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Abstract: Human-centered applications using wearable sensors in combination with machine learning
have received a great deal of attention in the last couple of years. At the same time, wearable sensors
have also evolved and are now able to accurately measure physiological signals and are, therefore,
suitable for detecting body reactions to stress. The field of machine learning, or more precisely, deep
learning, has been able to produce outstanding results. However, in order to produce these good
results, large amounts of labeled data are needed, which, in the context of physiological data related
to stress detection, are a great challenge to collect, as they usually require costly experiments or expert
knowledge. This usually results in an imbalanced and small dataset, which makes it difficult to train
a deep learning algorithm. In recent studies, this problem is tackled with data augmentation via a
Generative Adversarial Network (GAN). Conditional GANs (cGAN) are particularly suitable for this
as they provide the opportunity to feed auxiliary information such as a class label into the training
process to generate labeled data. However, it has been found that during the training process of
GANs, different problems usually occur, such as mode collapse or vanishing gradients. To tackle the
problems mentioned above, we propose a Long Short-Term Memory (LSTM) network, combined
with a Fully Convolutional Network (FCN) cGAN architecture, with an additional diversity term to
generate synthetic physiological data, which are used to augment the training dataset to improve
the performance of a binary classifier for stress detection. We evaluated the methodology on our
collected physiological measurement dataset, and we were able to show that using the method, the
performance of an LSTM and an FCN classifier could be improved. Further, we showed that the
generated data could not be distinguished from the real data any longer.

Keywords: time series GAN; generating measurement data; physiological sensor data; expert evalua-
tion; machine learning; stress classification

1. Introduction

The rapid development of wearable sensors has led to a drastic increase in the avail-
ability and volume of physiological measurement data. At the same time, machine learning
algorithms have gained momentum in recent years. This combination of new data sources
and machine learning algorithms enables new human-centered applications in many re-
search areas.

Originally, stress was introduced as the body’s response to environmental threats,
triggering what is known as the fight or flight response [1]. When it comes to stress-related
events, physiological measurement data provide insights into the autonomic nervous
system [2]. The Autonomic Nervous System (ANS) in combination with the Hypothalamic–
Pituitary–Adrenal (HPA) axis comprises the two main drivers of the body’s reaction to stress.
Thus, physiological signals can be used to detect stress-related events. In particular, two
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reliable physiological signals to classify stress-related events are Galvanic Skin Response
(GSR) and Skin Temperature (ST), because they are controlled by the ANS [3]. These signals
can be measured using unobtrusive wearable sensors, which are easily integrable into
everyday life and provide a large amount of data. This makes the development of new
machine learning algorithms for physiological measurement data an attractive field.

However, machine learning algorithms typically require high-quality labeled data
to deliver high-performance results. It is often difficult and costly to collect high-quality
labeled physiological time series measurement data. This is due to several factors: Firstly,
giving physiological values a label is a complex challenge that usually requires expert
knowledge. Secondly, physiological measurement data usually need to be collected in
strictly controlled environments to derive a labeled dataset. Lastly, it could be the case
that the desired physiological event occurs only very rarely, leading to an imbalanced
dataset. This is the case with our dataset, which is shown in Figure 1. As can be seen, using
machine learning on small and imbalanced labeled physiological time series measurement
datasets is challenging. Therefore, in machine learning, data augmentation is used to
overcome the problem of small datasets by slightly changing the existing data samples
to increase the variance in the whole dataset. Data augmentation is widely used for
small datasets, especially in the domain of image classification tasks where images can
be rotated, flipped, cropped, sheared, etc. [4]. However, it is not trivial to apply this
technique to physiological measurement data and, at the same time, not changing the class
of the measured physiological signal. Again, expert knowledge is required to correctly
apply data augmentation to physiological measurement data. Previous success in the
field of synthetic data augmentation encouraged us to use the Generative Adversarial
Network (GAN) architecture to augment the existing physiological measurement dataset
via synthetic data samples.

Figure 1. The label distribution of our physiological measurement dataset. The left bar is the Moment
Of Stress (MOS) class, and the right one is the non-MOS class.

The GAN architecture is already well established when it comes to generating realistic
synthetic image data. Because of their versatility, GANs have received much attention
in many fields; one of these is medicine. Different use cases of GANs include cycle-
GAN [5] in image-to-image translation, conditional GAN [6] (cGAN) to feed additional
information into the GAN process, or style GAN [7], where the authors show the ability
to control the generation process in more detail. However, the architecture was not only
successfully implemented in the computer vision domain, but also in the time series domain.
GANs are used to generate new data samples, hence they are proven to be a successful
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strategy to augment datasets for various classification tasks in order to improve classifier
performance on small and imbalanced datasets [8]. To further improve the results, cGAN
are used. All of the factors mentioned above inspired us to use the cGAN architecture to
overcome the problem of the small and imbalanced physiological measurement dataset for
machine learning.

In this work, we propose a novel methodology to tackle the problem of small and
imbalanced datasets by generating synthetic labeled physiological time series measure-
ment data, which are leveraged to improve the classifier’s ability to detect moments of
stress. We replaced the recurrent discriminator with a Fully Convolutional Network (FCN),
because in the early stage of our experiments, we obtained unstable results using a re-
current discriminator on our dataset. As a starting point, the recent success of FCN in
time series classification [9,10] inspired us to utilize an FCN-discriminator in our cGAN
workflow. The results from our experiments showed that the LSTM generator combined
with a FCN-discriminator outperformed the recurrent discriminator. During training the
cGAN, we used a combination of data preprocessing and a diversity term to overcome
the problem of having an imbalanced dataset. After successfully training the cGAN, we
augmented the dataset to be more balanced and increased the size of the dataset to improve
the classifier score on stress detection. Our results show that it is possible to generate
labeled physiological measurement data, which have the same underlying distribution as
the real data, using the LSTM-FCN cGAN architecture.

2. Related Work
2.1. Detecting Stress-Related Events from Physiological Time Series Measurement Data

A wide variety of work has been performed in the field of stress recognition in recent
years. Most of these studies deal with different datasets, methods of stress induction,
and problem formulations, which makes it difficult to directly compare the algorithms.
However, as [11] shows, different methods can be used to detect stress. One approach to
evaluate stress is using physiological indicators such as GSR, ST, Heart Rate (HR), Heart
Rate Variability (HRV) or the Interbeat Interval (IBI). These physiological measurements
are mostly gathered using wearable sensors. The advantage of wearable sensors is that
they can be unobtrusively integrated into everyday life situations, which makes it possible
to classify stress in controlled laboratory environments and in real-world scenarios.

In the literature, different methods are proposed to detect moments of stress. For in-
stance, Reference [12] proposed a rule-based algorithm to detect moments of stress using
the physiological indicators of GSR and ST, collected from wearable sensor data. The au-
thors developed a binary stress detection system, which distinguished between stress and
non-stress states, and were able to transfer their results from the laboratory to a real-world
environment. However, since the stress response usually varies from subject to subject, it
can be challenging to find the perfect parameter set for tuning the rules.

In other studies, researchers used different physiological indicators and machine
learning algorithms to detect stress. In particular, Reference [13] used HRV features and a
Support Vector Machine (SVM) algorithm to detect stress based on a binary classification
system. The work of [14] used the indicators of HR and GSR and applied the K-nearest
neighbor classifier and Fisher discriminant analysis to detect stress in a real-world setting.
All of these studies used wearable sensors to collect physiological measurement data and,
subsequently, detected stress-related events.

Deep learning algorithms have shown great success in recent years for various clas-
sification tasks. However, limited studies have used deep learning algorithms for stress
recognition. This could be because data acquisition in controlled environments is costly,
and often, there is a limited number of participants, leading to less data availability, which,
in turn, makes it difficult to train deep learning algorithms that perform well. Still, there are
a few studies that have successfully used deep learning for stress detection. Reference [15],
for example, used different machine learning and deep learning algorithms to detect stress
using a neural network to classify stress from physiological measurement data. The authors
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of [16] used a Recurrent Neuronal Network (RNN), more precisely, a Long Short-Term
Memory (LSTM) network, to detect stress from physiological measurements such as the IBI
and GSR. The previous study is similar to the LSTM classifier architecture that we used to
detect moments of stress, but uses a different combination of physiological stress indicators.

2.2. Conditional GANs for Time Series Data

The recent success of GANs in the domain of computer vision led to huge improve-
ments in the field of machine learning. This has also led to different applications of the
GAN architecture to time series data. For example, Reference [17] introduced T-cGAN to
generate synthetic irregular conditional time series data. In this study, the authors first
created 2D image spectrograms, which they subsequently mapped onto 1D time series
samples. They used Convolutional Neural Networks (CNN) in the cGAN architecture.
Another way of generating synthetic time series data was proposed by [18], who used a
GAN and cGAN architecture based on LSTM for the generator and discriminator, instead of
CNNs, to produce synthetic multidimensional medical time series data. This is the closest
work to our cGAN architecture, as we also used a conditional LSTM-GAN. However, we
additionally implemented a diversity term to overcome the problem of unstable cGAN
training and replaced the discriminator with a FCN, to better extract features from the
physiological signal.

2.3. Data Augmentation for Physiological Time Series Measurement Data

When it comes to classifying physiological time series measurement data, the prob-
lem of imbalanced and small datasets is often tackled with different data augmentation
techniques [19,20]. Such techniques can be split into different categories.

One group of techniques is inspired by image data augmentation, where images are
flipped, wrapped, or cropped to augment the dataset. In the work of [21], the authors
propose techniques such as scaling, cropping, wrapping, or rotating the wearable sensor
data to improve the classification performance for Parkinson’ disease monitoring. However,
with this technique, it is important to ensure that the label of the respective data sample is
not changed by augmenting the data, which is not always possible.

Deep learning is another method of data augmentation for physiological data classifi-
cation tasks on small and imbalanced datasets. GANs can generate realistic synthetic data
in various domains. This has been shown in the work of [22], who used a GAN to augment
bio-signal data to improve the classifier performance on an imbalanced bio-signal dataset.

Conditional Generative Adversarial Networks (cGANs) modify the original GAN
architecture, making it possible to add information to the generation process. For example,
it is possible to add class labels as additional information to generate a labeled dataset.
This opens up the possibility of using cGAN to augment training datasets for classifiers.
Reference [23] used three different cGAN architectures and an adapted diversity term to
augment a pathological Photoplethysmogram (PPG) dataset, to further improve a classifier.
The authors of [24] proposed a method that generates synthetic physiological data with a
cGAN to classify the arousal state of human subjects. This work is close to our objective,
but there was very little description of the methodology used. Furthermore, we used a
different neural network architecture to generate the physiological data for this study.

3. Methodology

The aim of the presented methodology is to capture the dynamic features of wearable
physiological sensor data with the conditional Generative Adversarial Network (cGAN)
framework to generate synthetic moments of stress. The physiological measurement data
used in the methodology were collected in a controlled laboratory environment. After the
data acquisition campaign, the data were prepared and preprocessed for usage in the
cGAN workflow and classifier. In our methodology, we used the cGAN architecture with
a diversity term [25], to produce more diverse labeled data. We used an LSTM for the
generator and an FCN for our discriminator. After successful training of the cGAN, we were
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able to generate synthetic physiological measurement data related to the corresponding
stress state label. This synthetically labeled physiological data were then used to augment
the training dataset for the classification task. Given real physiological stress-related events
and generated physiological stress-related events, the classifiers were able to distinguish
the two states on our hold-out real test dataset. This section will describe the methods used
in more detail.

3.1. Data Description

This section outlines the data acquisition campaign that we used to collect the physio-
logical dataset. Our physiological time series measurement data can be divided into two
classes. One class describes the moment when we induced a stress-related event in the
controlled laboratory environment, which we call the Moment Of Stress (MOS). The other
class, which we call the non-Moment Of Stress (non-MOS), represents every other moment
during the laboratory experiment where we did not trigger a stressor. Every session lasted
at least 12 min for each participant. To reduce the complexity of the sequences and to label
our dataset, we decided to use a sliding window of 16 s and only used every 16 s interval
for the non-MOS, to balance the ratio between MOS and non-MOS. This process is shown
in more detail in Figure 2. If this 16 s interval fell into the MOS category, we dropped that
sequence, because we did not want an MOS sequence labeled as non-MOS. For the MOS
class, we used every sample, where we introduced a stress event via an air horn sound.
We took one second before the stress event and 15 s after the stress event to obtain a 16 s
sequence. The length of 16 s accounts for the 1.5–6.5 s delay [1], which is the time taken
from the onset of the stressor to the rise of the GSR, the next 2–5 s, which is the time taken
for the GSR to rise, and the 1–10 s recovery time for the GSR to return to its original state.
Concerning the duration of an MOS, the change in the ST signal must be accounted for.
The ST behaves dependently onthe GSR. After a 3 s GSR rise, the ST starts to fall for at least
3 s after a moment of stress occurs. However, this drop can last up to 6 s in extreme cases,
as our data show. The average duration of an MOS is 10 s [12], but to capture all variations
in our data, 16 s is the optimal time frame. After the downsampling process, we obtained
280 MOS samples and 1282 non-MOS samples of 16 s each in total.

Figure 2. Prepare and preprocess raw signals for the cGAN and the stress classifier. The red line
indicates ST and the blue line indicates GSR. The dotted line in the raw signals and in the filtered
signals indicates induced MOS. In the window plot the dotted line indicates split index.
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3.2. Data Acquisition Campaign in a Controlled Laboratory Environment

As for any machine learning algorithm, training data are needed. When it comes to
physiological measurement data related to stress events, to the best of our knowledge,
no comparable uniform dataset exists. For this reason, we conducted a data acquisi-
tion campaign in a controlled laboratory environment to acquire real-world stress data.
The Autonomic Nervous System (ANS) controls many physiological reactions of the body.
The ANS is also responsible for the fight or flight response. As such, measuring physiologi-
cal signals can give us unambiguous insights into the ANS and, consequently, the stress
level of a subject. For this reason, we set out to measure the body’s physiological reaction
to a stressor in a controlled laboratory environment to generate a gold standard for mo-
ments of stress. However, we must acknowledge that there is no objective gold standard
because we cannot determine what people really feel, and a physiological reaction to an
emotional–psychological process is not a perfectly reliable indicator of stress. Therefore, our
primary goal for the data acquisition campaign was to minimize uncertainty and define the
occurrence of moments of stress as precisely as possible. In the next section, this procedure
is described in more detail.

Setup

We collected the physiological data used in this study with wearable sensors. These
sensors transmitted the data to our e-diary app via Bluetooth, and the data were saved
to SQLite files. We used the Empatica E4 [26] wearable sensor to measure GSR and ST.
The E4 is a high-grade wearable sensor, designed for research and clinical trials. With the
E4, we sampled both GSR and ST with a rate of 4 Hz. The E4 sensor measures GSR with a
resolution of 900 pico Siemens and within a range of 0.01 to 100 µS. Concerning ST, the E4
measurement has a resolution of 0.02 °C, and the accuracy within the 36–39 °C range is
±0.2 °C. The maximum possible measurement range of ST is within −40 to 115 °C.

A total of 35 subjects participated in the data acquisition campaign. The age of the
participants ranged from 18–55, and the gender of the participants was evenly distributed
with 17 male and 18 female participants. The participants were split into subgroups of
5 people per session. The sessions were always held from 10 am to 2 pm on three different
days. The invitation to the data acquisition campaign was mainly sent via the internal
student representation server. Some participants were also invited by e-mail or via personal
contact. After a short introduction outlining the experiment’s procedure, the participants
were placed in a room and equipped with E4 sensors. To prevent bias as much as possible,
the participants were asked not to consume stimulant drinks prior to the experiment.
In addition, all participants were healthy and not taking any medications. During the
experiment, each participant was seated on a chair facing the wall to prevent interference
with each other. The chairs were arranged in a circle, and the noise source was placed in the
middle of the circle. During the experiment, ten stress moments were induced via an air
horn sound. This sound was played with a “JBL charge 3” music box. The stressors were
induced at random time intervals, but the time between stressors was generally longer
than 60 s. With the exact time of the air horn sound, we could locate the change in the
physiological signal and, thus, the reaction of the body to the stimuli.

3.3. Data Processing

Next, we had to preprocess and transform the sensor datasets from the controlled
data acquisition campaign in Section 3.2 to be processed by the LSTM-FCN-cGAN model.
In this section, the necessary steps are described. Figure 2 shows the process.

Although our sensors collected several physiological measurements, the Galvanic Skin
Response (GSR) and Skin Temperature (ST) were the most relevant for our study, due to the
instant and reliable reaction of these variables to the stress stimuli [12,27]. The GSR signal
was divided into two different categories: the Skin Conductance Reaction (SCR), which
occurs directly after a stressor, and the Skin Conductance Level (SCL), which describes the
baseline level of GSR. For this study, we were interested in the SCR because we wanted
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to detect instant reactions (MOS). First, a first-order Butterworth low-pass filter with a
cut-off frequency of 1 HZ was applied to cut off fluctuations and noise from the GSR
signal [12,28], caused by, for example, movement. This cut-off frequency was found using
a fast Fourier transformation, which showed noise in the frequency spectrum of the signal
and a visual evaluation of the filter signal. To separate the SCR from the SCL, a first-
order Butterworth high-pass filter with a frequency of 0.05 HZ was applied to the signal,
as proposed by [12,28]. To reduce noise in the ST signal, we first applied a second-order
Butterworth low-pass filter with a cut-off frequency of 0.1 HZ and then a second-order
high pass filter with a cut-off frequency of 0.01 [12,29], to remove the small fluctuations in
the signal. After that, both signals were downsampled to 1Hz to further smooth the signal.
The downsampling process involves calculating the average for each one-second window.
The sequences of data per participant were up to 15 min long. To reduce the complexity in
the data, we used a sliding window of 16 s, as described in Section 3.1. For the non-stress
moments, 16-second sequences were used in which no stressor occurred, and we labeled
these sequences with a zero. After this downsampling and labeling process, we had 16 s
sequences in the form of matrices X ∈ Rn×t×d, where n denotes the number of sequences
we obtained after preprocessing, t the number of time steps of each sequence, and d the
number of features, which in our case stands for the number of preprocessed signals such as
GSR and ST. The 3D matrix X was than pushed through our LSTM generator and through
the FCN discriminator. The labels are vectors c ∈ {0, 1}n.

3.3.1. Train-Test Split

Before feeding the data into our workflow, we split them up into a training dataset (80%
of data) and a testing dataset (20% of data) [30]. This way, we can counteract the possibility
of the generator memorizing the dataset, which means that the cGAN would not learn any
valuable features. The training dataset was used to train the cGAN, and the testing dataset
was used to evaluate the methodology. Therefore, we could test the methodology using
data that neither the classifier nor the cGAN had seen. The data were split into training and
testing datasets by picking randomized stress sequences for each participant. This helped
us reduce bias because the stress levels decline during the experiment, since people show
stronger reactions at the beginning of the experiment than later on. This was shown in our
experiment and in the experiment conducted by [12] and can be attributed to the fact that
the subjects get used to the stressor after time.

3.4. GAN Architecture and Model Training

The core of the proposed methodology is the conditional GAN [6] (cGAN) model. The
cGAN workflow is shown in Figure 3. The model is able to generate labeled synthetic
moments of stress with temporal signatures that are statistically similar to the data we
acquired in the controlled laboratory environment. In the GAN [31] model, there are two
networks competing to optimize one another in a min–max game. The so-called “generator”
tries to create samples that are similar to the samples drawn from the real distribution to
fool the discriminator. The discriminator then has the task of distinguishing between real
samples and samples from the generator. Because we have a feed-forward neural network,
we can use backpropagation to update the weights of each network in the GAN model
until they reach the desired equilibrium point. In an ideal scenario, the discriminator can
no longer distinguish between real and fake samples, and we have a generator that can
produce synthetic samples following the same distribution as the ones drawn from the
real one.
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Figure 3. cGAN workflow.

3.4.1. Temporal Fully Convolutional Networks

In our architecture, the temporal convolutional layers are used to extract features from
the time series signal. The convolutional layer for the discriminator is chosen, because in our
experiments, we saw that the FCN discriminator outperformed the recurrent discriminator.
This indicates that the convolutional network, especially the FCN, provides the generator with
better gradients during training. Therefore, 1D filters were applied to capture the changes
in the signal according to the different classes of physiological signals. As described in [32],
the filters for each layer are learned by the weight tensor W and biases b. Therefore, we have:

Ã(l) = f
(

b(l)k +
d

∑
i=1
〈W(l)

i,k , A(l−1)
k 〉

)
(1)

where l denotes the index of the layers, d the length of each filter, Ãl
k denotes the activation

at layer l at the kth neuron, and f is the activation function used.

3.4.2. LSTM Network

The main goal of our framework is to learn the representative features in GSR and
ST related to their label in a fixed time frame. To achieve this, we used an LSTM neural
network [33] as the generator, like in the work of [18], but we replaced the discriminator
with an FCN. The LSTM is part of the recurrent network family, which predict the next step
in time, leveraging the present and previous states in time. This makes them well suited to
process sequential data. In this study, we used the LSTM over a simple Recurrent Neural
Network (RNN) because RNNs suffer from vanishing or exploding gradients [34]. LSTMs
are more robust against vanishing or exploding gradients because of their different gates,
which determine the information that is removed or used to update the current cell state.
An LSTM cell has different layers: an input gate layer it, a forget gate layer ft, an update
gate layer ct, and an output gate layer ot. The complete cell state structure is shown in
Figure 4, and the calculation procedure can be described as follows.

Figure 4. LSTM cell.
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First, the current memory cell is calculated. Wc denotes the matrix storing the weights,
ht−1 the last hidden state and bc the current bias.

c̃t = tanh(Wc · [ht−1, xt] + bc) (2)

Next, the input gate layer decides, via a sigmoid activation function, which information
to keep from the input signal. In our case, we have a matrix X, as described above, which
contains sequences of physiological data. Within this context, Wi denotes the input weight
matrix and bi the input bias.

it = σ(Wi · [ht−1, xt] + bi) (3)

The input for the forget gate layer is the previous output state concatenated with the
current input vector. A sigmoid activation function is used to determine which historical
information is relevant and which information should be removed. Within this context, W f
denotes the forget weight matrix and b f the forget bias.

ft = σ(W f · [ht−1, xt] + b f ) (4)

Then, the input state is combined with the current cell state and the forget gate layer
is combined with the historic cell state to update the next cell state, where � denotes
elementwise multiplication.

ct = ft � ct−1 + it � c̃t (5)

The output state layer controls the information, which is passed to the next hidden
state. Here, Wo denotes the output weight matrix and bo the output bias.

ot = σ(Wo · [ht−1, xt] + bo) (6)

The last step is the output gate layer, which decides what information gets to the next
hidden state. Therefore, the current cell state is pushed through a tangent hyperbolic (tanh)
activation function and the gets combined with the output state.

ht = ot � tanh(ct) (7)

3.4.3. Conditional GAN

Instead of using the standard GAN framework, we utilized the conditional Generative
Adversarial Network (cGAN) [6] to generate labeled data. The conditional information is
vector-based, as described by c, indicating whether the samples are from the distribution
of stress moments or non-stress moments. We then concatenated the matrix X with the
labels ystressn before feeding them into the LSTM. Before we concatenated the two inputs,
we fed ystressn through a 2D categorical embedding layer and then upsampled it to the
shape of X with a linear dense layer. Through the embedding layer, the neural networks
learn a mapping between class label information and sequences, to further be able to better
control the conditional generation process. The structure of the conditional generator and
discriminator is shown in Figure 5.
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(a) conditional LSTM Generator (b) conditional FCN Discriminator

Figure 5. The architecture of our conditional GAN. In the input and output figure in (a,b), the blue
line indicates GSR and the red line indicates ST, which shows a prototypical MOS.

3.4.4. Model Training

The cGAN architecture, as described in Sections 3.4.1 and 3.4.2, consists of two net-
works, which are simultaneously optimized via backpropagation. For this, the min–max
adversarial loss function is used, whereby the discriminator tries to maximize the log
probability of labeling real and fake data correctly, and the generator tries to minimize the
probability of being classified as fake log(1− D(G(z)), where the latent space z is sampled
from a Gaussian distribution N (µ, σ2) [35]. As proposed in the original GAN paper [31],
this leads to the following objective function:

min
G

max
D

= Ex,y[log(D(x|y))] + Ez,y[1− log(D(G(z|y)))] (8)

During the optimization process, Equation (8) often results in mode collapse, which
means that many samples out of the latent space map to the same generated sample. This
results in a dataset with less diversity. To counteract this problem, the diversity term was
introduced by [25], to simply regularize and penalize the generator for producing the same
samples. The diversity term is defined as:

max
G

f (G) = Ez1,z2

[
‖G(z1, y)− G(z2, y)‖

‖z1 − z2‖

]
(9)

In that way, the basic idea is, if two samples are different, but the generated sequences are
the same, the term is 0. Therefore, the generator’s objective is to maximize this term. This
results in the following new objective function:

min
G

max
D

f (G, D)− λ f (G) (10)

where λ is a hyperparameter, which describes the importance of the term in Equation (10) and
‖ denotes a norm. In our experiment and in [25], 8 was proven to be a good value.
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In the generator, a stacked LSTM with 16 hidden units per layer is used to generate
physiological signals. Before the two LSTM-layers, there is the 2D categorical embedding
layer, which is mentioned in more detail in Section 3.4.3, and a linear layer to learn the
label of the stress data during adversarial training. In the generator, the mapping from
the random space is performed via a dense layer using a Leaky ReLU activation function.
After that, the LSTM layer group is applied. The output is fed through a linear activation
instead of tanh, because, during our experiments, scaling the values to a range of −1 to 1
did not work out. The final output of the generator has the shape of the matrix X mentioned
in Section 3.3.

The discriminator is the FCN proposed by [10]. As mentioned above, the label infor-
mation is first pushed through the 2D embedding layer and then gets upsampled via a
dense layer, before it gets concatenated with the input sequences. To learn the relevant
features of the physiological signal, there are three temporal convolutional network blocks
followed by batch-normalization and a ReLU activation function, which results in the
following equations:

y = Conv1D (11)

n = BatchNorm(y) (12)

h = ReLU(n) (13)

The filters per layer are {32, 64, 32}, and the kernel size per layer was set to {8, 5, 3}.
After the three convolutional blocks, the resulting feature maps go through a global average
pooling layer. The output from the global average pooling is then pushed to the sigmoid
activation function, which outputs a scalar value in the range of 0 to 1 for the sequence,
indicating whether it is real or fake. This results in the shape of Rn×1 for the output of
the discriminator.

For the optimization process, we used the Adam optimizer [36] with a learning rate of
0.0002 and a beta value of 0.5 [37] and trained it for 1750 epochs. A batch size of 32 was
used to ensure stable training.

3.5. Evaluation

Evaluating GANs in the time series domain is not trivial; hence, we decided to use
several methods for our evaluation to be able to make a statement about the quality of the
generated data. For this reason, we used the following criteria:

• Discriminability of synthetic and real sequences, which means that we want to show
that our generated data are no longer distinguishable from real data samples;

• Variety of synthetic sequences, where we want to show that our generated data cover
as many different modes of our real dataset as possible;

• Quality of the generated sequences, where we want to show that the generator cap-
tured the dynamic features of our real dataset.

3.5.1. Visual Evaluation

First, as with image data, people can evaluate the quality of samples visually [38] to
discriminate between real and fake samples. In this case, the results should be near chance
level, which means that there is no difference between real and fake samples. The drawback
of this approach is that only a few people are able to evaluate moments of stress. Therefore,
we conducted an expert evaluation experiment, where different experts from the human
sensing field, such as cardiologists, evaluated our generated MOS and non-MOS. In their
evaluation, the experts had to decide whether the sample was artificially generated or real
and, in the second step, whether a sample was an MOS or non-MOS. We used a simple form
to facilitate these expert evaluations. Another method to visually compare the quality of the
generated samples is the t-sne visualization [39]. With the help of the t-sne visualization,
higher-dimensional data can be displayed in a 2D map. This was performed in a way that
similar objects are displayed closer together than dissimilar ones on the map. Gradient
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descent was used to reduce the Kullback–Leibler divergence between the 2D pointwise
distribution and the higher-dimensional data distribution. For the above reasons, it can be
used to diagnose that the synthetic data match the real data, no mode collapse happens,
and whether some modes of the dataset are omitted during training. One more method for
visual evaluation is looking at the temporal properties of each generated MOS. Here, we
can observe whether the generator can reproduce the proposed rules that characterize an
MOS, which was described in Section 3.1.

3.5.2. Statistical Evaluation

The samples produced by the cGAN architecture are of good quality if there is no
difference between generated data and real data. To evaluate this similarity, we used the
Classifier Two-Sample Test (CTST) proposed in the paper [40]. In this approach, a binary
classifier is trained to distinguish samples belonging to the synthetic dataset S̃, from the
real dataset S. The sampling process is performed by randomly picking samples from the
real dataset and from the synthetic dataset, with |S̃| = |S|. The same procedure is used for
the test dataset. After the training process, the classifier is then evaluated on the hold-out
test dataset. If the test accuracy is near the change level, there is strong evidence that the
distributions are the same. The outcome of this test can also be used to diagnose which
failure occurred during cGAN training and for model selection during training, as stated in
the paper [40] and as our experiments showed. The classifiers predictions for the individual
samples are the indicators where the distributions differ. The CTST can also help to monitor
the evolution of the cGAN model over time towards a theoretical equilibrium point. Thus,
the stability of the parameters can be better assessed and, for example, early stopping can
be applied. Another method to evaluate the quality of the generated samples is the training
on generated data and testing on real data approach [18], with the assumption that if the
classifier, trained with synthetic data, can correctly classify real data that the classifier and
the cGAN have never seen, then the synthetic data will be of high quality and variety.
To further underline the above criteria, we used our trained generator to augment the
training dataset with synthetic data to increase the classifier’s performance and compare it
to the real score baseline. If the classifier score increases, it can be assumed that the data
contain the information of the original dataset and the generated samples have reasonable
variance [8]. For both methods, we used a stacked LSTM and an FCN classifier, which is
described in Section 3.5.3, to distinguish between MOS and non-MOS.

3.5.3. Classifier Architecture

We utilized two different classifier architectures to further evaluate our methodology.
Therefore, we used a temporal FCN and a stacked LSTM network. The LSTM classifier
consists of two layers with 50 hidden units each. The temporal FCN consists of three layers.
Each layer is composed of a batch-normalization followed by a ReLU activation. Regardless
of whether a sample is an MOS or non-MOS, the output probability of both networks comes
from the sigmoid output activation, with the formula:

φ(z) =
1

1 + e−z (14)

Each model was trained using the binary cross-entropy loss function and optimized
via the Adam optimizer. In the LSTM, the learning rate of the Adam optimizer was set to
0.001, and in the FCN, the learning rate was set to 0.0001. The formula to minimize the
binary cross-entropy is given, where θ denotes the output from the activation function, y
the true label, and x the output probability from the sigmoid activation function.

L(θ) = − 1
N

N

∑
i
[yilog(hθ(xi)) + (1− yi)log(1− hθ(xi))] (15)
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4. Experiments and Results

In this section, we show the performance of the proposed methodology on our col-
lected physiological stress dataset. All methods used were described in the previous section.
The obtained results were divided into visual results and statistical results.

4.1. Generated Moments of Stress

After the generator is successfully trained, we can apply random Gaussian noise and
class labels to the generated MOS and non-MOS samples. These generated samples can
be visualized. As shown in Figure 6, the cGAN captured the latency from the stressor to
the rise in GSR, the GSR spike, and the recovery of the signal. Regarding skin temperature,
the generator learned that a short drop in skin temperature occurs after the skin conduc-
tivity increases. The samples indicate that the generator has learned to generate different
variations of MOS samples that match the time–frequency characteristics of the real data.
This can be observed in more detail when looking at the various latencies between the
stressor and the onset of the peak, different amplitude levels, variations in the GSR rise
time, and different ST curves. Concerning the non-MOS samples, the generator learned to
produce flat curve samples with little fluctuations or samples with multiple peaks, which
indicate noise. In general, for both classes, there is no noticeable difference between the real
and synthetic samples. The generated samples, shown in Figure 6, are the same samples
from the same generator, which were fed into our classifier to augment the dataset.

(a) real and generated MOS (b) real and generated non-MOS

Figure 6. Visual comparison of real and generated samples. The red line shows a standardized and
filtered 16 s ST signal. The blue line shows a standardized and filtered 16 s GSR signal. There are
always two generated and two real signal samples arranged in a 2 × 2 grid.

4.2. t-sne Results

The two plots in Figure 7 demonstrate the t-sne results for the MOS and non-MOS
class. Each data point in the plot consists of 16 s GSR and ST signal features, which were
mapped to a 2D plane. The red points are from the generator, and the blue points are from
the real dataset. Points, which are closer together on that plane, have a higher probability
to be similar. This means that the real and the synthetic data points should overlap in the
graphic. As the data points show in the plot, the generated data points from both classes
correspond to the real points, which fulfill the above-described criteria. In addition, there is
a neighbor to most points, which means that no mode was omitted during training. This
also indicates that mode collapse did not happen. The 2D values of that plot were created
via the t-sne implementation of sklearn [41].
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(a) real and generated MOS (b) real and generated non-MOS

Figure 7. The two figures show the results from the t-sne. The red points are the generated points,
and the blue points are the real data points.

4.3. Expert Assessment Experiment

The experiment was designed around the criterion of discriminability, mentioned in
Section 3.5. For this purpose, 5 experts in the field of human sensing from various domains
of physiology were recruited to classify the generated and real data via a web-form. We used
30 real MOS, 30 generated MOS, 50 real non-MOS, and 50 generated non-MOS. The real
and generated sequences were randomly sampled. In addition to the classification between
generated and real, a classification between stress and non-stress was also investigated and
compared with our results from Train on Generated, Test on Real (TGTR) classification,
which is shown in Table 1. Because of the lack of experts that are able to classify stress
moments and the resulting low participant rate in the experiment, we therefore utilized the
mean value of all the participants’ classification performances. The answer options were
presented in a form, where first, the question about generated and real had to be answered
and, then, a distinction between MOS and non-MOS had to be made. The physiological
signal GSR and ST that had to be evaluated were combined and displayed in one plot.
For each participant, the results were stored in a CSV file. As proposed early on, the results
of distinction between generated and real showed that our generated data were visually
the same as the real data, because of the score, which was near the chance level, namely
0.4575 accuracy over all samples. To further evaluate our generated data, we utilized the
classification between stress and non-stress. There, real and generated stress moments
were almost equally classified with a difference of 1 misclassified MOS sample, which is
indicated in the recall score of around 0.74 (real) and 0.7733 (generated). All sequences are
the generated and real samples combined. All results are shown in Tables 2 and 3.
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Table 1. The results from the classifier experiments are shown. The different scores indicate the best
possible results we reached during training.

FCN Recall Precision F1 Accuracy

baseline 0.4881 0.8542 0.6212 0.84
RCGAN TGTR 0.5357 0.7377 0.6207 0.8382
RCGAN DAug 0.5833 0.7903 0.6712 0.8588

TimeGAN TGTR 0.5833 0.6203 0.6012 0.8088
TimeGAN DAug 0.6429 0.71 0.6750 0.8471

Ours TGTR 0.5238 0.7719 0.6241 0.84
Ours DAug 0.7262 0.7439 0.7349 0.8676

LSTM Recall Precision F1 Accuracy

baseline 0.5357 0.8654 0.6618 0.8647
RCGAN TGTR 0.4762 0.6250 0.5405 0.8000
RCGAN DAug 0.6190 0.7324 0.6709 0.8500

TimeGAN TGTR 0.5833 0.6533 0.6163 0.8206
TimeGAN DAug 0.5952 0.8065 0.6849 0.8647

Ours TGTR 0.6786 0.7600 0.7170 0.8618
Ours DAug 0.7262 0.8243 0.7721 0.88

Table 2. The results of the classification between real and generated performed by experts. The accu-
racy score is the mean of the participants’ performance.

Accuracy

Real/Generated 0.4575

Table 3. The binary classification of physiological measurement data according to stress moments
performed by experts.

Recall Precision F1 Accuracy

All Sequences 0.7567 0.7814 0.7487 0.8175

Real 0.74 0.7019 0.6973 0.765

Generated 0.7733 0.8816 0.8065 0.870

4.4. Classifying Moments of Stress

All our models were implemented with TensorFlow and Keras [42]. To evaluate our
methodology, we used different evaluation metrics to measure the performance of a binary
classifier. The first one is recall, which describes the true positive rate. This metric tells
us how many of the MOSs the classifier can correctly classify. The next score we used is
precision, which describes the model’s performance in predicting actual positive samples as
positive. It is calculated as the ratio of true positives among all positive classified samples.
The F1-score describes the balance between the recall and precision.

Accuracy shows the ratio of correct predictions among all the sequences in the dataset,
which means it returns all true positives and true negatives. Below are the formulas for the
above-mentioned metrics, where TP denotes True Positive, TN denotes True Negative, FN
denotes False Negative, and FP denotes False Positive.

recall =
TP

TP + FN
(16)

precision =
TP

TP + FP
(17)

f1 = 2 · precision · recall
precision + recall

(18)
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accuracy =
TP + TN

TP + TN + FP + FN
(19)

The classifier model that we used in our experiment was described in Section 3.5.3.
We used the real data classifier score as a baseline, which we then compared to the “Train
on Generated Test, on Real”(TGTR) classifier score and to the Data Augmentation (DAug)
classifier score. Furthermore, we compared our model with the state-of-the-art techniques
in the field of time series generation with GANs and cGANs:

• Recurrent Conditional GAN (RCGAN) [18], where two recurrent networks as genera-
tor and discriminator are used. There is also the possibility to add label information in
the generation process.

• TimeGAN [43] is a GAN framework for generated time series data. Different super-
vised and unsupervised loss functions are combined to generate the data.

After the train-test split, the training dataset size was 1222 sample sequences, consisting of
196 MOS and 1026 non-MOS, whereby each sequence was 16 s long. All three methods were
tested on the same dataset, which came from the train-test split described in Section 3.3.1.
The testing dataset consisted of 340 samples, with 84 MOS and 256 non-MOS, with each
sample lasting 16 s.

4.4.1. Train on Generated, Test on Real

In Table 1, we compare the baseline score, the RCGAN [18] score, and the TimeGAN [43]
score against our approach. The results showed the optimal weight composition we found
during the training. To train the classifiers, we used only synthetic MOS and synthetic
non-MOS generated by the methodology. We used the same ratio of MOS and non-MOS
samples as in the real training dataset. Each classifier was then evaluated on the testing
dataset, which consisted of real data only. We generated a dataset out of a fixed random
seed with the same size as the real one. The baseline results of the classifier were a precision
score of 0.8542 for the FCN and 0.8654 for the LSTM. The recall score of the FCN was 0.4881
and for the LSTM 0.5357. The F1-scores of the baseline classifiers were 0.6212 for the FCN
and 0.6618 for the LSTM. If we compare the baseline results to our TFTR score, where the
classifier precision scores were 0.7719 (FCN) and 0.76 (LSTM), the recall scores were 0.5238
and 0.6786, respectively. It can be observe that there was improvement in the recall for both
models and a slight decrease in precision. Simultaneously, the F1-score increased for both
models in comparison to the baseline real data classifier score. These results suggest that
the generator captured the important features from the real dataset and was therefore able
to produce valuable results.

4.4.2. Data Augmentation Results

The Data Augmentation (DAug) results are in Table 1, and it depicts the optimal
weight constellation we found during training. The number of synthetic samples used
for data augmentation was a hyperparameter because, at a certain point, adding more
synthetic samples to the classifier no longer improved the score. During our experiment,
we found that 800 synthetic samples per label comprised the best possible number to
augment the dataset, considering training speed and classifier score. As shown in Table 1,
we compared the RCGAN [18] and the TimeGAN [43] with our LSTM-FCN cGAN. There,
the data augmentation method with our approach performed the best and improved the
recall score and the F1-score for both models over the baseline score.

4.5. Classifier Two-Sample Test

To perform the Classifier Two-Sample Test (CTST), we utilized a simple neural net-
work. For comparison, an LSTM network was used. The neural network consisted of one
layer with 20 units and a ReLU activation function followed by a sigmoid activation [40].
The LSTM consisted of 32 units followed by a sigmoid activation function. Both binary
classifiers were trained for 100 epochs and leveraged the Adam optimizer with a learning
rate of 0.001. We generated a dataset with our trained LSTM generator, which consisted
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of MOS and non-MOS sequences based on a fixed random seed. The samples from the
synthetic physiological measurements in the dataset had the same cardinality as the real
samples from physiological dataset. The training dataset consisted of 196 synthetic and real
MOS, as well as 1026 synthetic and real non-MOS sequences, resulting in a total of 2444
sequences. The hold-out test dataset consisted of 84 MOS and 256 non-MOS, which resulted
in 680 in total. After training, the classifier’s accuracy was evaluated on the hold-out test
dataset. The results are shown in Table 4. As can be observed, for both classification models,
the accuracy of our implementation was near the chance level, which means that our cGAN
captured important features from the real distribution. Once our implementation reached
the lowest CTST score, the score fluctuated in the range between 0.7 and 0.5903, which
was caused by the random space and the known insatiability of the GANs. These results
suggest that the generated data distribution learned the real data distribution.

Table 4. Results of the classifier two-sample test. The closer to the chance level, the better are the
results.

Neural Net LSTM

CTST LSTM-FCN 0.6221 0.5903

5. Discussion and Future Research

The proposed cGAN can capture the time–frequency features of the GSR and ST
signals and, therefore, produce samples that are indistinguishable from real samples. This
includes samples following a similar distribution and and new samples that can fill gaps
in the real dataset, which explains the improvement of the classifier score on our stress
dataset. However, training a GAN on a small and imbalanced dataset is not trivial. It takes
a considerable amount of work to find the optimal hyperparameters. At the same time,
the instability of the GAN training makes it difficult to pinpoint the best hyperparameters.
In addition, the GAN may produce only one category of samples, which is called mode
collapse in the literature. However, this effect was notably reduced in our work by using
a cGAN with a diversity term. Summarizing all these points, one can see that there is
still much research to be performed on GAN training, especially for small physiological
time series data. This is particularly interesting due to the great potential that this method
has shown, both in the present study and in the literature. In future works, it would be
interesting to see new architectures or other loss functions such as the Wasserstein GAN [44]
on physiological measurement dataset.

In our research, we utilized an FCN discriminator to generate physiological time series
data. We chose this architecture because it outperformed other state-of-the-art techniques
in time series data generation in our experiments on our dataset and, in recent years, time
series classification with CNN architectures have become more popular [10]. However,
it would also be interesting to evaluate our architecture on different datasets or to try to
utilize a residual network [45] as a discriminator, which has become state-of-the-art in
many time series classification tasks.

Our self-designed data acquisition campaign in the controlled laboratory environment
provided us with the physiological stress data for this work. In this campaign, we triggered
ten MOSs per participant. These MOSs were used for the stress label in the cGAN and
in the classifier. However, with these samples, it can happen that an MOS falls into the
non-MOS category because the participants can also experience a stress moment between
the stressors due to various factors, which is reflected in the physiological data. This false
classification influences the sequences produced by our cGAN since the distributions for
the labels are delimited less strongly. To overcome this issue, in the future, two possible
approaches could be investigated: a first possible way could be improving the experimental
protocol or, secondly, using active learning [46] to relabel noisy sequences by experts. In this
scenario, it would also be possible to go beyond binary classification and introduce more
granular levels of labels such as strong MOS, medium MOS, and non-MOS.
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In this work, we used a data preprocessing schema to resample the physiological signal
to 16 s sequences, which reduced the complexity of the whole dataset and significantly
improved our results. However, the main drawback of this approach is that participants’
individuality in terms of stress reaction sequences is lost. Since the literature [1,47] has
identified that stress reactions are subjective and people react differently, an interesting
approach for the future would be to use the latent space in the cGAN to generate individual
MOS and non-MOS per participant.

As described earlier, we only used GSR and ST as our stress indicators in this study and
achieved good results on our test data. A major advantage of using only two physiological
signals is that it is easily transferable to real scenarios and everything can be recorded with
just one wearable. Nevertheless, the integration of heart rate variability and heart rate
could further improve the accuracy of our classifier.

6. Conclusions

In this work, we proposed a data augmentation technique leveraging a cGAN to
detect Moments Of Stress (MOS) with different neural network classifiers on a small and
imbalanced physiological measurement dataset. Additionally, we proposed an LSTM-
FCN cGAN architecture combined with a diversity term. For this reason, we measured
GSR and ST using a low-cost wearable sensor. In a controlled laboratory data acquisition
campaign, we generated ground truth data for moments of stress via audio stimuli, which
we used as a labeled physiological dataset to train our classifiers. We used a combination
of data preprocessing and cGAN data augmentation, to tackle the problem of training deep
learning algorithms on a small and imbalanced dataset. With the help of synthetic samples
from the cGAN, we were able to detect 72.62% of the induced MOSs on the testing dataset
and, therefore, improved the performance of two different classifier models in terms of
recall and F1-score. During the experiments, the LSTM model performed particularly well
with an improvement in recall around 19.05% and 11.03% in the F1-score, compared to the
baseline LSTM classifier score.

Concluding, the research presented in this paper showed that it is possible to train a
cGAN on a small and imbalanced physiological time series dataset collected with wearable
sensors. Furthermore, it showed that these synthetic data can be used to train a classifier
on moments of stress, which improved the overall performance. The architecture that was
tested in our experiments is described in Section 3 and can be used to enhance classification
performance where time series physiological data are used.
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