BS allocates a slot to
each sensor node for information transmission. Many slots are also allocated to nodes for
time synchronization and error handling. Nodes use CSMA/CA for communication lis-
tening during the listening time to identify problems [72]. Even though these methods
depend on the nodes to detect the errors, the BS will make the main decision. As afore-
mentioned, all centralized approaches suffer from high overhead and lack in scalability
matter even though there are simple to implement. Generally, centralized methods have
many drawbacks. First, because of the network’s size and density, a lot of information is
communicated to the BS, rapidly depleting the energy of nodes nearby. Centralized par-
adigms are incompatible with large networks. The approaches also need a huge database
to hold a huge number of data, increasing installation costs. Additionally, the BS is a weak
point in centralized systems and it may have its own errors. When it fails, the output is
inaccurate or absent. A faulty BS is tough to replace in many environments. Because the
BS receives all network data, it becomes congested, affecting network performance. Lastly,
centralized approaches transmit a huge amount of information over the wireless network
to obtain information about its status, leading to increased energy consumption, band-
width waste, and scalability issues [73].

6.2. Decentralized Fault Tolerance Approaches

The decentralized fault-tolerant mechanisms will be tackled particularly in this sub-
section. Unlike centralized control, these structures use numerous management stations
spread throughout the whole wireless network. In decentralized frameworks, each node,
cluster head, backbone node, or master node is in charge of a portion of the network. It
has the ability to interact directly with other nodes to execute fault detection tasks per-
formed by the BS in the last category [19]. In distributed systems, sensor nodes control
their resources and management systems. There is less need to communicate with BS
when the nodes can make decisions regarding their status. In terms of functionality, dis-
tributed fault-tolerant structures are divided into six categories: neighborhood coopera-
tion-based, statistical-based, probability-based, machine learning-based, cloud storage-
based, and agent-based. The basic idea behind the neighborhood-based techniques is a
correlation among nodes in the same region [74].

Neighborhood voting may be split into majority voting and weighted majority vot-
ing. To determine the fault state of nodes, the majority of votes presume that neighboring
nodes have the majority of error situations. For each node in the WSN, the weighted ma-
jority approach gathers weighted votes from all nearby nodes and forecasts a higher num-
ber of votes. Statistical methods are algorithms that identify errors in data using analytical
techniques. Time-series-based and descriptive statistical-based are two subcategories of
statistical methods. The time-series approach examines time-series data to identify



Sensors 2022, 22, 6041

14 of 38

patterns and calculate variations. Deviations in WSNs data are detected using tests. One
of the preferable tests is the Kolmorgov Smirnov [75]. On the other hand, descriptive sta-
tistical-based techniques are for determining defects that utilize one of the central ten-
dency metrics, such as the mean of neighborhood nodes. Probability fault tolerance meth-
ods rely on the probability of node failure to identify the fault state of nodes in a distrib-
uted network environment

A node’s fault probability and the fault probability of its neighbors are used to com-
pute the posterior fault probability, which is then used to identify the faulty nodes. Based
on the Bayes theorem, Bayesian statistical approaches are used to determine the probabil-
ity that a node is inaccurate. Machine-learning methods are a subclass of decentralized
approaches that have lately received a lot of interest [76].

These approaches may be divided into supervised and non-supervised detection
techniques. Training data sets are used in supervised error detection methods to learn the
difference between real and error data and to anticipate many sensor failures.

The node’s weight is used in neural network-based methods to anticipate data mis-
takes. Unlike supervised learning methods, unsupervised learning methods have not
been given any datasets to work with and have not trained with any database. This area
includes clustering methods. Clustering-based methods group nodes into different clus-
ters and link them to a cluster head that examines each node. In agent-based algorithms,
the ultimate error status of a sensor node is decided by agents chosen from across the
WSN or by the sensor nodes themselves, depending on the methodology. Even though
these methods use various information from neighbors, individual nodes or agents make
the ultimate choice [77]. Cloud-based methods take advantage of cloud-based resources
to decrease the cost of computing tasks [78].

The basic concept behind this method is to move the input data from the nodes to
cloud storage and then utilize map reduction to parallelize the error detection process,
which would decrease the time it takes to identify faults in the entire system [79]. How-
ever, this method is not used commonly in WSN.

The goal of decentralized fault tolerance approaches is to solve the issues that cen-
tralized fault management frameworks have, such as increasing energy efficiency and
minimizing the total overhead [19,27]. Various numbers of nodes manage faults to achieve
the goal instead of entirely depending on BS. However, distributed fault management
systems still suffer from delays. They concentrate on lowering energy usage and increas-
ing the accuracy of problem detection. The structures based on neighbor collaboration are
focused on improving fault detection accuracy. Neighbor cooperation techniques are
gaining popularity due to the requirement for more accurate fault tolerance frameworks
in WSNs [58,59].

6.3. Hybrid Fault Tolerance Approaches

The last category in the proposed taxonomy is the hybrid fault tolerance structure, a
combination of centralized and decentralized management approaches. Hybrid ap-
proaches can be divided into two main subcategories: multi-tiered based and statistical
with neighboring based [59]. Hybrid algorithms are employed in a large multi WSN,
where nodes are grouped into clusters with cluster heads [80]. Each cluster’s nodes trans-
mit their information to the cluster leaders. Cluster heads then send the data to a central
base station for processing [2]. In the trust matrix method, a trust matrix is utilized to
assess the trustworthiness of data. Hybrid algorithms also combine many detection meth-
ods that have been mentioned before into a single algorithm.

An example of this category is neighborhood algorithms in conjunction with descrip-
tive statistical methods like mean and median. Hybrid methods’ main goal is to reduce
energy usage and reduce the delay in fault detection. The fault detection time is minimal
since nodes are responsible for detecting their own problems. Furthermore, implementing
a fault tolerance system in the cluster heads and master nodes lowers node energy usage
since nodes with more energy can detect and recover problems. However, the correct
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distribution of clusters in a network and their distance from the BS cause the network to
become more complicated [81].

7. Comparative Analysis, Discussion, and Open Issues

A total of 62 scientific papers have been synthesized and have been reviewed. The
collection of these scientific articles has been selected carefully to cover all the previous
fault tolerance structures and techniques. The basic information for every article, the ex-
planation of each methodology, and the representation of all performance metrics have
been included in Table 3. The performance metrics for each study have been used to clarify
the enhancement and modification of previous works.

Table 3. Primary Information, Methodology, and Performance Metrics.

References Area of Study Methodology Main Performance Metrics
1.  Network Lifetime.
et Tangs ) b mberaDon G et
[2] and Wireless Sensor Net- MATLAB ’ '
works (WSNs) 4.  Average Succuss Rate.
5. Average Survival Rate.
6.  Average End to End (E2E) Delay.
1. Residual Signal.
. 2. Weighting Fault Signals.
1
[7] Wireless Sensor Networks MATLAB 3.  States Responses of the Distributed
(WSNis) .
Fuzzy Filters.
4. Disturbance Input and Fault Input.
. 1.  Energy Consumption.
[13] Wireless f’x‘ssifgetworks MATLAB 2. E2EDelay.
3 Total Throughput.
Wireless Sensor Networks
14 ATLAB 1. D ion A .
[14] (WSNs) M etection Accuracy
1.  False Positive Rate.
Internet of Things (IoT) 2. Fault Detection Accuracy.
[37] and Wireless Sensor Net- NS3 3.  False Alarm Rate.
works (WSNs) 4.  Network Lifetime.
5. Throughput.
. 1. Energy Balance.
[45] Wireless Sensor Networks MATLAB 2. Intrusion Tolerance.
(WSNis)
3. Fault tolerance.
1.  Residing Energy.
Wireless Sensor Networks 2. Energy Consumption.
4 MATLAB
[46] (WSNs) 3. Number of Cluster Heads.
4. Network Lifetime.
Industry Revolution (IR . .
[57] 4.0) and Internet of Things Statistical Model L Probab%l?ty of Detection.
2. Probability of False Alarm.
(IoT)
1.  Packet Error Rate.
. 2. Latency.
Wirel twork
[59] 1reless ?“j\?ss;r ;\Te WOTKS NS2 3. Network Lifespan.
s 4.  False Alarm Rate.
5. Detection Accuracy.
Wireless Sensor Actor . 1. Detection Accuracy.
82 Castal
[82] Networks astaha 2. Message Received Per Node.
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(WSANSs) 3.  False Alarm Rate.
4. Message Sent Per Node.
1. Accuracy.
Wireless Sensor Networks 2. Precision.
Pyth
[83] (WSNis) ython 3. F1 score/F Measures.
4. Training Time.
. 1. Network Lifetime.
(84] Wireless f’x‘ss;rgetworks OMNET++ 2. Packet Loss Rate.
3. E2E Delay.
1.  Localization Accuracy.
irel
[85] Wireless ?sélssﬁli;qetworks MATLAB 2. Localizations Errors.
3. Fault Ratio.
. 1. E2E.
[86] Wireless ?&? Ss;rS;\Tetworks Testbed 2. Deployment Cost.
3. Number of Bad Links in each Path.
1. FaultR Time.
Wireless Sensor Networks ault “esponse Lime
[87] (WSNs) Testbed 2. Detection Accuracy.
3. False Alarm Rate.
. . L 1. Communication Cost.
Wireless Sensor Networks Vienna Scientific Cluster
[88] (WSNs) VSC 2. Average Message per Node.
3. Communication Overhead.
1. FaultR Time.
Wireless Sensor Networks . ault Recovery 1ime
[89] (WSNs) Castalia 2. Consumed Energy.
3. Network Lifetime.
Underwater 5 Recorery o Nodes
[90] Wireless Sensor Networks NS2 ' y o
(UW_WSN) 3. Probability of Failure Nodes.
B 4.  Coverage Ratio.
1. Fault Detection Accuracy.
Wireless Sensor Networks 2.  False Alarm Rate.
91 MATLAB
(1] (WSNs) 3.  Energy Cost.
4.  Network Lifetime.
1. Energy Consumption.
[92] Wireless Sensor Networks Testbed and 2. Network Lifetime.
(WSNis) TOSSIM 3. Received Byte Account.
4. Transmitted Byte Account.
1. Total Th hput.
Internet of Things (IoT) ’ E;;a roughput
[93] and ere:zsriznsor Net- NS2 3. Network Lifetime.
(WSNis) 4. Power Consumption.
5.  Hop Count.
1. Detection Rate.
irel
[94] Wireless ?‘il; 85132;\1 etworks Testbed 2. Distance Covered.
3.  Recovery Rate.
Internet of Things (IoT) 1.  Average Dissipated Energy.
[95] and Wireless Sensor Net- NS2 2. Average Delay.
works . verage Packet Delivery Ratio.
k 3 A ge Packet Delivery Rati
(WSN’s) 4.  Functional Complexity.
Wireless Sensor Networks 1. E2E.
96 NS2
[%6] (WSNis) 2. Throughput.
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3. Packet Delivery Ratio.
4. Latency.
5. Packet Loss Rate.
6.  Fault Probability.
1. Delay.
Wireless Sensor Networks 2. Average Data Loss.
97 MATLAB
571 (WSNis) 3. Average correct Data.
4. Energy Consumption.
1. Deviation.
Wireless Sensor Networks MeaIT Square. eviation.
[98] (WSNs) Testbed 2. Fraction of Disconnectivity.
3.  Average Path Length.
1. False Classification Rate.
[99] Wireless Sensor Networks Testbed and 2. False Alarm Rate.
(WSNis) MATLAB 3. Fault Detection Accuracy.
4. False Positive Rate.
1. Fault Detection Accuracy.
Wireless Sensor Networks 2. Fault Probability Rate.
1 ATLAB
[100] (WSNs) M 3. False Alarm Rate.
4. Fault Positive Rate.
1. Packet Transmission Ratio.
Wireless Body Area Net-
[101] work (WBAN) MATLAB 2. Average De.lay.
3.  Energy Saving.
. 1. Average Localization Error is Stud-
[102] Wireless Sensor Networks MATLAB ied by Varying the Number of Faulty
(WSNis)
Nodes.
1.  False Positive Ratio.
Wireless Sensor Networks ase .OSI tve Ratio
[103] NS2 2. Detection Accuracy.
(WSNis) :
3. Energy Consumption.
. 1. Fault Detection Accuracy.
Wirel twork
[104] treless ?“j\? Ss;rS;\Te wWorks Testbed and NS2 2. False Positive Rate.
3. Network Overhead.
Wireless Sensor Networks 1. Fault Detection Performance.
[105] (WSNis) Testbed 2. Event Detection Performance.
Wireless Sensor Networks 1.  False Alarm Rate (FAR).
1 ATLAB
[106] (WSNis) M 2. Correct Detection Rate (CDR).
1.  Consumed Energy.
Wireless Sensor Networks 2. Network Lifespan.
107 MNET
[107] (WSNs) OMNET+ 3. Classification Accuracy.
4. False Alarm Rate.
1. True Positive Rate.
Wireless Sensor Networks 2. False Positive Rate.
[108] (WSNSs) Testbed 3. Detection Accuracy.
4. Precision.
1. Fault Detection Accuracy.
[109] Wireless Sensor Networks MATLAB 2. Energy Consumption.
3. False Alarm Rate.
Industrial Wireless Sensor 1. False Alarm Rate.
110 MATLAB
[110] Networks (IWSNs) 2. Detection Accuracy.
[111] Wireless Sensor Networks NS2 1. False Alarm Rate.
(WSNis) 2. Fault Detection Accuracy.
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Energy Consumption.
Fault Detection Latency.
False Positive Rate.

Wireless Sensor Networks

Remaining Energy.

3.
4.
5.
1.
[112] (WSNs) MATLAB 2. Packet Dehv'ery Ratio.
3. Error Detection Accuracy.
. 1.  Sensor Fault Probability.
[113] Wireless Sensor Networks MATLAB 2. Total Energy Consumption.
(WSNs) .
3.  Detection Accuracy.
Wireless Sensor Networks 1. Fault Detection Accuracy.
[114] (WSNs) Testbed 2. Average Error rate.
S 3.  Standard Deviation.
1.  Network Lifetime.
Wireless Sensor Networks 2. Energy consumption.
[115] (WSNss) Testbed and MATLAB 3.  False Alarm Rate.
4. Fault Detection Accuracy.
. 1. Detection Accuracy.
[116] Wireless ?‘f\r,‘;;r ;\Tetworks NS2 2. False Alarm Rate.
S 3.  False Positive Rate
1.  Energy Consumption.
Wireless Sensor Networks 2. Delay.
117 MATLAB
[117] (WSNs) 3. Packet Drop Rate.
4.  Delivery Ratio.
1. Detection Time.
2. Percentage of Failure Detection.
[118] Wireless Sensor Networks NS2 3. Mean Detection Time.
(WSNis) 4. Percentage of Suspicious.
5. Mean Time to Detect Failure in
C
: ) 1.  Energy Consumption.
[119] Mi?:te erli‘;lfxssl\eg)sor OMNET++ 2. Packet Drop Rate.
wo 3. Packet Delivery Ratio.
. 1. Average Delay.
[120] Wireless Sensor Networks NS2 2. Packet Delivery Ratio.
(WSN’s)
3. Throughput.
. 1.  Detection Accuracy Rate.
Wirel twork
[121] ireless Sensor Networks MATLAB 2. Relative Restoration Error.
(WSNs) .
3.  Energy Consumption Rate.
1.  Detection Accuracy.
2. tthy lati fficient
Wireless Sensor Networks Matthews Correlation Coefficien
[122] (WSNs) Python (MCQC).
s 3. True Positive Rate.
4. F1 Score.
1. Network Efficiency.
Wireless Sensor Networks 2. Overload-Tolerance Coefficient.
12 MATLAB
[123] (WSNs) 3. Congestion-Tolerance Coefficient.
4.  Traffic Variance.
Wireless Sensor Networks . . 1.  Cooperative Detection Probability.
[124] (WSNis) Simulation 2. Surveillance Quality.
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Internet of Things (IoT) 1.  Network Energy Consumption.
[125] and Wireless Sensor Net- Cit 2. Failur? Rate.. . .
works 3. Deadline Missing Ratio.
(WSNs) 4.  Network Lifetime.
1.  Probability of a Node Failing.
[126] Wireless Sensor Networks Monte Carlo and 2. Root Mean Square Error (RMSE).
(WSNss) MATLAB 3. Cumulative Distribution Function
(CDF).
1.  Delivery Ratio.
[127] Internet of Things (IoT) Castalia 2. E2E Delay.
3. Energy Consumption.
Wireless Sensor Networks 1.  Detection Accuracy.
[128] (WSNs) MATLAB 2. False Positive Rate.
Internet of Things (IoT) ..
[129] and Wireless Sensor Net- NS2 ; g;i?}i?;::::: ODpet liir}lli'zation
works (WSNis) ) )
Internet of Things (IoT) 1. Throughput.
[130] and Wireless Sensor Net- MATLAB 2. Energy Consumption.
works (WSNs) 3. Average Delay.
1.  Barrier Construction Efficiency.
Internet of Things (IoT) ; Erel:?;;lg;?dex (RI).
[131] and Wireless Sensor Net- NS2 ’ i )
works (WSN's) 4.. Percentage Coverage Area with
Time.
5.  Percentage of coverage holes.
1.  Packet Loss Rate.
Internet of Things (IoT) 2. Throughput.
[132] and Wireless Sensor Net- NS3 3.  Total Energy Consumption.
works (WSNs) 4. Latency of Recovery.
5. Number of Dead Nodes.
5G, Industrial Internet of 1. System Cost.
[133] Things (IIoT) and Wireless Python 2. Energy Consumption.
Sensor Networks (WSNs) 3.  Total Delay.
Internet of Things (IoT) 1. Network Connectivity.
[134] and Wireless Sensor Net- MATLAB 2. Coverage Efficiency.
works (WSNs) 3.  Hole Recovery.

Table 4 classified the aforementioned scientific articles according to error types, fault
tolerance approaches, and fault management structure detailed in Sections 3, 4 and 6, ac-
cording to the main parameters related to presenting and designing an efficient fault man-
agement structure for WSNs, represented in Section 5. The constraints include detection
accuracy, energy consumption, latency, scalability, and communication cost, among oth-
ers. The assessment of the existing frameworks is shown in Appendix A.
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Table 4. Network Type, Fault Type, and Fault Management Structure.

- Fault Tol P d
References Network Type Fault Type Fault Tolerance Ap : ault To eran.ce 1‘0(.26 ures
proach Detection Diagnosis Recovery
Node Faults (CH Fail-
[2] Heterogeneous ode alller)( al Hybrid Based Decentralized Reactive -
[7] Homogeneous Node Faults Centralized Based  Self-Supervision Active -
[13] Homogeneous Node Faults and Net- Decentralized Based Self-Superv15}on Proactive Forward
work Faults and Decentralized
[14] Homogeneous Node Faults Decentralized Based Self-Supervision Reactive -
[37] Heterogeneous Node Faults (CH Faults) Decentralized Based = Decentralized Active-Proactive -
Node Faults (CH Fail-
[45] Heterogeneous ode al:rz)( & Decentralized Based ~ Decentralized Active -
Node Faults (CH Faults)
[46] Heterogeneous  and Network Faults Decentralized Based = Decentralized Active Backward
(Links)
[57] Homogeneous Node Faults Centralized Based Centralized Passive -
Node Faults and Net- . . .
[59] Homogeneous Decentralized Based  Decentralized Reactive -
work Faults
[82] Heterogeneous Node Faults Hybrid Based Decentralized Active Backward
[83] Homogeneous Node Faults Centralized Based Decentralized Proactive -
[84] Heterogeneous Node Faults Decentralized Based Self-Supervision Active -
[85] Heterogeneous Node Faults Decentralized Based  Decentralized Reactive Forward
Node Faults and Net-
[86] Homogeneous ode Faults and e Centralized Based Decentralized  Active- Proactive -
work Faults
[87] Homogeneous Node Faults Decentralized Based  Decentralized Passive -
[88] Homogeneous Node Faults Decentralized Based  Decentralized Reactive -
[89] Heterogeneous Node Faults Decentralized Based  Decentralized Reactive -
[90] Heterogeneous Node Faults Centralized Based  Self-Supervision Active Backward
[91] Heterogeneous Node Faults Centralized Based Decentralized Active Backward
[92] Heterogeneous Node Faults Decentralized Based  Decentralized Proactive
Network Faults (Link
[93] Heterogeneous etwor . aults (Lin Decentralized Based  Decentralized Reactive -
Failure)
Faul
[94] Homogeneous Nerork_ aults Centralized Based Centralized Passive -
(Link Failure)
[95] Heterogeneous Node Faults Decentralized Based  Decentralized Active Forward
Node Faults and Net-
[96] Homogeneous ode Faults and et o entralized Based  Decentralized Active -
work Faults
Node Faults and Net-
[97] Heterogeneous ode Faults and Ne Decentralized Based  Decentralized Active Backward
work Faults
twork Faults (Link
[98] Heterogeneous Networ . aults (Lin Decentralized Based  Decentralized Active -
Failure)
Network Faults (Link
[99] Heterogeneous etwor . aults (Lin Decentralized Based  Decentralized Active -
Failure)
[100] Heterogeneous Node Faults Decentralized Based  Decentralized Proactive -
twork Faults (Link
[101] Homogeneous Networ . aults (Lin Centralized Based Centralized Passive -
Failure)
[102] Heterogeneous Node Faults Decentralized Based  Decentralized Active -
[103] Heterogeneous Node Faults Centralized Based Decentralized Reactive -
[104] Heterogeneous Node Faults Decentralized Based  Decentralized Active Forward
Acti d Proac-
[105] Homogeneous Node Faults Centralized Based Centralized cuve :ir;e roac -
. Self-Supervision .
[106] Homogeneous Node Faults Centralized Based . Passive Backward
and Centralized
Faul H Fail- 1f- isi
[107] Heterogeneous Node Faults (CH Fai Decentralized Based Self-Supervision Active Forward

ure)

and Decentralized
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[108] Homogeneous Node Faults Centralized Based Centralized Active -
Node Faults and Net- . . .
[109] Homogeneous Centralized Based  Self-Supervision Active -
work Faults
[110] Heterogeneous Node Faults Decentralized Based  Decentralized Active Backward
[111] Heterogeneous Node Faults Decentralized Based  Decentralized Active -
[112] Heterogeneous Node Faults Hybrid Based Decentralized Proactive -
[113] Heterogeneous Node Faults Decentralized Based  Decentralized Passive and Active -
[114] Homogeneous Node Faults Centralized Based Centralized Active -
[115] Homogeneous Node Faults Decentralized Based Centralized Active -
[116] Heterogeneous Node Faults Centralized Based Decentralized Passive Forward
[117] Heterogeneous Node Faults Decentralized Based  Decentralized Active Backward
Node Faults (CH Fail- . . . .
[118] Heterogeneous ure) Centralized Based Decentralized Passive and Active -
Faul H Fail-
[119] Heterogeneous 0% a‘;;z)(c & Centralized Based ~ Centralized Active Forward
[120] Heterogeneous Node Faults Decentralized Based  Decentralized Proactive Backward
[121] Heterogeneous Node Faults Hybrid Based Decentralized Proactive Backward
T .
[122] Homogeneous Node Faults Decentralized Based Se Superv1s?on Proactive -
and Decentralized
Node Faults and Net-
[123] Heterogeneous ode raults ahd e o centralized Based  Decentralized Active -
work Faults
[124] Homogeneous Node Faults Decentralized Based  Decentralized Active -
T .
[125] Heterogeneous Node Faults Decentralized Based Se Superv1sTon Passive -
and Decentralized
Node Faults and Net-
[126] Heterogeneous ode raults ald e b centralized Based Self-Supervision Proactive -
work Faults
[127] Homogeneous Node Faults Centralized Based Centralized Active -
If- .
[128] Homogeneous Node Faults Centralized Based oLl SuPpervision Active -
and Centralized
[129] Heterogeneous Network Faults Centralized Based Decentralized Reactive -
Node Faults and Net- 1f- isi
[130] Heterogeneous ode Faults and Ne Decentralized Based Se Superv1s¥on Active -
work Faults and Decentralized
Node Faults and Net-
[131] Homogeneous ode Faults and Ne Centralized Based  Self-Supervision Active Forward
work Faults
Faul H Fail-
[132] Heterogeneous Node al;;z)(c a Decentralized Based  Decentralized Active Backward
[133] Heterogeneous Network Faults Decentralized Based  Decentralized Active -
i -
[134] Heterogeneous Network Faults Decentralized Based Self-Supervision Active Forward

and Decentralized

After analyzing various fault management architectures while considering the mul-

tiple parameters discussed in Section 5, our survey displayed and synthesized the find-
ings in Table Al (Appendix A). The review study examined the energy consumption of
various fault management methodologies based on the data collected from energy con-
sumption. As fault management systems’ energy usage decreases, nodes have longer life-
times, resulting in an increase in the total lifespan of the network as a consequence [135].

Most centralized fault tolerance techniques exhaust a tremendous amount of power
due to the high sending operations toward the BS. Unlike centralized fault tolerance ap-
proaches, the majority of decentralized and hybrid fault tolerance approaches minimize
energy consumption. In the same context of the speech, the centralized fault management
frameworks do not involve the error recovery process in deep, which results in keeping
fault data moving back and forth inside the network, causing more and more energy con-
sumption.

A primary strategy for estimating network congestion in fault tolerance techniques
is based on the amount of traffic flowing through the network. It is possible to employ
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this strategy by examining the number of error messages that have been issued and re-
ceived over time. As a result of using the congestion control strategy, the traffic load for
the complete fault management structure is improved [136]. Centralized approaches con-
gest the WSN since all the sensed data (fault measurements and true events) are for-
warded toward the BS for central processing [59].

On the other hand, decentralized methods keep the traffic flow low, and fewer mes-
sages are kept passing among neighboring nodes. Hybrid fault tolerance methods have
the second-highest congestion level because they force the central station to be involved
in some steps of their procedures. What should be mentioned here, according to the error
diagnosis phase, is that any fault tolerance structure used in the active technique also pro-
duces high congestion and consumes more energy.

The false alarm rate in various fault management systems has discussed in Table A1.
(Appendix A). The false alarm rate examines the number of malfunctioning nodes that
reported problems to the base station and the overall number of faulty nodes. When the
number of malfunctioning sensor nodes in a single location is large, the rate of false alarms
grows considerably [37,59]. Many neighborhoods’ cooperation-based approaches, statis-
tically based methods, and machine learning-based methods have a low false alarm rate
compared to other methods. Furthermore, we examined the error recovery techniques
that are used to diagnose faults in order to assess the delay of fault tolerance structure
since the time that elapses between the incidence of an error and the discovery of the fail-
ure is the fundamental idea of delay [137]. Any fault management system that includes an
active error diagnosis approach and backward monitoring recovery approach will incur
reduced latency as a result of these considerations. Aside from that, employing a mobile
sink inside the same network will result in less latency overall. It should go without saying
that there is a link between fault detection accuracy and the overall time taken to discover
an issue [19].

Consequently, boosting the precision of mistake detection will result in a significant
increase in latency. The outcome of studying decentralized fault management solutions
reveals that these techniques continue to encounter a delay, mainly because most of these
approaches focus on reducing energy usage and increasing detection accuracy.

To estimate the cost of a fault tolerance structure, it was necessary to utilize a calcu-
lation dependent on the number of nodes in which the error detection and recovery tech-
niques were implemented [21,31]. Therefore, centralized and hybrid techniques are less
expensive to adopt as compared to decentralized ones in terms of implementation costs
[19]. To estimate the scalability of the fault tolerance approach, this study examines the
changing number of nodes in different frameworks because the scalability concept is re-
lated to the ability to increase the number of nodes. Therefore, the clustering method, es-
pecially decentralized methods, is generally more scalable than other methods. Lastly, the
evaluation of network lifespan came to a basic conclusion. The decentralized fault toler-
ance management frameworks maximize the network lifespan because many procedures
within their work prevent the sensor nodes from consuming their power resource rapidly
[59].

Some core challenges attracted our attention through analyzing various fault-toler-
ance approaches. First, neighboring cooperation-based techniques within the decentral-
ized category provided low traffic. Unlike other strategies, these approaches do not de-
pend on the BS in their operations. Second, they have a low false alarm rate compared
with many other methods [37,59]. However, neighboring cooperation-based approaches
can be enhanced and renovated by optimizing the majority voting techniques and elimi-
nating the source of the faults. More investigation on these open issues could improve the
performance of the decentralized approach, especially when embedded with a routing
algorithm.



Sensors 2022, 22, 6041

23 of 38

8. Open Research Issues

FT term is related directly to network reliability and data integrity. Thus, there is a
real need to provide real attention to this concept. Novel techniques must be discovered
to build and propose more suitable and satisfactory fault tolerance structures in WSNs.
Therefore, overcoming current problems and challenges is crucial. This section summa-
rizes five challenging open issues, and the aim is to provide attractively and still stand
research directions for other researchers. In the following, the open research issues are
presented according to the proposed taxonomy of current fault tolerance approaches.

8.1. Energy Efficiency

Energy efficiency is one of the significant concerns in WSNSs. It is essential to consider
the energy-efficient related issues incurred by any algorithm due to its respective design
for WSNs [16]. In one way or another, all FT techniques consume power to accomplish the
fault detection phase. However, there is a difference in the consumed energy amount de-
pending on the different fault-tolerance approaches regarding the main three categories
in the fault tolerance structures.

Centralized approaches, for example, waste more energy than other approaches [59],
which represents the main issue that still stands with these kinds of strategies. This is due
to the massive amount of sensed data that are sent to the BS. Analyzing the sensed data
in a centralized way is insufficient and should be organized well.

8.2. Communication Overhead

Overhead still represents a challenging task in fault tolerance management. Numer-
ous studies proposed several approaches to minimize the overhead during error detec-
tion, diagnosis, and recovery. However, most fault tolerance algorithms suffer from high
overhead at the node level, especially decentralized ones. For instance, the neighboring
cooperation is based on exchanging many control messages among neighbors to gain high
detection accuracy far from the central BS [138]. Such actions come with a high overhead
as the network becomes more crowded.

8.3. Security

Security in WSNs is one of the critical requirements. Taking the fault-tolerance con-
cept into consideration, there is a clear correlation between security and faults in the en-
vironment of the WSN. Errors will increase the doubt term and make the protection from
attackers even more complicated. An intrusion can cause faults. Additionally, faults dra-
matically can allow and facilitate a new intrusion to attack the WSN [17]. Moreover, dis-
ambiguation between a faulty node and a malicious node is a tricky task in WSNs needs
to be investigated widely.

8.4. Scalability and Density Deployment

The evaluation process performed on the previous studies clarifies that scalability
and density deployment of the nodes are restricted and have high requirements that need
to be handled. For example, centralized approaches are not fit for the large-scale networks
and do not provide the scalability option to run additional new nodes added to the net-
work.

Unlike centralized approaches, hybrid and decentralized methods are more appro-
priate for networks that constantly gain more nodes. However, these approaches’ perfor-
mance decreases gradually in the high-density deployment of nodes. This is because high-
density deployment requires an extra layer of complexity in terms of synchronization and
location system of nodes [139].
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8.5. Latency

Latency time is a high priority in WSNs because faults must be detected and elimi-
nated from the network as soon as possible. In many real-time applications, responses that
take a long period of time may pose a high risk in certain situations. Latency represents a
continued open issue in the fault-tolerance methods due to the average time taken to de-
tect and dealt with faults.

All fault tolerance algorithms consume time to finish the error detecting stage and
the error recovering phase [59]. However, centralized algorithms have low delay as com-
pared to other approaches since they have all data positioned at the central point. In con-
trast, decentralized systems, especially those bases on neighbor voting, have a high delay.

9. Conclusions

As deliberated extensively, FT refers to the network’s ability to deal successfully with
faults, and it is crucial for WSNs. Decreasing overall WSN errors is related to the initial
implementation of a fault-tolerance approach which leads to the optimal functionality for
the network. Due to its importance for satisfying network reliability, numerous scientific
studies have been proposed to develop new structures and techniques.

This work presented a comprehensive survey of fault tolerance strategies in WSNs,
consisting of many main stages. First, we classified error types into five general categories
with many subcategories. Second, the study discussed the three main principles in fault
tolerance structure: error detection, error diagnosis, and error recovery. Third, this study
designed a new taxonomy for the current fault tolerance structures. The proposed taxon-
omy divided the current techniques into three main classes: centralized, decentralized,
and hybrid.

Additionally, our extensively enhanced taxonomy has divided each class into many
subclasses. The classification process was based on the nature of the fault tolerance system
process, the kind of network topology, the type of fault, the kind of diagnosis process, the
type of error recovery, and the performance metrics. Moreover, a brief description of the
eight main performance metrics used to evaluate the fault-tolerance approaches has been
demonstrated. In addition, a deep analysis was conducted on a broad range of studies
from 2016 to May 2022 to estimate the weaknesses in the current fault tolerance ap-
proaches using the performance evaluation metrics. Lastly, open issues related to the
mentioned term have been presented according to our extensive review.
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Appendix A

Table Al. Analysis and Classification of Fault Tolerance Management Structures.

Techniques

Parameters Enhancement within Technique

Contributions

Minimize Energy Minimize Conges- Minimize False

Use

tion

Alarm Rate

Fault Detection Ac-
Delay curacy

Minimize

Improved Costs

High Scalability

Maximize Net-
work Lifespan

(2]

Proposed a novel fault tolerance routing al-
gorithm using a hybrid meta-heuristic algo-
rithm which integrated the Firefly Optimi-
zation (FA) with Gray Wolf Optimization
(GWO).

[7]

Proposed a novel method for detecting the
random packet loss based on the Bernoulli
distribution through the network from the
sensors to the filters. The proposed method
utilizes the IT2 T-S fuzzy model and a new
distributed fault detection filter corre-
sponding to the sensor nodes.

[13]

Proposed a new approach based on artifi-
cial intelligence to handle the faults during
data transmission to the BS.

[14]

Proposed a novel Distributed Fault Detec-
tion (DFD) that recognizes the neighboring
hot nodes and imposed their impact for
fault detection.

[37]

Proposed multiple solutions such as a Max-
imum Coverage Location Problem (MCLP)
algorithm to find optimal locations for CH
placement, a Multi-Objective Deep Rein-
forcement Learning (MODRL) for fault de-
tection and fault-free optimal data routing
path selection, and presented a mobile
sink-based data gathering scheme for better
reliability.

[45]

Proposed construction of a regular hexago-
nal-based clustering
scheme (RHCS) of sensor networks and an-
alyzed the reliability of RHCS based on the
Markov model. Moreover, this work
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proposed a scale-free topology evolution
mechanism.

[46]

Proposed a management framework that is
qualified to provide network fault toler-
ance that detects and recovers mechanisms
for various faults including network nodes
and communications between them. The
whole work was built on the idea of Check
Point Node (CHN) and storing all data
temporally.

[57]

Proposed a novel machine-learning-based
architecture for detecting anomalies read-
ings from sensors, identifying the faulty
ones, and adapting them with suitable esti-
mated data.

[59]

Proposed the True Event-Driven and Fault
Tolerance Routing (TED-FTR) approach for
real-time applications in WSNs.

[82]

Proposed the Triple Modular Redundancy
(TMR) to monitor radiation levels near and
within a nuclear reactor.

[83]

Proposed the Extra Trees Based (ETB) to
detect and diagnose different types of
faults in an ideal time for WSNs.

[84]

Proposed the Energy Efficient cluster-based
Fault-Tolerant Routing Protocol (EE-FT)
that avoids node faults before they occur.

[85]

Proposed fault filtering approach to detect
and filter out faulty nodes, making the lo-
calization process more fault tolerant.

[86]

Proposed a K-Set Converging Algorithm
(KSCA) to build fault tolerance that can
deal with Delay Constrained Relay Node
Placement.

[87]

Proposed Trend Correlation-based Fault
detection (TCFD) strategy to detect faulty
nodes in WSNSs.

[88]

Proposed a push-flow algorithm for fault
tolerance and employing the self-correcting
properties of repeated improvement.
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[89]

Presented a comparison among three fault-
tolerant routing protocols Multilevel,
HDMRP, and EAQHSeN.

[90]

Proposed an error guess, detection, and re-
covery algorithm using the Markov Chain
Monte Carlo procedure for Underwater
Wireless Sensor Networks (UW-WSN).

1]

Proposed Reliable Neuro-Fuzzy Optimiza-
tion Model (RANDOM) for intra-cluster
and inter-cluster fault detection.

[92]

Proposed a distributed fault-tolerant algo-
rithm that deals with a finite number of
transient errors based on Connected Domi-
nating Set (CDS).

[93]

Proposed fault-tolerant routing algorithm
using Fractional Gaussian Firefly Algo-
rithm (FGFA) and Darwinian Chicken
Swarm Optimization (DCSO).

[94]

Proposed Directional NN algorithm di-
rected to the next nearest node (NNNN) re-
duces data acquisition time while maintain-

ing fault tolerance for links failures.

[95]

Proposed a path graph flow and
Marchenko Pastur distribution for fault de-
tection in cluster heads and normal nodes.

[96]

Proposed node faulty detection method to
gain reliable communication in a wireless
environment with a lot of obstacles.

[97]

Proposed a fault tolerance technique to de-
tect and diagnose faults, the backup nodes
used to recover from faults.

[98]

Proposed a novel approach of decentral-
ized detection over a Small World WSNss to
utilize traffic flow between node pairs and

result in a robust and low-complexity de-

velopment.

[99]

Presented a technique that is capable of di-
agnosing composite faults on sensor nodes
and connections, including hard perma-
nent, soft permanent, intermittent, and
transient faults.
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[100]

Proposed an optimized Sup-port Vector
Machine (SVM) for fault diagnosis in WSN
based on the Gray Wolf Optimization
(GWO) classifier that used to detect faults
in sensor nodes

[101]

Proposed energy-efficient fault-tolerance
approach to enhance the reliability in the
WBAN based on the cooperative communi-
cation and net-work coding strategy.

[102]

Proposed a fault-tolerant approach named
clustering-based DV Hop using K means
clustering and majority voting methods.

[103]

Proposed a new technique named Low En-
ergy Fault Detection (LED) to utilize the se-
quence of data acquired by the sensor to
detect certain types of faults.

[104]

Proposed a Fault detection method based
on the Gaussian transformation algorithm
to detect faulty nodes.

[105]

Proposed and evaluated the trouble of de-
tecting different kinds of fault data and the
guidance of each type on event detection
results.

[106]

Proposed the two-stage error detection al-
gorithms based on spatial-temporal cooper-
ation performed by the BS in WSNSs.

[107]

Proposed a logical Cluster Head system in
which the CH, like other nodes in the net-
work, is prone to mistakes. The LEACH
procedure has been updated to include in-
telligent dynamic CH selection based on re-
sidual energy and sensor inputs after each
round.

[108]

Proposed a comparative study for noise,
short-term, and fixed faults caused by low
battery and calibration. The study was
based on the performance of three popular
algorithms which are: Support Vector Ma-
chine (SVM), Naive Bayes, and Gradient
Lifting Decision Tree (GBDT).
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[109]

Presented the hardware error diagnosis
methods that detect the heterogeneous
hardware errors such as unit, transmitter,
and microcontroller.

[110]

Proposed an error detection approach for
Industrial Wireless Sensor Networks
(IWSN's) based on software-defined net-
works (SDNs).

[111]

Presented a heterogeneity fault diagnosis
protocol via three steps to detect many
kinds of errors such as hard, soft, and inter-
mittent.

[112]

Presented a novel approach based on dis-
tributed detection and fuzzy logic to detect
errors, isolate faulty nodes, and reuse some

faulty nodes as relay nodes.

[113]

Proposed fault detection method based on
clustering to achieve high detection process
run by CHs without bothering the BS.

[114]

Proposed a high error detection approach
based on double machine learning tech-
niques, which are the neural networks and
the Support Vector Machine (SVM).

[115]

Proposed a novel distributed mobile sink-
based fault diagnosis scheme for WSNs by
using single hop communication.

[116]

Proposed a fuzzy multilayer with particle

swarm optimization for fault detection in

WSNis such as hard, soft, intermittent, and
intermittent errors.

[117]

Proposed a clustering-based method for
fault tolerance using the genetic algorithm.

[118]

Propose a new failure detection methodol-
ogy for clustered WSNs named Efficient
and Accurate Failure Detector (EAFD),
which uses two degrees of suspicion to de-
cide if a node has failed.

[119]

Proposed a cluster-based fault detection
and recovery method. False data detection
is performed by estimating the accuracy
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value of each sensor node and then detect-
ing and eliminating outliers.

[120]

Presented a method for preventing node
failures by using the Ad hoc On-Demand
Distance Vector (AODV) routing protocol

and chick point recovery.

[121]

Proposed a technique based on the Princi-
pal Component Analysis (PCA) to deal
with information errors and redundant is-
sues.

[122]

Proposed comparative analysis for fault de-
tection problem. The study evaluates six
methods: Support Vector Machine (SVM),
Convolutional Neural Network (CNN),
Stochastic Gradient Descent (SGD), Multi-
layer Perceptron (MLP), Random Forest
(RF), and Probabilistic Neural Network
(PNN).

[123]

Proposed a practical cascading standard for
WSNs, in which the load function is de-
fined on each node according to a new di-
rectional traffic metric. The failed node can
recover through a reboot after a specific
time delay rather than being forever re-
moved from the network.

[124]

Presented a barrier coverage algorithm,
namely Maximizing Cooperative Detection
Probability (MCDP), which applies the
Probability Sensing Model (PSM) and aims
to perpetuate the life of solar-powered
WSNs while maximizing the surveillance
quality of the constructed barrier. The pro-
posed method is based on calculating the
detection probability of each sensor to each
grid.

[125]

Proposed a novel optimized fault-tolerant
task allocation algorithm for IoT-WSNs
called Discrete Particle Swarm Optimiza-
tion (DPSO). The proposed algorithm em-
ploys a frame replication and elimination
approach to transmit flow replicas over
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redundant routes and schedules the flow in
time slots to avoid data corruption or the
effect on the throughput.

[126]

Proposed a robust localization based on the
Received Signal Strength Difference (RSSD)
with unknown transmit power and Gauss-
ian mixture noise in the presence of faulty
nodes.

A Robust Fault-Tolerant Localization
(RFLT) technique is proposed also using a
Generalized Trust-Region Subproblem
(GTRS) framework.

[127]

Presented a replicated gateway structure
augmented with energy-efficient real-time
Byzantine-resilient data communication
protocols. The proposed method enhanced
the geographic routing protocol capability
of delivering messages in an energy-effi-
cient, even in the presence of voids caused
by faulty and malicious sensor nodes.

[128]

Proposed a new classification approach for
fault detection in WSNs. The proposed
technique is based Support Vector Ma-

chines (SVMs) classification method SVM

technique can detect many types of faults.

[129]

Proposed a method for FT in virtualization
in WSNss, focusing on
heterogeneous networks for service-ori-
ented IoT applications. The proposed ap-
proach used an Adapted Nondominated
Sorting-based Genetic Algorithm (A-
NSGA) to solve the optimization problem
within network links.

[130]

Proposed a bio-inspired Particle Multi-
Swarm Optimization (PMSO) routing algo-
rithm to create, recover, and elect k-disjoint
paths that tolerate the failure while satisfy-

ing the quality-of-service parameters.
The proposed work utilizes the use of Cu-
mulative Distribution Function (CDF) for
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the sensors with an exponentially distrib-
uted failure rate.

[131]

Proposed a fault-tolerant barrier schedul-
ing scheme that satisfies the Quality-of-Ser-
vice (QoS) requirements of surveillance ap-
plications in the presence of faults. The pro-

posed method is based on a novel fully
weighted dynamic graph model that can
detect and recover faults.

[132]

Proposed a fault-tolerance approach that
combines Static Backup and Dynamic Tim-
ing Monitoring (SBDTM) for cluster heads
to achieve reliable data acquisition and en-

sure the reliability of an IoT monitoring

system. The proposed method used the
Markov model-based cluster head to
achieve the reliability of the model.

[133]

Proposed a practical Edge-Intelligent Ser-
vice Placement Algorithm (EISPA) with the
use of Particle Swarm Optimization
(PSO).to solve a service continuity prob-
lem. The work dealt efficiently with the
basic fact that some 5G-and-beyond IloT
applications roam around different regions
of the MEC servers.

[134]

Proposed a solution for the connectivity
and robustness in IoT networks during dis-
aster recovery actions using a mobile robot.

The proposed method is based on the use
of the Optimal Localizable K-Coverage
(OLKC) strategies to help in hole recovery.
Moreover, the developed work presented
two optimality requirements to achieve
maximum coverage by the proposed OLKC
in an unfamiliar, hostile, or harsh environ-
ment using the lowest number of nodes.
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