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Abstract: Traffic-related air pollution (TRAP) was monitored using a mobile sensor network on
125 urban taxis in Shanghai (November 2019/December 2020), which provide real-time patterns of air
pollution at high spatial resolution. Each device determined concentrations of carbon monoxide (CO),
nitrogen dioxide (NO2), and PM2.5, which characterised spatial and temporal patterns of on-road
pollutants. A total of 80% road coverage (motorways, trunk, primary, and secondary roads) required
80–100 taxis, but only 25 on trunk roads. Higher CO concentrations were observed in the urban centre,
NO2 higher in motorway concentrations, and PM2.5 lower in the west away from the city centre.
During the COVID-19 lockdown, concentrations of CO, NO2, and PM2.5 in Shanghai decreased by
32, 31 and 41%, compared with the previous period. Local contribution related to traffic emissions
changed slightly before and after COVID-19 restrictions, while changing background contributions
relate to seasonal variation. Mobile networks are a real-time tool for air quality monitoring, with high
spatial resolution (~200 m) and robust against the loss of individual devices.

Keywords: Shanghai; motorways; roads; mobile network; COVID-19; NO2; PM2.5; CO

1. Introduction

In recent decades, road transport has been an increasing source of air pollution,
especially in Chinese cities. Road transport adds to a range of pollution sources that
arise through the demands of urban infrastructure and energy consumption, so pollutant
emissions and the resultant air pollution is a common phenomenon in urban areas [1–4].
Traffic-related air pollution (TRAP) makes a vast contribution to the total air pollution
of most cities, such that traffic emissions are of particular concern in urban areas [5–7].
Road transport pollutants represent a major source of carbon monoxide (CO), nitrogen
dioxide (NO2), and fine particulate matter (PM2.5, dp < 2.5 µm). More than 50% of the
world’s population lives in urban areas, and many are currently exposed to air pollution
levels that exceed WHO limits [8,9]. This makes urban air pollution a major environmental
and social problem [7,10–13], especially in megacities [14,15]. Exposure to elevated air
pollution concentrations also gives rise to adverse effects on public health [16,17]. Hence, it
is important to measure the on-road pollutants and effectively control them.

Among the three major urban agglomerations in China, the Yangtze River Delta Urban
Agglomeration has the largest population, the greatest area, and the highest GDP [18,19].
However, air pollution associated with rapid economic growth presents an obstacle to
sustainable development. Shanghai, with over four million registered vehicles, is one of
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four municipalities administered directly by the central government of China, so traffic
emissions have attracted significant attention [20].

Since 2012, 19 air quality monitoring stations (AQMS) have been set up in different
districts of Shanghai for regulatory purposes to monitor the long-term trend of criteria
pollutant concentration in the city. However, the high installation and maintenance costs
of AQMS greatly limit the number of stations and the spatial coverage. Their representa-
tiveness of the heterogeneous air pollution distribution in the city is often challenged by
different land use types and varying pollution concentrations driven by the physical and
chemical transformations of roadway emissions from on-road sources to roadside and am-
bient [21–24]. Different studies have attempted to characterise fine scale urban air pollution
distribution, using satellite data inversion, land use regression, or regional/micro-scale air
quality models to interpolate air pollution data from the AQMS network.

However, a knowledge gap remains regarding the dynamic characteristics of traffic
emissions from roadway networks and their contribution to fine scale air quality [25].
In the past decade, the mobile monitoring approach as an efficient tool to measure on-
road air pollution with high spatial resolution has become increasingly important [26–28].
It represents a valuable tool for policymakers and environmental protection agencies,
providing spatially resolved and real-time patterns of air pollution that are robust against
the loss of individual sensors. They may reveal the intensity and persistence of places with
high concentrations. The recent development of air sensors has significantly increased the
temporal and spatial resolution of such monitoring with real time positioning using mobile
platforms for a variety of applications. Wei et al. [29] deployed mobile sensors on 14 buses
in Hong Kong with over 5000 trips covering the major roadway sections and developed
methods to distinguish background and local air pollution. Apte et al. [30] used two Google
Street View vehicles in a 30 km2 area of Oakland, CA to measure NO, NO2, and black
carbon at the 30 m scale over one year and characterised the localised pollution hotspots
to address air quality data gaps. Yu et al. [31] used taxi-based and fixed site monitors to
examine the spatial distribution particulate matter in Jinan; the study covered an area of
10,200 km2 for over a month as a demonstration of the methodology. Earlier studies have
often been limited by the range of pollutants, number of mobile platforms deployed, the
duration of the monitoring campaign, or a spatial coverage insufficient to represent the
roadway network.

This study is the first to monitor the variation of traffic-related air pollution using
a mobile sensor network. A total of 125 urban taxis in Shanghai were equipped with a
monitoring device to determine the concentrations of carbon monoxide (CO), nitrogen
dioxide (NO2), and PM2.5 from November 2019 to December 2020, which allowed the
spatial and temporal patterns of pollutants on the road to be characterised. The research
aims to: (i) demonstrate the effectiveness of the quality control and quality assurance
protocol for large scale mobile monitoring; (ii) investigate the impact of the deployment
strategy on roadway coverage and number of mobile devices required; and (iii) characterise
the temporal and spatial profiles of on-road pollution concentrations at different times of
day and year and on different roadway types; (iv) apportion the contribution of urban
background and localised traffic contributions to on-road pollutant concentrations.

During the monitoring campaign, the mobile sensor network collected over 15 million
data points at 5 s resolution and the fleet travelled a total of 27,512,738 km. The pollution
concentration and corresponding position data were further assimilated and assigned to
51,118 pre-defined segments with 200 m unit length. Clear spatial patterns and distinct
temporal profiles of the pollution distribution emerged from diurnal traffic flow, commuting
between the city centre and peripheral areas, and unevenly distributed pollutants from the
vehicle fleet. The impact of COVID-19 lockdown on traffic pollutant concentration levels
and distribution was also observed demonstrating the sensitive response of the mobile
sensor network to changes in traffic patterns.
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This study increases the scale and duration in comparison with earlier work. The
findings from this work serve as an important reference for designing such mobile networks
in cities and the related operational protocols.

2. Materials and Methods
2.1. Roadway Type Classification

This study was conducted in Shanghai, which has an area of 6341 square kilometres
and a population of nearly 28 million. The mobile air monitoring campaign began in
December 2019 following one month of trial operation in November 2019.

The roadway classification was based on OpenStreetMap (OSM), an open-source
geographic information database with comprehensive roadway coverage and classifi-
cation [32,33]. Studies have shown that OSM data for prefecture-level cities in China are
almost complete [33], and the positioning accuracy is reportedly high [32,34,35]. OSM has
predefined 23 road types, including trunk, primary, secondary, and tertiary roads, along
with motorways, bike paths etc. This study has adopted OSM definitions to facilitate data
analysis and includes four road types to balance coverage and complexity: motorways
(limited-access highways for long-distance, heavy, or fast traffic), trunk roads (the most
important roads in a system after motorways; largely pre-existing roads), primary roads
(important roads that often link towns or main roads within cities), and secondary roads
(not part of a major route, but nevertheless forming a link in the national route network).
Figure 1 shows the coverage by road types and they cover approximately 57% (7432 km)
of the total road length in Shanghai (~13,000 km in 2019). The selected road types have
varying width with double and multiple lanes. To simplify the data analysis, we set 10 m
to represent the roadway width in each direction. This provides a sufficient buffer to
include the position-tagged pollutant concentration data from the mobile sensor network
for analysis.
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The mobile sensor used here reports the average pollution concentration every 5 s,
typically spanning a travelling distance of 28–167 m with average traffic speed ranging
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between 20–120 km h−1, the same speed range found in this study. We set 200 m as the unit
length of roadway segment for analysis to accommodate the different traffic conditions
and the mobile monitoring data at a specific time is assigned to the pre-defined segments
as input for spatial data analysis. Finally, the four road types were divided into a total of
51,118 segments, each with a buffer of 200 × 20 m covering two directional traffic.

ArcMap (Version 10.8.1, Esri, Redlands, CA, USA) was used to split the road polygons
into segments, and the data was exported to Rstudio (Version 1.4.1103) afterwards for
further analysis, such as GPS point positioning and pollutant concentration calculation.

2.2. Description of the Mobile Sensor Network

We deployed 125 mobile air monitoring devices on the fleet of electric taxis in Shanghai.
The mobile monitoring devices are lightweight and modular (weight: ~2 kg; size: 177 mm
× 109.5 mm × 48.3 mm) with active flow design. They were housed in the enclosure at the
rear top of the taxis with air inlet reaching out and pointing towards the driving direction
(Figure 2).
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The data telemetry has low power consumption (5 V and <3 W) and runs on external
battery modules or solar power enabling the mobile devices to be suitable for real-time
monitoring of particulate matter and different gases under mobile conditions. Several
functional components are included (Table 1): (i) The dynamic baseline tracking electro-
chemical sensor module (Model PDF-4, Sapiens, Hong Kong, China) is used to measure
CO and NO2 concentrations. The module contains an original sensor head from a Type A
4-electrode electrochemical sensor from Alphasense (CO-A4 and NO2-A43F) and a corre-
sponding proprietary baseline sensor head to provide the original signal. The concentration
range limit for CO is 20 ppm and 5 ppm for NO2, and the specifications for response
time and operating life are shown in Table 1. Each gas module is based on a proprietary
dynamic reference tracking technology electrochemical sensing and Pair Differential Fil-
tering (PDF) technology to eliminate ambient temperature and humidity effects on the
measurements [36–38]. The gas sensor module was embedded and sealed in a non-reactive
polytetrafluoroethylene (PTFE) manifold. (ii) A laser-scattering-based sensor PMSX-003
(Plantower, Beijing, China) was used to measure PM2.5 concentration. It can continuously
count the number of suspended particles of different sizes and convert it to mass con-
centration [12]. (iii) A temperature (T) and relative humidity (RH) sensor was attached
to the gas sample tube to measure the meteorological conditions of the air entering the
equipment. (iv) A GPS module that can receive satellite signals in 72 channels with low
power consumption and high sensitivity was used. It quickly and accurately locates weak
signals in cities, canyons, under viaducts, and inside cars. (v) A data transmission module
outputs the pollutant concentration and device status data directly to the cloud server in
real-time through the global system for mobile communications for online data processing.
The mobile device maintains a sampling flow rate of 0.6 L min-1 and is equipped with a
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built-in micro diaphragm pump. The gas sampling adopts a pump suction active air intake,
which can prolong the service life. A PTFE inline filter is mounted in the gas inlet and used
to remove aerosols from the air and prevent damage to the gas sensor.

Table 1. Specifications of modules inside the mobile device.

Modules Technique Manufacturer

Technical Specification

Response Time,
T50

Concentration
Range

Limitation
Linearity

CO module Dynamic baseline tracking
electrochemical sensors

Model PDF-4, Sapiens,
Hong Kong, China

T50(s) < 15 20 ppm <±1.0%

NO2 module T50(s) < 10 5 ppm <±0.5%

Particulate matter
module

Humidity-corrected
laser-scattering
particle sensors

Module PMSX-003,
Plantower Co., Ltd.,

Beijing
≤8 (s) 0.3~10 µm

PM2.5:
±10%@100~1000 µg m−3

±10 µg m−3@0~100 µg m−3

Digital humidity sensor
SHT7x (RH/T)

A capacitive polymer
sensor

and a precision thermistor
sensor

SHT-75, Sensirion, Staefa,
Switzerland 8 (s) RH: 0–100%

T: −40 to + 125 ◦C
Humidity accuracy%RH: ±1.8

Temperature ◦C: ±0.3

GPS module GPS + GLONASS - - - -

Data transmission
module GSM - - - -

2.3. Data Analysis

Data collected using mobile monitoring devices include real-time CO, NO2, and PM2.5
concentrations, time, location (latitude and longitude), device ID, temperature, and relative
humidity of each device in 5 s resolution (Table S1).

Despite the skewed distribution of the pollution concentration data, parametric statis-
tical tests were sometimes used in this study because the number of observations was large
(~1.5 million points for each month), so the central limit would allow parametric methods,
such as Welch’s t-test and ANOVA, to be valid. Means and standard deviation represent
most data, but occasionally where the data had a large span, medians and quartiles were
used in box whisker plots, with the box defining the lower (Q1) and upper quartile (Q3)
and the whiskers of 1.5 times the interquartile range.

Self-contamination was estimated from the concentration distributions of each pollu-
tant at different speeds and is probably small, as the concentrations at low driving speed
(<5 km h−1) were not significantly higher than those measured at other speeds.

2.4. Sensor Network Quality Assurance and Quality Control Protocol

Mobile air monitoring devices are often criticised for deficiencies and limitations in
data accuracy [39–41], so we employed a set of strict quality assurance and quality control
(QAQC) protocols. These included (i) pre-deployment calibration, (ii) regular examination
and maintenance after deployment, and (iii) data monitoring and error detection. Quality
assurance (QA) typically minimises data inaccuracies through regular inspections and
maintenance, continuous monitoring, and evaluation of the behaviour of devices in the
field, which can prevent measurement failures or detect problems earlier. Quality control
(QC) is performed during the monitoring through calibration after deployment and involves
automatic or semi-automatic cross-checking of values against predetermined criteria, such
as trend analysis for sensor drift detection [42,43].

Pre-deployment calibration of the sensitivity and the baseline of each sensor was
carried out using a Dynamic Gas Calibrator (Model 146i, Thermo Scientific, Waltham, MA,
USA) and Zero Air Supply (Model 111, Thermo Scientific) to generate stepped concen-
trations of NO2 and CO in the laboratory. Calibration of PM2.5 was carried out through
side-by-side comparison with a reference analyser (Thermo Scientific, Model 1405). Cross-
sensitivity to different pollutants and response to ambient temperature and humidity was
validated in the field [37,38]. After calibration, the mobile devices were placed next to the air
quality monitoring station at Shanghai Normal University (31◦09′55.4′′ N 121◦24′36.0′′ E)
for five days for verification before deployment.
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The concentrations of CO, NO2, and PM2.5 measured by the devices were not signifi-
cantly different from those of the standard instrument (α = 0.05, ANOVA). The coefficient of
determination (R2) for each pollutant (CO, NO2, PM2.5) was generally high (CO: 0.99, NO2:
0.85–0.93, PM2.5: 0.88–0.91). These R2 values suggest measurements are well correlated
compared to previous studies [44]. The results show that the mobile devices compare
reasonably well to reference analysers. The R2 for the linear regression is between 0.85 and
0.99, which suggests the data have robust quality under varying ambient conditions. The
normalised mean square error (NMSE) and the correlation coefficient have been used as
recommended by Hanna et al. [5,45] and applied by Wu et al. [46] for PM2.5 concentrations.
The recommended criteria interval for the correlation coefficient is larger than 0.8, and the
best agreement is 1 for NMSE below 0.5 and 0 [47]. The equation, recommended criteria,
and best agreement for all of the methods are shown in Table 2. The measurements are all
within the recommended criteria interval, which is also very close to the best agreement,
indicating consistency between the values from the two sources. Thus, the data collected
by the mobile devices can provide a reliable research basis for the evaluation of urban
air quality.

Table 2. NMSE and R for pollutants CO, NO2 and PM2.5.

NMSE R

Equation (Co−Cp)
2

Co Cp

(Co−Co)
(

Cp−Cp

)
σCpCo

CO 0.016 0.996

NO2 0.007 0.953

PM2.5 0.021 0.948

Recommended criteria <0.5 >0.8

Best agreement 0 1

Regular examination and maintenance were also conducted during the deployment.
The mobile devices were called back batch-by-batch every two weeks during the first three
months of the monitoring campaign to assess the effectiveness of the operation protocol
and refine the frequency of maintenance. The relative deviation of the measured standard
gas concentration at the time of device recall was less than 15%, over periods ranging from
one month to two months.

We monitored data quality through real-time cloud-based data streams daily. By
comparing it with the surrounding AQMS, the outliers, instances of malfunction, and
baseline and sensitivity drift can be detected and resolved to ensure data quality. Since the
device is lightweight and low-cost, there are some trade-offs in data quality. Data were
deleted based on two criteria: (i) data points on unselected road types, such as tertiary
roads, (ii) abnormal or invalid data after QAQC. Combined with road segmentation, we
integrated the data into hourly averages for each segment point for ease of analysis.

2.5. Estimation of Local Traffic-Based Contribution to On-Road Pollutant Concentration

On-road pollutant concentration is attributed to two components: one is the back-
ground signal due to the aggregated urban pollution impact but not directly related to local
traffic emissions, while the other is the localised traffic contribution to the elevated pollutant
concentrations. The two signals have different profiles and frequency of variations. Low
percentiles can represent the background concentrations, i.e., not affected by peak signals
and exhibiting only slow variation [29,48,49]. We took this approach and used the 5th
percentile to estimate background signals:

CBG,i,t = CT, 5%percentile (1)
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CLC,i,t = CT,i,t − CBG,i,t (2)

PLC,i,t = CLC,i,t/CT,i,t (3)

where CBG,i,t represents the background air pollutant concentration for the pollutant i and
time t (we used the 5th percentile concentrations during hour t). The parameter CLC,i,t
represents the local emission concentration for pollutant i at time t and was calculated by
subtracting CBG,i,t from the raw measurement CT,i,t (measured concentration for the ith
pollutant at time t) minus CBG,i,t. The local pollutant contribution was calculated from
the ratio of CLC,i,t and CT,i,t. Preliminary analysis showed the choice of the 5th percentile
was reasonable as there was a good agreement (Mann–Whitney test NO2: W = 156,917,
p < 0.0001; CO: W = 536,556, p < 0.0001, PM2.5: W = 269,835, p < 0.0001 and t-test: NO2:
t = −17.041, df = 1039.5, p < 0.0001; CO: t = 65.445, df = 733, p < 0.0001, PM2.5: t = 2.7654,
df = 1274.5, p = 0.0058) between the average hourly concentrations of PM2.5 and CO from
the 10 stations of Shanghai AQMS network and the 5th percentile concentration measured
by the taxis (see Supplementary Figures S1 and S2). The agreement was not as good for
NO2, when on-road concentrations were high.

3. Results
3.1. Speed Distribution and Roadway Coverage

During the data collection period, about 300,000 raw data points were obtained per
day. After alignment of the road segments and data assimilation, more than 160,000 data
points remained and were assigned to the 51,118 road segments across all road types, so
the network collected from 0 to 460 segments of data per day. Still, the vast majority of
road segments have only one or two data points (average 4.9, median 1.3, and Q1 = 0.3 and
Q3 = 4.7). Primary roads account for the highest proportion of segments with 15,975 seg-
ments (31.3%), followed by secondary roads (15,508; 30.3%), motorways (12,800; 25%), and
trunk roads (6835; 13.4%). The average speed of vehicles on all streets is 45.1 km h−1, rang-
ing from 1.0 km h−1 to 122.0 km h−1, with a 43.7 km h−1 median; and Q1 = 28.4 km h−1

and Q3 = 58.8 km h−1 (which includes all the data when the taxi is operating).
Figure 3 shows the spatial distribution of the speed and the number of data points

on different types of roads in Shanghai. The average speed of vehicles travelling in the
city centre is generally below 40 km h−1, while it increases to 60 km h−1 on roadways on
the periphery of the city following a typical urban traffic profile. The cross comparison
of different roadway types shows the highest vehicle speeds occur on the motorway,
up to 120 km h−1, while the speed becomes lower in secondary roads, typically below
40 km h−1. The variation in vehicle driving speeds results in the non-uniform assignment
of data points on road segments, as shown in Figure 3c,d. The density of data points is
highest in the city centre (red), showing more frequent taxi trips, and lower in other parts
of the city (blue). Figure 3e presents the relationship between the percentage of roadway
coverage and the number of monitoring days in different months. Trunk roads are the most
frequently travelled road type, showing the highest coverage rate compared with others.
The fleet of 125 taxis was able to cover 80 to 95% of the trunk roads in 10 days. On the
other hand, roads have the lowest coverage rate, probably due to the greater total length
and fewer trips by taxi. For all road types, the months of January, February, and March
had significantly lower coverage than the rest of the year, a clear reflection of the impact of
COVID-19 on the reduction in overall roadway traffic. In addition, Figure 3f presents the
monthly road coverage rate with the increasing number of taxis in the fleet. There is no
noticeable difference in road coverage in different months, and in general 80 taxis could
achieve 80% road coverage. There are slight differences between road types, for example,
trunk roads only need 25 taxis for 80% coverage in a month, while secondary roads need at
least 100 taxis to achieve the same coverage.
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Statistical data for the various roads is summarised in Table 3. Trunk roads have the
smallest number of segments and the shortest length, yet the highest average monthly
coverage of more than 95%. On motorways, the average driving speed of vehicles can reach
64.6 ± 20.2 km h−1, so the number of points contained in each segment is the smallest.
Primary roads have up to 15,975 segments, and an average monthly coverage rate of 88%.
Secondary roads have the longest total length (2563 km) and the largest number of data
points in each segment. The slowest driving speed is found on secondary roads, with an
average of 33.9 ± 15.1 km h−1. The average monthly coverage for all types of roads is 84%,
and the average driving speed is 45.1 ± 20.9 km h−1.

Table 3. Average monthly coverage for each road type, average daily count, speed (km/h), total
length (km), and number of segments.

Road Type
Average
Monthly
Coverage

Average Daily
Count

Speed
(km h−1)

Total Length
(km)

Number of
Segments

Trunk roads 95.1% 9.4 46.0 ± 16.0 788.8 6835

Motorways 80.4% 1.6 64.6 ± 20.2 1681.0 12,800

Primary roads 87.9% 8.7 39.8 ± 16.7 2399.1 15,975

Secondary roads 78.4% 9.6 33.9 ± 15.1 2563.0 15,508

Overall 84.1% 7.3 45.1 ± 20.9 7431.9 51,118

The unique scale and long-term monitoring of the mobile network in this study shows
that the deployment strategy and study design are very relevant to urban traffic character-
istics, but the relationship between the number of mobile devices and road coverage rate is
not linearly correlated. The findings may provide a useful reference in the design of mobile
monitoring studies. It should be noted the taxi-based mobile network is characterised by a
random route and trip schedule, which is very different from a bus-based mobile network,
in which the routes are fixed and often repeated with routine schedules [29].

3.2. Spatiotemporal Analysis

The monitoring campaign ran from 1 December 2019 to 21 December 2020, with the
first month for a trial run and the following complete year 1 January 2020 to 21 December
2020 for the analysis. In the following sections, changes in pollutant concentrations will be
examined: (i) spatial analysis for different kinds of road segments and (ii) diurnal analysis
for hourly averages of pollutants during weekdays and weekends, and each month.

3.2.1. Spatial Analysis of Air Pollutant Concentration

The annual average concentrations of CO (ppb), NO2 (ppb), and PM2.5 (µg m−3) on
the corresponding road segments along the entire roadway network for 2020 are shown
in Figure 4. The concentration of CO can reach ~1400 ppb in the city centre, while it is
relatively low in rural areas (~30 ppb), indicating that there is a relationship between petrol
vehicle activity and CO emissions. However, the concentration of NO2 is higher on most
motorways, and the speed on these roads is relatively high, probably indicating that as
vehicle speed increases, so do NO2 emissions. The PM2.5 concentration is relatively low
in the west, as traffic activity is lower than in the city centre. However, there are likely
to be important non-traffic sources in addition to secondary sources, which may relate to
different land use, and restrictions on vehicle types.

The hourly average concentrations of CO, NO2, and PM2.5 on the four road types
are 854 ± 258 ppb, 95 ± 28.7 ppb, and 56.1 ± 7.7 µg m−3, respectively, as shown in
Table S2. As can be seen from the boxplot in Figure 5, the highest CO concentration is
987 ± 275 ppb on the trunk roads, and the lowest is on the motorways (where speeds are
higher; 65 ± 20.2 km h−1), which suggests that the CO level generally decreases with an
increase in average speed. The on-road CO concentration shows a peak with change of
speed, indicating a specific range of traffic flow. However, the number of vehicles is a
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stronger control on pollution levels than the speed of cars (Rashidi and Massoudi, 1980).
Besides, the highest concentration of NO2 is 113 ± 28 ppb on motorways and the lowest
concentration is on secondary roads (82 ± 23.4 ppb), indicating that increased velocity also
increases the NO2 concentration. In addition, the PM2.5 concentration is also higher on
the motorways with an average of 61.2 ± 14.4 µg m−3, which may be caused by frequent
acceleration and deceleration of vehicles during stops and starts. These activities are
known to increase tailpipe emissions, as well as brake lining and tire wear [50]. Sanders
et al. [51] and Garg et al. [52] showed that brake wear PM2.5 emission rates for light duty
vehicles increase as the deceleration rate increases. Therefore, we conclude that PM2.5
concentrations are largely independent of road type, with NO2 differing by about 30 ppb on
motorways (highest) from secondary roads (lowest). CO varies by about 200 ppb on trunk
roads (highest) from motorways (lowest). As the speed of the taxis increases on different
road types, NO2 and PM2.5 concentrations increase in parallel. However, the variation of
CO concentration is related not only to the speed of vehicles but also to the number of
vehicles and other factors.
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As can be seen from Figure 5, the AQMS concentration among the three pollutants
are all lower (Welch’s t-test p < 0.0001) than those of on-road concentrations. As AQMS
are mostly placed on the roofs of residential buildings and other places away from the
street, they are not immediately affected by vehicle emissions. An ANOVA test reveals
that not only are the measurements from the various road types different from the AQMS
measurements, but they are also different from each other. The difference between all the
individual road types is significant for all pollutants at the p < 0.01 level (using the Tukey
test), even though PM2.5 is more homogeneously distributed. For this reason, the data is
split into the different road types for the temporal analysis, shown in Figure 6.

3.2.2. Temporal Analysis

Results in Figure 6a represent the average hourly diurnal concentration patterns for
weekdays (Monday to Friday) and weekends (Saturday and Sunday) for each road type.
The statistics and overall distribution are shown in Figure 6b. The colours represent differ-
ent road types. As can be seen from Figure 6, the CO concentration on trunk roads (orange)
is higher than other roads over a day and NO2 concentration is higher on motorways (red).
The concentration of NO2 and CO on most weekdays is higher than that on weekends, but
PM2.5 is in contrast about 6 µg m−3 lower throughout the day. The average concentration
of NO2 is 82.4 ppb on weekdays and 79.3 ppb on weekends, that of CO is 861 ppb on week-
days and 849 ppb on weekends, while the average concentration of PM2.5 is 53.7 µg m−3

on weekdays and 59.7 µg m−3 on weekends. Except for PM2.5, the differences were not
significant using Welch’s two sample t-test (i.e., PM2.5: p = 0.0037; CO: p = 0.584; NO2:
p = 0.233).

The diurnal profile between the weekday and weekend over the entire campaign
year has interesting differences. For CO, there is a distinct rush hour peak in the morning,
and the weekday morning rush hour peaks are much more prominent compared with
weekends. The observation is a clear reflection of urban commuting patterns, since CO is
the major emission from petrol vehicles, which is still the largest vehicle fleet in China for
daily commuting. The NO2 diurnal profiles are different from CO, especially on different
types of roads, which is a reflection of the diesel-powered vehicle fleet. On weekdays and
weekends, the concentration changes share similar profiles, but the overall concentration
is less during weekdays, possibly due to the reduced volumes of diesel vehicles in urban
areas. According to Hu et al. [53], PM2.5 concentrations from the cities in the Yangtze River
Delta region varied less on weekdays than on weekends. As we can see from the boxplot,
there was a difference (around 6 µg m−3) in the concentration during most of the day. Thus,
there was no significant change in PM2.5 concentration between weekdays and weekends
during the study period. In addition, PM2.5 concentrations on weekdays and weekends
showed a similar diurnal trend.

The diurnal changes for three pollutants each month are shown in Figure 6c. The
concentration changes in NO2 and CO are both related to pollutant emissions for that
month. The concentrations in February and March were lower than those in other months,
which is related to the lockdown period. Thus, the direct impact of traffic emissions on
these two gases is evident. The PM2.5 concentration shows a seasonal profile: higher in
winter and spring, and lower in summer and autumn. This arises because Shanghai is more
susceptible to atmospheric pollutants from the north of China in spring and winter [54].
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Figure 6. Daily cycles of the three pollutant concentrations measured by the mobile devices during
peak/non-peak hours, weekdays/weekends, in each month in 2020. (a) Diurnal concentration change
among different road types and between weekdays (dots) and weekends (triangles), with the dashed
red line for peak hours from 05:00 to 08:00 and 16:00 to 19:00. (b) Statistics and overall distribution
of four types of road, each box extending from the 25th to the 75th percentile, weekday (unshaded)
and weekend (shaded). (c) Diurnal changes over each month; (d) the data statistics and overall
distribution and each box extends from the 25th to the 75th percentile.

3.3. Traffic-Related Local Pollution Contribution

Figure 7 shows the relative contribution of local and background concentrations of
CO, NO2, and PM2.5 on different road types. Although the contribution varies among the
pollutants, it is almost identical across road types (see boxed percentages in Figure 7). The
locally derived contribution of CO varies the least (~1%) between different roads. This
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shows that the background contribution of CO on different roads is relatively constant, but
CO exceeds the ambient air quality standard of China on all types of roads, so may imply a
need for an overall reduction in emissions from traffic. The proportion of locally derived
emissions to the concentration of NO2 shows the greatest variation among different types
of roads, accounting for 66% on secondary roads and 54% on motorways, a difference of
about 12%. Traffic speed on secondary roads is the lowest, and there are higher vehicle
flows, so the locally derived pollution contribution on secondary roads is high. Except for
motorways, where the background concentration slightly exceeds the ambient air quality
standard of China, other road types generally have backgrounds that meet the standard.
In contrast, PM2.5 shows the lowest variation of both concentration and locally derived
contributions, displaying homogeneous distribution characteristics, a result of its wider
dispersion and the role of secondary sources.
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Figure 7. Local and background pollutant contributions to CO (a), NO2 (b), PM2.5 (c) for different
road types (red for background contribution and orange for traffic-related emission contribution). The
red dot is the contribution percentage for traffic-related local emissions. The dashed red line indicates
the ambient air quality standard of China (after the unit conversion, the 24 h average limitation for
NO2 is 43 ppb, CO is 350 ppb, 35 µg m−3 for the first level of PM2.5, and 70 µg m−3 for the second
level of PM2.5).

3.4. Concentration Comparison throughout the Entire COVID-19 Pandemic Period

Since the study spanned the outbreak of COVID-19, the variation of air pollutant concentra-
tions across different response stages was investigated. Data (December 2019/July 2020) were
divided into four stages: (i) December 2019/January 2020 before COVID-19, (ii) February
2020/March 2020 COVID-19 lockdown (iii) April 2020/May 2020 the recovery period in
Shanghai (iv) June 2020/July 2020 the normal period post-COVID-19. Since the mobile de-
vices measure concentrations on the urban road network, the road network carries a strong
signal from variation in the traffic source. By contrast, national air quality monitoring
stations are usually located away from major roads, reflecting city-wide variations.

Figure 8 shows the changes in the concentration of air pollutants (CO, NO2, PM2.5) during
the four stages of the COVID-19 pandemic. We found that in the second stage the con-
centration of contaminants was the lowest: CO was reduced by 32% from the first stage,
NO2 decreased by 31%, and PM2.5 dropped by 41%. The reductions are typical of changes
experienced worldwide [55,56] and, in line with that of Wu et al. [57], are established from
Shanghai’s fourteen air quality monitoring stations. It can be seen from the changes in
spatial concentrations that CO is concentrated in the city centre for the first stage in high
pollution areas, NO2 is found across the entire city, and PM2.5 is at the periphery of the city.
High concentrations may be due to the significantly enhanced effect of northerly air flow
in winter [58]. In the second phase of the epidemic (lockdown), the map shows that the
concentration of pollutants drops dramatically. Very few streets are represented by red, and



Sensors 2022, 22, 6005 14 of 18

the PM2.5 concentration on some roads is <20 µg m−3. The areas with a high concentration
of NO2 are restricted to a few motorways, and the locations with high CO concentrations
are within a small distance of the city centre. When urban traffic was recovering after
the lockdown, the three pollutants increased significantly (CO 38%, NO2 25% and PM2.5
37%); the change of NO2 on motorways is especially notable. In addition, the distribu-
tion of pollutants became more prominent, especially for NO2 on the motorways, but
PM2.5 revealed a 22% decrease. This change may be due to the seasonal effect [59], which
results in the highest concentrations of PM2.5 in Shanghai in November, December, and
January, and lower concentrations in July, August, September, and October [60]. Therefore,
from the third stage (April/May) to the fourth stage (June/July), the PM2.5 concentration
drops noticeably.
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4. Discussion and Conclusions

This study uses mobile air monitoring devices mounted on a large fleet of taxis (~125)
to measure the air pollution on Shanghai roads. Quality control and quality assurance
protocols ensured data were successfully collected by the mobile platforms and comparable
to the data of the AQMS, thus ensuring accurate and high-resolution data. The integration
of air sensors into mobile platforms offered a chance to evaluate the pollutants and study
the spatial characteristics of the urban road environment, examining Shanghai motorways,
trunk roads, and primary and secondary roads in 2020.

The results show that among the selected road types, trunk roads have the highest
road coverage by the taxi fleet, while secondary roads have the lowest coverage, but they
have the greatest length. The number of taxis running in each month varies: generally
speaking, it takes 20 days for the average number of taxis on all roads in a month to reach
70% coverage, and it takes 50 taxis per month to reach 70% coverage on an annual basis.
The measured CO concentrations are highest in the city centre, NO2 is most concentrated
on motorways, while PM2.5 is higher away from the city. The concentrations of NO2 and
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PM2.5 increase with road speed, so predominate on motorways. All three pollutants have
high concentrations from 05:00 to 08:00, while CO and NO2 are also high from 16:00 to
19:00. The concentrations of CO and NO2 are higher on weekdays than on weekends,
while the concentration of PM2.5 is higher at weekends. Carbon monoxide has the highest
concentration on trunk roads, while NO2 is highest on motorways; however, PM2.5 is
rather more evenly distributed. Seasonally, NO2 concentration is lowest in winter, while
PM2.5 concentrations are higher in spring and winter than in summer and fall; sometimes
concentrations are twice as high. The concentration of each of the three pollutants decreased
~30–40% during the COVID-19 lockdown compared to the period before, thus this study
provides insights into decreases in urban air quality during the COVID-19 pandemic
period. However, surprisingly high levels of NO2 are apparent on motorways even under
lockdown, suggesting the continuing importance of these roads.

Real-time air monitoring devices can be a valuable tool for policymakers and environ-
mental protection agencies because they provide spatially resolved patterns of air pollution
in real-time and are robust against loss of individual devices. They can potentially reveal
the intensity and persistence of hot spots, though they create challenges because of the size
of the dataset and the importance of integration with fixed monitoring sites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22166005/s1, Figure S1: Hourly average concentration, 5th
percentile concentration and all AQMS hourly average Shanghai concentrations for CO (ppb), NO2
(ppb) and PM2.5 (µg m−3) in Shanghai in January 2020; Figure S2: Hourly average concentration,
5th percentile concentration and all AQMS hourly average Shanghai concentrations for CO (ppb),
NO2 (ppb) and PM2.5 (µg m−3) in Shanghai in July 2020; Table S1: Real-time data table for time,
device ID, GPS location (latitude and longitude), speed (m s−1), CO (ppb), NO2 (ppb), and PM2.5
(µg m−3) concentrations, temperature (◦C), and relative humidity (%), the device voltage (V), the
device status and GPS coordinates of Baidu map of each device in 5-s resolution; Table S2: Hourly
average variation for CO (ppb), NO2 (ppb) and PM2.5 (µg m−3) in Shanghai from January 2020 to
December 2020 on each type of roads.
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