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Abstract: The digital transformation disrupts the various professional domains in different ways,
though one aspect is common: the unified platform known as cloud computing. Corporate solutions,
IoT systems, analytics, business intelligence, and numerous tools, solutions and systems use cloud
computing as a global platform. The migrations to the cloud are increasing, causing it to face new
challenges and complexities. One of the essential segments is related to data storage. Data storage on
the cloud is neither simplistic nor conventional; rather, it is becoming more and more complex due
to the versatility and volume of data. The inspiration of this research is based on the development
of a framework that can provide a comprehensive solution for cloud computing storage in terms
of replication, and instead of using formal recovery channels, erasure coding has been proposed
for this framework, which in the past proved itself as a trustworthy mechanism for the job. The
proposed framework provides a hybrid approach to combine the benefits of replication and erasure
coding to attain the optimal solution for storage, specifically focused on reliability and recovery.
Learning and training mechanisms were developed to provide dynamic structure building in the
future and test the data model. RAID architecture is used to formulate different configurations for
the experiments. RAID-1 to RAID-6 are divided into two groups, with RAID-1 to 4 in the first group
while RAID-5 and 6 are in the second group, further categorized based on FTT, parity, failure range
and capacity. Reliability and recovery are evaluated on the rest of the data on the server side, and for
the data in transit at the virtual level. The overall results show the significant impact of the proposed
hybrid framework on cloud storage performance. RAID-6c at the server side came out as the best
configuration for optimal performance. The mirroring for replication using RAID-6 and erasure
coding for recovery work in complete coherence provide good results for the current framework
while highlighting the interesting and challenging paths for future research

Keywords: cloud computing; cloud storage; reliability; performance; secure data management;
modeling

1. Introduction

Cloud computing is the delivery of different services through the Internet. These
resources include tools and applications like data storage, servers, databases, networking,
and software. These features are the requirements and concerns raised by a larger audience
on the internet. The world wide web has carved new paths and approaches to utilize the
concept of the digital world at an optimum level. Cloud computing has emerged with this
conception and has fulfilled many expectations. It has also brought new questions and
challenges for this new ecosystem. Cloud computing serves corporate needs and caters to
individual users, making its adaptation swifter than expected [1]. The private and public
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cloud segregation is practical enough to provide services at a limited exclusive level or in a
large and non-exclusive manner.

Similarly, the service model presented by cloud computing very justly provides core
services to individual and corporate groups. Additional value-added services are as per
the user’s choice but are not a compulsion. The core services [2], i.e., infrastructure as a
service (IaaS), platform as a service (PaaS) and software as a service (SaaS) are providing the
essential facilities, including the provision of suitable infrastructure (computing, storage,
network), an operating platform to utilize the infrastructure and software to perform
certain tasks. This configuration is applicable to an individual and a large corporate
entity. Therefore, as it is a highly distributed ecosystem, the pricing strategy is also cost-
effective and based on the pay-as-you-use phenomenon. The essential requirements at a
cost effective and logical pricing model play a key role in spreading the cloud userbase.
International technology firms started cloud services that led to quality and performance-
driven competition and resulted in consumers’ benefiting [3].

Microsoft Azure, Google Cloud Platform, Amazon EC2, Oracle, IBM, Cisco and many
more cloud service providers (CSP) are bringing new services, pricing models and facilities
to the consumer [4].

As discussed, cloud platforms are a service-focused computing environment with
distributed shared resources and uses when you need a service model [5]. Considering
the service model structure, the applications designed for cloud platforms are divided
into multi-tier architectures. These tiers are designed on the respective service model,
i.e., IaaS, PaaS and SaaS. However, due to the rapid growth in services and to competitive
advantages among cloud service providers (CSPs), the emerging services are not able to
cater to 3-tier architecture; therefore, multi-tier architecture, or in simple words N-tier
architecture for n number of services, is the suitable candidate for application development
design. Provisioning multiple services in different tiers or in one single tier generates the
vital importance of sustainable performance [6].

The multi-tier model is a robust solution for providing an integrated service pack in
a single machine to the end-user. Microsoft Azure and Amazon cloud services are based
on the multi-tiered cloud environment. The benefit of the multi-tier cloud model is an
optimal workload capacity and multi-node management, i.e., multiple users are able to
be managed with different service requests in one multi-tiered model [7]. To ensure the
operationalization and continuity of the services, a virtualization mechanism is being used
in each tier to provide more stable operation with low energy consumption and minimal
storage requirements. Virtualization is applicable in single tier or can be implemented
in a complete multi-tiered environment depending on the usage and application of the
target services. These services acquire a stable operating structure consisting of communi-
cation, data processing, security and storage. The balancing of these factors is called data
reliability [8].

To ensure the maximum benefits and stable operations in a data centric cloud envi-
ronment, it is essential to address the data storage, processing and navigation issues in the
utmost detail to provide multi-dimensional solutions and frameworks. One core segment
of this exercise is the reliability modeling for the cloud environment that leads to the
development of the basis for cloud mining, predictive analytics, decision support systems,
intelligent configuration systems and cloud ecosystem management. Assuming that all fac-
tors have a high ranking except the data reliability, then all other factors are compromised,
and the purpose of the whole operation results in a data failure [9]. All other factors are
secondary while considering data reliability, and the dependencies on this specific factor
are precise and huge; therefore, it is almost essential to develop relevant frameworks and
mechanisms to enhance the reliability score in cloud storage environments [10].

Moreover, it also contains the recoveries from failure, backups and fault tolerance
capabilities to ensure smooth operations. In cloud computing, these servers may have
different physical locations and resources. They are connected through routers and internet
by using virtualization, and the physical differences in locations are insignificant. Multiple
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servers can be treated as one giant server for the user in a virtual environment consisting
of collective resources for computing, storage and the network. A hard disk drive (HDD)
can be categorized into two types, i.e., HDD that can have volume storage, speed and
connectivity. The second type of storage is a solid-state disk (SSD) which brings more
speed, storage capacity and security. These types are having an impact on the software
applications running the performance and response times. Currently a series of SSDs or a
mix of SSDs and HDDs are used in data centers. The series are known as RAID for high
performance and robust data processing, including concurrent virtualization and data
influxes from different resources [11].

As mentioned earlier, beyond free services, the public cloud offers a versatile and
flexible pricing model engaging the concept of “pay as you use”, making it possible to build
resources according to capacity and demand. This pricing model leads to a flexible cloud
platform that is highly scalable as per the growing demand and technology requirements,
along with a facility requiring minimal capital expenditure. Moreover, all service providers
provide end-user data protection and recovery capabilities, which include redundancy to
prevent losses in the event of any catastrophe. On the other hand, keeping a backup system
is an expensive and technical exercise which is not suitable to every end user. A server with
good computing and network capabilities always needs a fast, flexible and stable physical
storage mechanism [12].

There are different types of data failures in cloud computing such as software failure,
hardware failure, power failure and network failure. All of these factors can lead to data
failure and can affect cloud service failures. In a conventional file system, the failure may be
a network outage, machine failure, drive failure and data corruption, as shown in Figure 1.
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Figure 1. Data Failure in Cloud computing.

Erasure coding is mainly used for protecting the data from failures in large-scale
storage. It is also used to detect and correct errors in cloud computing. In erasure codes, a
file can be divided into equal chunks. It also added the parity chunks that can be restored
to recover the original file. Erasure codes can be divided into two categories: Maximum
Distance Separable (MDS) and non-MDS [13].

The replication technique focuses more on the cloud computing reliability process to
maximize data availability and reliability. Low latency and minimal latency can be reached
by consuming bandwidth overcapacity on the network. The lost data need to be restored
in the alternative storage medium by retaining the emphasis on reliability. Furthermore,
restoration is reactively and proactively divided into two groups. For replication, there
are two techniques used. The replica will be generated with the reactive method after the
failure. In a constructive method, the replica will be generated before failure occurs. In
Static Replication, the total number and location of replicas are fixed. Random replication
is used in HDFS, GFS, RAM Cloud and Windows Azure [14]. In dynamic replication,
replicas are generated and removed dynamically. The management, position, and deletion
of replica productions are autonomous processes that rely on user requirements to improve
usability, durability, cost, bandwidth, latency, energy, storage efficiency and execution time.
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The storage segment of cloud computing is based on the data centers in terms of
physical infrastructure. By a definition from Google, a data center is a cluster of buildings
with various functions, numerous server machines and communication equipment to be
linked together to develop a common environment with common maintenance and security
needs. In terms of components, the physical structure can be divided into three main
categories, i.e., server machines, storage and reliability. The server machines are designed
for heavy processing, communication and storage facilities [15]. The multi-function, multi-
user and multi-tiered physical structure is the most vital and common segment to be looked
at for reliability and storage optimization in a cloud environment.

2. Problem Statement

Data storage in cloud environments is a big challenge for data reliability and trust
issues. Both key attributes play a critical role in the survival and growth of cloud services
and in attaining the trust level of cloud users. The tendency of engaging cloud storage
services is expanding continuously, and the data management in cloud environments is
becoming a big challenge in terms of data reliability, security and accessibility. This research
aims to formalize a hybrid approach for data reliability in cloud storage management and
also introduces a conceptual framework to improve reliability storage efficiency and latency
in accessing data over cloud computing.

3. Research Motivation

This research has formulated the following research motivations;

a. Reliability of data requires optimizing durability and data availability.
b. Durability mitigates permanent failures and mitigates temporary failures by

availability.
c. In cloud data centers, different methods are used to increase the fault tolerance of the

storage system.

4. Significance of Our Study

Replication is a proven process in cloud computing and data centers to maintain data
reliability and efficiency. Mirroring and erasure coding both are valid methods and have
their respective advantages and disadvantages. This research provides a hybrid framework
to engage in mirroring and erasure coding for replication based on the advantages and
performance of each method. Therefore, the proposed framework provides the optimal data
replication and respective features to deal with the heavy volumes and associated risks.

5. Research Objectives

The following objectives are defined for this research;

a. Designing cloud storage reliability assurance to evaluate storage properties.
b. To produce an autonomous storage management model for improving storage

efficiency.
c. Formulating a model for data reliability in cloud storage management.

6. Literature Review

Cloud storage systems are composed of large numbers of hardware and software
components. Failures are the norm rather than the exception in cloud storage systems.
Any failures such as hardware failures, power outages, software glitches, maintenance
shutdowns or network failures in the cloud storage system will raise temporary data un-
availability events and sometimes lead to permanent data loss. In spite of these failures, to
provide reliable service to the customers, various fault-tolerant mechanisms are employed.
To meet the large-scale storage needs of clients, cloud defines virtual storage using Network
Attached Storage (NAS) and Storage Area Network (SAN) [16].

The networked storage NAS and SAN are easily scalable in terms of both performance
and capacity, and hence are highly influential in cloud storage systems. They use a dis-
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tributed file system to organize data for storage and provide controlled data access to
clients. Distributed File System (DFS) spreads data in a storage cluster which is composed
of thousands of nodes. DFS applies data redundancy to improve the fault tolerance of
cloud storage systems, and it spreads redundant data into nodes from different failure
zones [17]. DFS is also designed to ensure the durability, availability and I/O performance
of the storage according to the client’s Service Level Agreement (SLA).

Any failures in cloud storage systems mentioned above may lead to unavailability
events from time to time. Whenever an unavailability event occurs, it activates data re-
covery to maintain durability and data availability. The data redundancy mechanisms
employed in cloud storage systems are replication and erasure coding. Replication main-
tains multiple copies of data on distinct nodes from different failure domains. Replication
is a straightforward fault-tolerant method. However, it is not an efficient solution for big
data due to the volume of data. Erasure coding is a storage-efficient alternative reliability
method [18].

Strauss has mentioned the importance of reliability based on the availability of data,
which is becoming a critical factor when considering or measuring the performance of any
cloud service; therefore, it is becoming essential to consider the reliability methodologies
while developing the cloud’s structure [19]. Zhang has mentioned the importance of virtual
machines, i.e., the configuration of virtual machines in a manner that supplements the
reliability and availability of the data. It also has an impact on the performance of the
cloud services, and therefore, the configuration of virtual machines is becoming more
and more critical [20]. The role of infrastructure as a service in terms of the storage and
performance of the cloud services is discussed by Vishwanath and Nagappan. They have
presented reliability metrics for the performance evaluation of the cloud services focused
on storage and data [20]. In continuation, Bauer has highlighted the critical parameters for
the quality of service. The reliability metrics presented by various scholars are applied on
certainly quality parameters to evaluate the impact of various variables on the reliability
and availability of the data [21].

The reliability and recovery of the data has not been evaluated at the infrastructure
level only, and various scholars have developed and tested different algorithms to address
various critical challenges. In the same year, Cheng proposed another framework for the
reduction in failure and dependencies by improving the system’s reliability. The basis of
this framework is also rooted in the infrastructural services in cloud computing [22]. This
framework has been used to evaluate the performance of cloud services in an independent
mode and develop rankings for the same.

The research related to reliability and availability has extended into the prevention of
failures, identification of failures, performance prediction and defensive methodologies.
Sharma has highlighted the importance of such indirect factors on the overall performance
and reliability of the data. The preventive measures and predictive maintenance of the
computing system have a long-term impact on the strategies for cloud computing storage,
replication and recovery methodologies [23].

The topic of cloud computing storage has become a more comprehensive area for
researchers as it incorporates hardware or infrastructure as a service (IaaS), virtualization
and computation capabilities, and more importantly, the configuration of virtual machines.
Nachiappan has discussed the virtual machines scenarios of multiple configurations and
the relevant impact on the performance of the cloud services. The importance of this work
is related to the challenges of big data in cloud computing, and specifically related to the
storage reliability and availability in case of virtual machine failures or weak configurations.
They also discussed the role of security, preventive measures and storage methodolo-
gies such as static replication, dynamic replication, mirroring and erasure coding, to be
specific [24].

The Popular Hadoop Distributed File System (HDFS) uses three replicas. Hence,
it can tolerate any two simultaneous failures with a storage overhead of 3x. The most
popular Reed–Solomon can manage any four simultaneous failures with 1.4x storage
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overhead. Even though the storage efficiency of erasure coding sounds appealing, data
recovery/repair in erasure coding involves enormous resource consumption. For example,
data recovery in Reed–Solomon code increases disk I/O and network bandwidth by 10x
compared to replication (increased resource consumption due to data recovery also impacts
read performance) [25]. Data recovery in replication has a limited impact on resource
consumption and read performance. Data recovery issues of erasure coding prevent it from
being more pervasive in cloud storage systems. For example, in a 3000-node production
cluster of Facebook, erasure coding can replace replication for only 8% of data. In the case
that 50% of the data are replaced with erasure code, the repair network traffic will saturate
cluster network links [26].

When there is a failure in cloud storage systems, the objects that are resided in the
failed zone will enter into a degraded mode. A delay is applied to recover any degraded
objects to avoid any unnecessary repair. Degraded objects will remain in degraded mode
from the time of failure utill complete recovery. Any data read request to a degraded object
in replication is handled by redirecting requests to the next available replica. On the other
hand, in erasure coding, a degraded object is reconstructed on the fly. In replication, the
object is recovered by copying it from the next available replica, whereas in erasure coding,
the object is recovered using the data reconstruction of any other k available chunks [27].

7. Solution Design and Implementation
7.1. Conceptual Description of the Solution

The purpose of this framework is to develop provisions for the cloud users who are
dealing with a heavy volume of data/big data in a distributed environment, as managing
multiple virtual machines can engage both successful techniques instead of selecting one
specific one. The framework is designed in three main layers to cater to the objectives
described in the previous sections. It is also important to note that different erasure
coding and data replication algorithms are already available with proven results and
performance; therefore, the scope of this research work is to build a working environment
in which various algorithms can work as per the requirement. Moreover, new and emerging
algorithms are also manageable [28].

In cloud computing, the main challenge is managing data prolifically and securely. As
the cloud computing platform is designed for a distributed and shareable environment, at
all service levels, i.e., IaaS, PaaS and SaaS, the concepts of distribution, load management
and latency control are the main pillars. At the infrastructure level, the storage of data is
completed using various methods, and the most prominent and effective methods are data
replication and erasure coding. Both the methods are focused on data reliability, availability
and profiling to ensure the data’s integrity and security. Both methods have pros and
cons related to the swift recovery of data, latency and the mechanism through which both
methods store the data. This research proposes a hybrid framework that uses both methods,
i.e., replication and erasure coding, to provide optimum data integrity [29].

The expected outcome is fewer data losses, failures and swift recoveries using optimum
methodologies. Erasure coding uses RAID 5/6, while replication uses mirroring on RAID-1.
Replication using mirroring may use more space but provides better results in terms of
the reliability of data due to the redundant mechanism, while erasure coding is more
economical on storage and provides swift recovery in case of failure. The fault tolerance
and recovery capacity of erasure coding is better than replication, but on the other hand,
replication provides more reliability and integrity though at a slower pace, with an expense
in terms of storage by using more space.

Most manufacturers now include a system restoration disc computer to help reduce
the difficulties and frustrations of fixing a system malfunction. This instance is manageable
by configuring Kubernetes in a cloud configuration, and the proposed framework uses
CNI (cloud network interface) and CSI (cloud storage interface) to identify the healthy
nodes and perform an assessment based on the virtual machine configuration, i.e., the
compute, storage and network properties available with the configuration manager. In
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other words, the default configuration of all virtual machines resides with the configuration
manager, while the dynamic status of the virtual machines is captured through CSI and
CNI interfaces that transform into the health status of the virtual machines, i.e., in the case
that, due to a recovery instance, erasure coding is activated on virtual machine number 3,
the dynamic value of its storage will increase. The CSI and CNI interfaces pass the value to
the VM health controller, and in the case of any room being made available for dynamic
replication or erasure coding by creating an instance on another virtual machine, it will
start the load balancing accordingly to create space for the current instance.

In the case that all VMs are busy and not able to accommodate the current instance,
then instead of crashing the system, the current instance will be in the cache cue. Therefore,
as soon as the virtual machine is available in processing terms, i.e., suitable compute, storage
and network properties, then it will start the recovery or replication procedure as planned.
The physical resource layer consists of hardware variants in terms of storage devices,
i.e., racks, nodes, disks, etc. As we are considering the cloud platform, therefore, this
layer physically resides with the cloud service provider in the case of a public, community
or hybrid cloud. In the case of a private cloud or a corporate data center, this layer
shall be categorized as in-prim hardware services. It was mentioned before that erasure
coding works on RAID 5/6 and replication uses RAID-1, and the physical resource layer
manages both. The accessibility to this layer is provided through virtualization in terms of
different virtual machines. The cloud platform is flexible enough to provide a customized
configuration of each virtual machine, though the overall capacity of all virtual machines
is dependent on the physical resource available. To select between two storage services,
i.e., erasure coding and replication, this layer is formulated to provide data cluster health
and device failure possibilities using a fabric agent for host management. It is notable
here that device failure predictions are based on the possible failure of the erasure coding
or replication method. To elaborate further, if replication uses HDFS for mirroring and
faces a hardware, bandwidth or logical fault, the fabric agent will provide a health alert
for the current data cluster and evaluate the possibility of failure to predict the event.
The same process is applicable for erasure coding, e.g., in the case that erasure coding is
using hyper-convergent storage for video streaming and facing high latency, hardware
failure or a split modulation problem, the fabric agent will perform the same function as
mentioned before. The objective of this module is to take necessary action, i.e., switching to
the other method within a minimal timeframe without disturbing the data operations and
management, as shown in Figure 2.

This layer is linked with the prediction layer and operates in accordance with the fabric
agent’ instructions. This framework takes erasure coding and replication management
modules as hosts, while the fabric agent is the host controller to assign tasks and operations
received from the virtual machines or cloud users. As depicted in the diagram, the hybrid
layer is split into main modules, i.e., erasure coding management and replication manage-
ment, with two connecting functions: a cache configuration system and selection for the
prediction layer. This layer also contains the respective algorithms for erasure coding as
well as for replication. New algorithms can be added into the same modules, and therefore,
the optimum solution for storage management is possible with the most recent and best
algorithms.

The management sub-module contains the algorithms with the encoder and decoder
sub-modules. This framework works on this assumption that the available algorithms are
proven and tested; therefore, the encoder and decoder are able to perform their respective
functions. Virtual erasure coding, HDFS erasure, hyper-convergent erasure and Reed
Solomon erasure are a few examples. From the prediction layer, the fabric agent will
provide the task to the host, i.e., erasure coding management with the data cluster health
status, and by default, both methods will be used based on the capacity and availability
of physical resources. In the case of replication management failure, the erasure coding
management module will resume the task and start recovering data from the replication
module. For this purpose, the replication module has one dedicated node in the erasure
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coding module. In the case of a bad health flag on the data cluster or the predictive failure
of a device linked with the replication management module, the erasure coding module
will start recovering and assuming data tasks through the dedicated node.
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Replication management is connected with the prediction layer through the selection
function for two main tasks. The first is to take the backup of a data cluster with a bad
health status declared by the fabric agent. This data cluster is used by erasure coding or
replication management module, and this module shall complete the mirroring of that
cluster with both methods. It is also possible that certain parts or segments of the cluster
need to be backed up. Using various algorithms, e.g., genetic algorithms, multi-tier data
algorithms, mirroring algorithms, etc., will ensure a timely backup. The second task is
related to the failure of erasure coding. The replication module will take the backup of
the encoded data from the erasure coding management. A dedicated node shall also
be available in the replication management module to ensure data cluster health status
replication, predictive device failure, and possible erasure coding failure or high latency.
This switching process is seamless and quick to provide an uninterrupted data service
without failure. While in the case of the failure of any of the two components, a swift and
timely recovery is possible through this hybrid approach.

7.2. Design of The Solution

The system monitoring layer maintains the stable working of the whole structure by
evaluating the changing configurations, node adjustments and virtual machines’ status as
per the configuration manager. In case of a particular node failure, the load is distributed
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by engaging close with virtual machines to provide an instance for the recovery process to
streamline the system again.

7.3. Validation Prototype

We have used the Streamlit (version 3.10 for python created by Pablo Fonseca for
github, San Francisco, CA, USA) data streaming and erasure coding. Streamlit is a GNU-
based algorithm that is primarily designed to develop erasure coding for high-volume
distributed data management. It uses machine learning to engage statistical methods in
neural networks to select a suitable encoding algorithm for the data cluster. The validation
of the proposed framework has been completed by using a video streaming scenario, as it
is heavy in volume and also requires a swift and smooth recovery without interruption.

As per the scope of this research, a hybrid approach is designed to formulate a balance
between replication and erasure coding to gain optimum storage reliability and recovery
performance. In the validation segment, purpose failures were induced to evaluate the
performance and activation of erasure coding to provide a swift recovery and continuation
of service. Replication and erasure coding are tested with heavy-volume data processing
as in normal scenarios. The cloud storage methodology with replication works fine and
provide successful results. The aim of this research, as explained in the previous section,
is to provide such a hybrid method that can generate robust performance in case of high
data volumes and have the capacity for failure tolerance and the continuation of operations
without compromising the storage reliability and recovery characteristics.

The scenario is developed using the existing technology and best practices under
consideration. Current cloud storage methodologies extensively use RAID technology for
the physical storage and manipulation of the data. Different RAID levels have proven
to have performance and reliability pros and cons. To evaluate the proposed framework,
this research has engaged RAID-0 to RAID-6 for data diversification and spreading while
the most commonly used RAID-5 and RAID-6 are used for the replication and erasure
coding. RAID-5 and RAID-6 both are configured for the mirroring purpose, while the
erasure coding is deployed on RAID-6 only for focused and more interpretable results.
Further grouping between RAID-1 and RAID-5/6 is categorized on the basis of failure
tolerance. RAID-1 is grouped with RAID-5/6 with a fault tolerance of 1, with 200 gb
and 133 gb of capacity, respectively. The other group contains RAID-1 and RAID-5/6
with a fault tolerance of 2, with a capacity of 300 gb and 150 gb, respectively. Dataset,
RAID configuration, RAID grouping, and mirroring and erasure coding with various
capacities have been performed. For operations, the data are used with various protocols
that provide the more complex scenarios at the administrative level to ensure the robustness
and impact of the proposed framework for reliability and recovery using replication and
erasure coding.

7.4. Validation Structure

The dataset we have used is the KDD12 dataset for the purpose of validation, con-
sisting of approximately 1,074,992 records. A random selection of 322,98 records has been
used for the mirroring and erasure coding experiment on various RAIDs, as depicted in
the following table. The RAIDs for the replication experiment are configured as shown in
Table 1.

For replication, the following blocks are configured on RAID-5 and RAID-6 as shown
in Table 2. The mentioned RAIDs contain a cluster of 53,480 records on each configuration
for replication.

For mirroring and erasure coding, the following configuration is applied on the RAID-
6, as shown in Table 3.

The final configuration for the scenario is given in Table 4. Notably, the scope of
this research is limited to reliability and recovery propositions, but there are many other
parameters which are not evaluated in this scope. Therefore, the mirroring cycles, backup
and functional RAID classification are not defined.
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Table 1. Storage structure.

RAID Type Description Min. Drives Range for Fault Tolerance Parity

RAID-0 Striping without mirroring 2 None No Parity
RAID-1 Mirroring without striping 2 01 drive failure No Parity
RAID-2 Striping with ECC 3 01 drive failure Shared Parity
RAID-3 Striping (Byte) 3 01 drive failure Dedicated Parity
RAID-4 Striping (Block) 3 01 drive failure Dedicated Parity
RAID-5 Striping (Block) 3 01 drive failure Distributed Parity

RAID-6 Striping (Block) 4 02 drive failures Double Distributed
Parity

Table 2. RAID-5 configuration structure.

RAID-5

A1 B1 C1 P1
B2 C2 P2 A2
C3 P3 A3 B3
P4 A4 B4 C4

Table 3. RAID-6 configuration structure.

RAID-6

A1 B1 C1 D1 P1 Q1
B2 C2 D2 P2 Q2 A2
C3 D3 P3 Q3 A3 B3
D4 P4 Q4 A4 B4 C4

Table 4. Storage configuration.

RAID-Configuration Type Fault Domains Failure Tolerate Data Volume Required Capacity

RAID1 Mirror - 1 100 gb 200 gb
RAID 5/6 Erasure Code 4 1 100 gb 133 gb
RAID1 Mirror - 2 100 gb 300 gb
RAID 5/6 Erasure Code 6 2 100 gb 150 gb

As is visible, RAID-5 and RAID-6 reciprocate RAID-1 mirroring, while RAID-3 and
RAID-4 use mirroring, but in a block and striping format. If RAID-1 (mirroring without
striping) will impact erasure coding, then upgrading the other RAID formats becomes easy
and more logical. Therefore, from a data spread point of view, all RAIDS are engaged,
while the configuration above is being used from a reliability and recovery perspective.
The failure limit is also defined for each RAID classification, and with the exception of
RAID-0 and RAID-6, all other RAIDS have a failure threshold on one drive, while RAID-6
is configured as a failure threshold on two drives. There is a parity diversification for each
RAID as well, ranging from no parity, shared parity, dedicated parity, distributed parity
and double distributed parity.

The parity range also significantly impacts the replication and performance of the
RAID; therefore, it is highly important to evaluate various configurations to understand the
validation of the proposed framework. Double distributed parity is assigned to RAID-6,
while RAID-5 uses distributed parity, but both are complex parity cases. Therefore, with
the other configurations mentioned in the previous section, the scenarios developing at
RAID-5 and RAID-6 are challenging and depict the real-life complexity level and robustness
requirements at an optimum level.

In cloud computing, there are other storage methods, but as mentioned earlier, in the
literature, we have identified the best practices for storage, and RAID is one of the most
usable methodologies in various cloud configurations.
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Initially, data parameters are used for training purposes to engage intelligence, which
is required to develop autonomy as the system obtains maturity. The switching between
replicated mirroring and erasure coding is essentially based on the intelligent flagging and
understating of the anomaly patterns by the machine itself.

Therefore, the parameters are trained to learn the anomaly flags, and these learning
datasets are generated through a number of iterations. To make the learning more inde-
pendent, the column names are also dynamic, and the machine learns the columns and
transforms a training structure every time instead of fixing on specific columns, meaning
that the same learning is applicable on multiple cloud and RAID configurations without
any modifications, as it is going to pick the columns dynamically to formulate the learning
parameters.

8. Performance Evaluation of the System

As per the scenario explained in the previous section, the initial rationale is linked
with the data’s framing and evaluation. Data are linked with various protocols assuming
that various communication mechanisms are attached to the cloud, and therefore, the
nature and source of data needs to be rationalized before proceeding towards the learning
and testing of the system for mirroring and recovery. The following are the data framing
results over multiple iterative engagements to evaluate various possibilities, as shown
in Table 5. The results show the normalization of data to process for the pre-training
adjustments. The results show the tcp and udp source using ftp and http protocols. though
the private channel does not reach the normal value. Further data processing and learning
shows the private data channel is generating rejection of tcp instead of proceeding towards
restoration, as shown in Table 6. The other examples show that the ftp data are again
reaching a normal value but not proceeding towards mirroring or restoring. Similarly,
another case has generated an association pattern for mirroring and showing restoration
of tcp.

Table 5. Data frames results.
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8.1. Training Set Results

The training dataset has generated the categories and columns shown in Table 5. The
dataset is segregated into the host mirror’s server rate and the transition server rate, while
the recovery is also split into these types, i.e., host recovery rate and host server recovery
rate. The purpose is to manage the server-side storage and the VM-level storage. Another
aspect covered in this activity is the mirroring not only required for data at rest for servers
but which is also applicable to data in transient. The results provide the values for the
proceedings. The following graph summarizes the results as shown in Figure 3. The host
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mirror’s server rate for mirror-5 configuration shows an overall promising result, and on
the other hand, the recovery using the erasure-6 configuration is also prominent.

Table 6. Reference adjustment results.
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Data are linked with various protocols assuming that various communication mecha-
nisms are attached with he cloud, and therefore, the nature and source of the data needs
to be rationalized before proceeding towards the learning and testing of the system for
mirroring and recovery. The following are the data framing results over multiple iterative
engagements to evaluate various possibilities. The results show the normalization of the
data to be processed for the pre-training adjustments. The results show that the tcp and
udp source using ftp and http protocols though the private channel does not reach the
normal value.

Further data processing and learning shows the private data channel generates re-
jection of tcp instead of proceeding towards restoring. The other examples show the ftp
data again reaching a normal value but not proceeding towards mirroring or restoring.
Similarly, another case has generated an association pattern for mirroring and showing the
status of the restoration of tcp.

The training dataset has generated the categories and columns shown in the aforemen-
tioned table. The dataset is segregated into the host mirror’s server rate and the transition
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server rate, while the recovery is also split into these types, i.e., host recovery rate and
host server recovery rate. The purpose is to manage the server-side storage as well as the
VM-level storage. Another aspect covered in this activity is mirroring, which not only
required for data at rest for servers but for data in transient. The results provide the values
for the proceedings. The following graph summarizes the results. The host mirror’s server
rate for the mirror-5 configuration shows an overall promising result, but on the other hand,
the recovery using the erasure-6 configuration is also prominent.

The further processing of the data focuses on mirroring and erasure coding with
reference to the mirror, transit and restoration. These parameters are evaluated with the
same modes, i.e., host mirroring, transit mirroring, host recovery and host recovery at the
server end. The results are showing lower rejection in the case of mirroring, while rejection
is showing higher rates in the b recovery configuration at the server and virtual machine
level. Similarly, erasure coding and mirroring show significant trends in host mirroring
at the server end, while the restoration is higher on the recovery modes. The erasure and
mirroring show significant results at the server end, while these results are not as good
when considering data in transit.

Now, for the scenario built on different configurations of the RAID, the results show
the analysis of RAID-1 to RAID-6 with respect to erasure coding, erasure coding with parity
and mirroring combinations with all parameters. RAID 1 to 4 are used in the default con-
figurations, while RAID-5 and RAID-6 are used in different combinations/configurations,
i.e., RAID-5a and RAID-5b, while RAID-6 is configured in three different modes labelled
as a, b and c. The mirroring instance engages all the configurations. As is visible in the
graph, mirroring RAID-6c and RAID-6a are on the top for mirror and replication. Both
RAID modes are hybrid in nature as configured previously. The instance occurring as
ER1—erasure coding instance—engages RAID-6c, RAID-6b and RAID-6a as the most sig-
nificant configurations, while RAID-4 also has a prominent value that shows that the best
performance of erasure coding is in hybrid mode along with the mirroring instance, but in
the case of only erasure coding, the RAID-4 value shows the impactful behavior of erasure
coding for recovery and reliability. The second instance, or erasure coding ER2, takes
RAID-6, RAID-6b and RAID-5b as the parameters, working in a hybrid mode only. This
proves that the proposed framework provides significant results regarding reliability and
swift recovery performance in cloud storage.

The results show the best performance and coherence in a hybrid manner, i.e., mir-
roring and then handing over to erasure coding for recovery. The Erasure-6 and Mirror-5
configurations are hybrid modes. Data at rest and data in transit are both addressed
successfully.

8.2. Mirror and Erasure Coding Results

Further processing of the data focuses on mirroring and erasure coding with reference
to the mirror, transit and restoration, as shown in Table 7. These parameters are evaluated
with the same modes, i.e., host mirroring, transit mirroring, host recovery and host recovery
at the server end.

The results in Figure 4 show lower rejection in the case of mirroring, while rejection
shows a higher rate in the b recovery configuration at the server and virtual machine
level. Similarly, erasure coding and mirroring show significant trends in host mirroring
at the server end, while the restoration is higher on the recovery modes. The erasure and
mirroring show significant results at the server end, while these results are not as good
while considering data in transit.

The second instance of erasure coding ER2 takes RAID-6, RAID-6b and RAID-5b as the
parameters, which only work in a hybrid mode, as shown in Figure 4. This proves that the
proposed framework provides significant results regarding reliability and swift recovery
performance in cloud storage. After the training and testing, the dataset’s structure shows
a minimal error rate, with erasure coding having value ranges between zero and one, as
shown in Table 8. Figure 5 shows other parameters along with erasure flag having a value
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of one in four out of five values. The one in which erasure does not show results also has
a source volume of zero. Therefore, erasure does not perform any operations with zero
volume. While in the other four cases, the data volume is tangible, this also proves the
application of erasure coding with volume, and the same is applicable for mirroring, as the
real power and purpose of mirroring is exposed with volumes, as shown in Table 9.

Table 7. Training Set Results.
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8.3. Erasure Coding Results

Now, for the scenario built on different configurations of the RAID, results are shown
in Table 10 for the analysis of RAID-1 to RAID-6 concerning erasure coding, erasure coding
with parity and mirroring combinations with all parameters, as shown in Figure 6. The
mirroring instance engages all the configurations. RAID 1 to 4 are used in the default con-
figurations, while RAID-5 and RAID-6 are used in different combinations/configurations,
i.e., RAID-5a and RAID-5b, while RAID-6 is configured in three different modes labeled
as a, b and c. The graph shows that RAID-6c and RAID-6a are on the top for mirroring
and replication in mirroring. Both RAID modes are of a hybrid in nature as configured
previously. The instance occurring as erasure coding instance ER1 is engaging RAID-6c,
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RAID-6b and RAID-6a as the most significant configurations, while RAID-4 also has a
prominent value that shows the best performance of erasure coding is in the hybrid mode
along with the mirroring instance, but in the case of only erasure coding, the RAID-4 value
shows the impactful behavior of erasure coding for recovery and reliability.

Table 8. Mirroring and erasure coding.
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Figure 5. Mirroring and Erasure Coding Graph.

8.4. Training Results

The focused results for the erasure coding as shown in Table 11 are extracted with
RAID configurations, as is visible in the table above, and the same is also more visible in
the graph below. The ER instances are visible on all levels in the case of RAID-6c, while all
other RAIDs do not show a significant performance on any parameter. Therefore, it is right
to say that the most successful hybrid configuration for replication and erasure coding is
RAID-6c, the second best can be RAID-6b, followed by RAID-6a and RAID-5a. RAID-6c
has a significant value and is more comprehensive as it responds to all other parameters,
even if those parameters have lower or nominal values, but at least it depicts the rationale
between different parameters. The base class developing in this scenario also reaches the
value of one, which also reciprocates the significant value of flag_erasure. The overall
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results prove this research’s hypotheses regarding the reliability and recovery impact of a
hybrid modulation between replication and erasure coding.

Table 9. Erasure coding results.
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Table 10. Erasure Coding after Training Results.
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8.5. System Summary

In cloud computing, various service providers extend different productivity tools to
enhance the user experience. The proposed framework evaluates the need for dynamic
replication using mirroring or the recovery process using an erasure coding module. The
replication and relevant tasks can be configured to have a better visual response by man-
aging CNI and CSI, as mentioned before. The ongoing activity is viewable on virtual
machines.

Both processes will consume computation and storage utilization; therefore, in virtual-
ization monitoring, the visible processes of Reco (Recovery) are visible along with Opm
(Optimization) and local. Virtual machines engaged in replication shall switch to local, and
after replication, shall have the status of optimized, and in the case of recovery activity
using erasure coding, the status will change to recovery.
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The structure of the dataset after the training and testing shows a minimal error rate,
with erasure coding having value ranges between zero and one. Table 10 shows other
parameters along with erasure flag having a value of one for four out of five values. The
one in which erasure is not showing a result also has a source volume of zero; therefore,
erasure does not perform any operations with zero volume. While in the other four cases,
the data volume is tangible, this also proves the application of erasure coding with volume,
and the same is applicable for mirroring, as the real power and purpose of mirroring is
exposed with volumes.

The focused results for the erasure coding are extracted with RAID configurations, as
is visible in Table 11 and moreso in the graph below. The ER instances are visible on all
levels in the case of RAID-6c, while all other RAIDs do not show a significant performance
on any parameter. Therefore, it is right to say that the most successful hybrid configuration
for replication and erasure coding is RAID-6c, the second best can be RAID-6b, followed
by RAID-6a and RAID-5a. RAID-6c not only has a significant value but also is more
comprehensive, as it is responding to all other parameters even if those parameters have
lower or insignificant values, but at least it is depicting the rationale between different
parameters. The base class developed in this scenario also reaches the value of one, which
reciprocates the significant value of flag_erasure. The overall results prove the hypotheses
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of this research regarding the reliability and recovery impact of a hybrid modulation
between replication and erasure coding.

9. Conclusions

Cloud computing provides different solutions for data safety, backups and replication.
All these methods are independent and work separately, although these methods and tools
have common parameters and can work together. The inspiration of this research is based
on the development of a framework that can provide a comprehensive solution for cloud
computing storage in terms of replication, and instead of using formal recovery channels,
erasure coding was proposed for this framework, which in the past proved itself as a
trustworthy mechanism for the job. The proposed framework provides a hybrid approach
to combine the benefits of replication and erasure coding to attain the optimal solution for
storage, specifically focused on reliability and recovery.

The overall results show the significant impact of the proposed hybrid framework on
cloud storage performance. RAID-6c at the server came out as the best configuration for
optimal performance. The mirroring for replication using RAID-6 and erasure coding for
recovery work in complete coherence and provide good results for the current framework,
while highlighting the interesting and challenging paths for future research.
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