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Abstract: Apache Spark is a popular open-source distributed data processing framework that can
efficiently process massive amounts of data. It provides more than 180 configuration parameters
for users to manually select the appropriate parameter values according to their own experience.
However, due to the large number of parameters and the inherent correlation between them, manual
tuning is very tedious. To solve the problem of tuning through personal experience, we designed
and implemented a reinforcement-learning-based Spark configuration parameter optimizer. First, we
trained a Spark application performance prediction model with deep neural networks, and verified
the accuracy and effectiveness of the model from multiple perspectives. Second, in order to improve
the search efficiency of better configuration parameters, we improved the Q-learning algorithm,
and automatically set start and end states in each iteration of training, which effectively improves
the agent’s poor performance in exploring better configuration parameters. Lastly, comparing our
proposed configuration with the default configuration as the baseline, experimental results show that
the optimized configuration gained an average performance improvement of 47%, 43%, 31%, and 45%
for four different types of Spark applications, which indicates that our Spark configuration parameter
optimizer could efficiently find the better configuration parameters and improve the performance of
various Spark applications.

Keywords: Apache Spark; parameter optimization; deep neural network; Q-learning

1. Introduction

Apache Spark [1] is a widely used open-source data analysis framework that utilizes
resilient distributed datasets (RDDs) [2] to improve the efficiency of data processing and
analysis while ensuring high fault tolerance and scalability. It provides a series of high-level
components, including Spark streaming for real-time computing, Spark SQL for struc-
tured data processing, GraphX for graph computing, and MLlib for machine learning [3].
These components are applied by application developers to various fields, such as fea-
ture extraction [4], intrusion detection [5], and community discovery [6], and maintain
good performance.

Apache Spark has more than 180 configuration parameters that users must manually
adjust according to their application and cluster environment. Choosing the appropriate
configuration parameters can not only significantly improve the performance of Spark
applications and speed up the running time of Spark applications, but also improve the
utilization of cluster resources. Unfortunately, some Spark’s configuration parameters
are numerous, and their inter-relationship are also very complex [7]. Therefore, tuning
configuration parameters is a very challenging task.

Manually tuning Spark configuration parameters is cumbersome and time-consuming,
and requires developers to have a deep understanding of the Spark framework, which
inspired our interest in the automatic tuning of Spark configuration parameters. Generally
speaking, automatic Spark configuration parameter tuning consists of two components:
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the Spark application performance prediction model and the configuration-parameter-
searching algorithm. Performance prediction models render the evaluation process efficient
and practical instead of methods of repeatedly executing the application.

Gao et al. [8] employed SVM to build a model to predict the execution time of Spark
applications. Rahman et al. [9] built a Spark performance prediction model using ANN.
However, SVM, ANN, etc. are all shallow machine-learning methods that do not per-
form very well when the dataset has more noise or is complex and high-dimensional.
In this paper, we introduce a deep-learning neural network to build a Spark performance
prediction model. Deep-learning neural networks can gradually learn through multiple
networks, extract complex and effective features, and have better prediction accuracy and
generalization ability [10].

Recently, some methods based on reinforcement learning to find the optimal neural
network model structure have been proposed. MetaQNN [11] applied the Q-learning algo-
rithm to select various layers of a CNN that can automatically generate high-performance
CNN architectures for a given task. BlockQNN [12] proposed a Q-learning algorithm to
construct an optimal neural network block, and then applied the block-by-block stacking
method to automatically construct the network. The above methods were mainly aimed at
the construction of the neural network model structure. In this paper, we combine the Spark
performance prediction model and the improved Q-learning algorithm to automatically
search for optimal Spark configuration parameters in a discrete and limited parameter
space. In particular, we make the following contributions in this paper:

• We designed and implemented a Spark configuration parameter optimizer that accu-
rately predicts the execution time of Spark applications and gives the recommended
configuration parameters. Experiments demonstrate that the performance of Spark ap-
plications using the recommended configuration parameters is significantly improved
compared to the default configuration.

• From more than 180 Spark configuration parameters, we screened out key configura-
tion parameters that had greater impact on the application to reduce the complexity
of the model.

• We built a Spark application performance prediction model on the basis of a deep
neural network, and verified the accuracy and usability of the model from multiple
perspectives through experiments.

• On the basis of the Q-learning algorithm, we improved the optimal searching algo-
rithm to explore unknown areas of the configuration parameter space, avoid local
optimal solutions, and find a suitable parameter configuration for Spark applications
in a short period of time.

The rest of this paper is organized as follows: Section 2 discusses the related work.
Section 3 introduces the processing flow of the Spark configuration parameter optimizer
and the method used in each section. Section 4 introduces the experiments and analyzes
the experimental results. Section 5 concludes the paper.

2. Related Work

In recent years, the performance optimization of large data processing systems has
been a hot-spot academic issue. Big data processing systems contain a large number
of configuration parameters such as controlling parallelism, memory settings, and I/O
behavior. Inappropriate parameter settings can lead to severe performance degradation [13].
Gounaris et al. [14] mapped their experience in a trial-and-error iterative improvement
methodology for tuning parameters in arbitrary applications on the basis of evidence from
a very small number of experimental runs. Due to the complexity between parameters,
this method requires users to have rich experience in Spark configuration parameter
tuning. This paper mainly studies the automatic optimization of Spark configuration
parameters, that is, combining the Spark application performance prediction model and
search algorithm to effectively traverse the configuration parameter space and give better
configuration parameters for the application.
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Research on Spark performance prediction models has always been a hot topic.
Singhal et al. [15] proposed a gray box approach to estimate an application execution
time on the Spark cluster for larger data using measurements on low-volume data in a
small cluster. Huang et al. [16] proposed a cost optimization model for the Spark shuffle
process that enables users to obtain the best compression configuration before application
execution. Wang et al. [17] proposed a novel method for tuning the Spark configuration
parameters on the basis of machine learning, and established a model based on binary and
multiclassification. Islam et al. [18] modeled the Spark application completion time with
respect to the number of executors and Spark application input or iteration. Chao et al. [19]
built regression models for different stages during the run, and then built a regression
model on the basis of the predicted time of each stage to predict the overall running time of
the job. Cheng et al. [3] used Adaboost to build a set of stage performance models for Spark
applications. At the same time, using projective sampling reduced the training samples
of the performance prediction model and reduced the model overhead. Shah et al. [20]
proposed an execution time estimation method called PERIDOT that estimated the de-
pendencies between the internal stages of the application by analyzing the logs of two
executions and then combined the knowledge of Spark’s data partitioning mechanism to
derive an analytical model that estimated the execution time of an application on the basis
of resource settings and input data size. However, the above performance prediction model
cannot effectively deal with the problem of high-dimensional configuration parameters,
and accuracy decreased with the increase in configuration parameters.

Parameter search mainly aims to design a search algorithm to quickly find better
configuration parameters from a larger configuration space. Wang et al. [17] adopted
the recursive random search (RRS) algorithm to search a parameter space. Gu et al. [21]
proposed a neural-network-based configuration tuning approach. In this approach, a neural
network model was trained to predict the increase or decrease in configurations that
determine the next search space. Ross [22] presented a sample-efficient, high-dimensional
autotuner that used Bayesian optimisation with a directed-acyclic graph (DAG) surrogate
model. Patanshetti et al. [23] proposed two search algorithms, grid search with finer tuning
and controlled random search, which help in selecting those important parameters that
affect the performance of Spark applications. We selected the next parameter to be changed
by comparing the values in the Qtable, avoiding the search in the invalid configuration
parameter space, and improving the search efficiency.

3. Methods

In this part, we introduce the Spark application configuration parameter optimizer in
detail, which mainly consists of three phases: the collection and preprocessing of historical
Spark application data; the training of a Spark application performance prediction model;
and the search for better configuration parameters, corresponding to Figure 1a–c.

3.1. Data Collection and Preprocessing
3.1.1. Parameter Selection

In Spark configuration parameter optimization, it is very important to choose an
appropriate parameter space. A large number of parameter features increase the search-
ing time, while few parameter features may lead to sub-optimal configuration. In the
Spark parameter list, some parameters (such as spark.app.name) have no influence on
the performance of the application, which are removed directly. Lastly, on the basis of
theories [24,25] and experience [26], we selected 16 parameters that had the greatest impact
on the performance of the Spark system. These parameters mainly covered the allocation
and use of available cluster resources (CPU, memory, and disk), data transmission and
compression, scheduling, etc. Table 1 lists the name, function, default value, and value
range of each configuration parameter on the basis of our Spark cluster.
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Figure 1. The framework of the Spark configuration parameter optimizer.

Table 1. Default Spark parameter values with range.

Spark Parameters Function Default Range/Step

spark.executor.cores Number of cores to use on each executor 1 1–8,1
spark.executor.memory Amount of memory to use per executor process 1 1–8,1
spark.executor.instances Number of executors 2 2–8,1
spark.driver.cores Number of cores to use for the driver process 1 1–4,1
spark.driver.memory Amount of memory to use for the driver process 1g 1–4,1
spark.reducer.maxSizeInFlight Maximal size of map outputs to fetch simultaneously from each

reduce task
48 m 48–96,8

spark.shuffle.compress Whether to compress map output files true true,false
spark.shuffle.spill.compress Whether to compress data spilled during shuffles true true,false
spark.shuffle.file.buffer Size of the inmemory buffer for each shuffle file output stream 32 k 32–128,16
spark.broadcast.blockSize Size of each piece of a block for TorrentBroadcastFactory 4 m 4–24,2
spark.broadcast.compress Whether to compress broadcast variables before sending them true true,false
spark.memory.fraction Fraction of (heap space—300 MB) used for execution and storage 0.6 0.3–0.8,0.1
spark.memory.storageFraction Amount of storage memory 0.5 0.3-0.8,0.1
spark.rpc.message.maxSize Maximal message size to allow in “control plane” communication 128 m 128–256,32
spark.rdd.compress Whether to compress serialized RDD partitions false true,false
spark.io.compression.codec The codec used to compress internal data such as RDD partitions,

event logs, broadcast variables, and shuffle outputs
lz4 Lz4,snappy

3.1.2. Data Preprocessing

In the data collection and preprocessing phase, we applied Hibench [27] to generate
the experimental data to be processed by Spark applications, and then randomly generated
parameter sets P from configuration parameter space D. The representation is as follows:

P = {pi ∈ D | 1 ≤ i ≤ M} (1)

C =
{

cij ∈ pi | 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

(2)

where M represents the number of parameter combinations, N denotes the number of pa-
rameter types in each parameter combination, pi represents the i-th parameter set obtained
by sampling, and cij represents the j-th parameter value in the i-th parameter set.

Lastly, we executed the Spark application with each parameter set on Yarn mode on
our Spark cluster, and recorded the running time of the Spark application with different
parameter sets to generate the basic history dataset for training in Equation (3).
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T = {t1, t2, t3, ...ti | 1 ≤ i ≤ M} (3)

where ti represents the Spark execution time under the i-th parameter set. Since the
structure and format of each Spark configuration parameter are inconsistent, the value of
each configuration parameter is normalized before model training by Equation (4):

cij =
(cij − µj)

σj
(4)

where cij is the original configuration parameter value, µj is the mean value of this type
of configuration parameter, and σj is the standard deviation of this type of configuration
parameter. Standardization scales the value of each configuration parameter to the same
numerical range, ensuring that the configuration parameters are at the same level, thereby
improving the comparability of different configuration parameters.

3.2. Performance Prediction Model

After standardizing the base dataset for the Spark application, we generated a dataset
for model training. To improve the efficiency of searching for optimal parameters, we
used a performance model to evaluate the actual performance of the Spark application.
In general, the performance of a Spark application [28] can be expressed as in Equation (5):

Per f = Func(app, input, rsrc, con f ig) (5)

where Per f represents the running performance of the application, Func represents the
performance evaluation function, app is the Spark application, input represents the input
data, rsrc denotes the cluster resource, and con f ig is the Spark configuration parameter set.

In this paper, we optimized the execution time of Spark applications by adjusting the
Spark configuration parameters, which means that app, input, and rsrc are constants in
Equation (5), con f ig is the controlled variable, and Per f is the dependent variable based on
the evaluation function. Therefore, this problem can be transformed into predicting the
execution time of a Spark application given a set of configuration parameters.

We employed a deep neural network to build a Spark performance prediction model.
The structure is shown in Figure 2. A deep neural network is mainly divided into three
types of layers: the input layer, the hidden layer, and the output layer. These layers are
fully connected, which indicates that any neuron in the n-th layer is connected with any
neuron in the n+1-th layer. The connection relationship is expressed in Formula (6).

ym = f (
n

∑
i=1

wimxi + bm) (6)

where w is the weight, b is the bias, xi is the neural unit, and f (.) is the activation function.
In our deep neural network model structure, the input layer was the input of 16 Spark
configuration parameters, the hidden layer was 3 layers (the number of neurons in each
layer was 12, 8, and 4), and the output layer is the execution of the Spark application
time. The activation function was rectified linear unit (ReLU). The definition of ReLU is
f (x) = max(0, x), which is a popular activation function in neural networks. It is nonlinear
and can be run backwards to minimize errors. During training, we applied an efficient
optimizer, Adam, which iteratively updated the weights of the network on the basis of
training data. At the same time, in order to render the model more accurate and with
a stronger generalization ability, we also introduced Bayesian optimization to adjust the
hyperparameters of our evaluation model, such as batch sizes, learning rates, and epochs.
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Figure 2. Deep neural network model.

3.3. Parameter Searching

The optimization problem of Spark configuration parameters in a discrete, finite
search space can be modeled as a Markov decision process (MDP). An MDP consists of a
quadruple < S, A, Psa, R >, where S is the finite state set, A is the finite motion set, Psa is the
state transition probability, and R is the reward function [29]. After converting the Spark
configuration parameter optimization problem into MDP, the configuration parameter
set at the current moment is noted as the identifier of state s. Under this configuration
parameter, the Spark application prediction time is used as the value of the state s, and each
execution of an action is converted into another state.

Q-learning is a value-based reinforcement-learning algorithm that can solve the above
MDP problem. The decision-making agent seeks the optimal strategy by maximizing the
state action value function Q(s,a), uses S and A to construct a Q value table to store the
value of Q(s,a), and selects the action that can obtain the maximal profit in the current state
according to the Q value table in each step by adopting the ε-greedy strategy. The Q value
update formula is shown in Equation (7).

Qi+1(s, a) = Qi(s, a) + α

[
r + γ max

a′
Qi
(
s′, a′

)
−Qi(s, a)

]
(7)

where α is the learning rate, and γ is the conversion factor. When γ = 0, only the immediate
reward is considered. When γ = 1, the long-term reward is as important as the immediate
reward. s′ is the new state obtained after state transition, a′ is the action selected according
to the ε-greedy policy, and r is the immediate reward by taking action a from state s to
state s′.

In order to prevent the reinforcement-learning agent from conducting invalid searches
among the parameter sets with poor performance, we improved the Q-learning algo-
rithm, and did not set fixed starting and ending states in each epoch of the agent’s learn-
ing. The processing of the improved Q-learning algorithm is shown in Algorithm 1.
initQtable(S, Q) means initializing the Q-Table and randomly selecting a set of configu-
ration parameters from the parameter search space as the identifier of s0, the predicted
execution time of the Spark application with this configuration is used as the value of the
state s0, and all the corresponding values of Q(s0,a) are initialized to 0. bestSate records the
best state at the current moment (the initial state is s0). The outermost “For” loop represents
the number of learning epochs, the “While” loop represents each epoch of learning, which
starts from the best state at the current moment. chooseAction(s) uses the ε-greedy strategy
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to choose an action according to the Q-table. Each action means an update of configuration
parameters and a transition to a new state s′ after executing the action. If s′ was not in the
Q-table, we inserted it into Q-table and initialized all corresponding Q (s′, a) values to 0.
updateQtable() was used to update the Q-table according to Formula (7). If state s′ is better
than the best state at the current moment, bestSate is updated. The ratio represents the ratio
of performance improvement. If the ratio is less than 0.1, the current modified direction is
not ideal, and current s′ is the termination state to end this epoch.

Algorithm 1 The process of the improved Q-learning algorithm.
Input:

State List S = [s0,s1,s2, . . . , sn];
Qtable List Q = [q0,q1,q2, . . . , qn];

Output:
bestConf;

1: initQtable(S, Q)
2: bestState = s0
3: for round from 1 to rounds do
4: s = bestState //Store the best state
5: while ratio > 0.1 do
6: a = chooseAction( s ) //use the ε-greedy strategy to select the action
7: s′ = getOrCreateState(s, a ) //if the state exists, return, does not exist, create and

return
8: t, t′ = getTime(s, s′) //obtain the predicted execution time of the Spark applica-

tion corresponding to the status
9: r = t − t′ //use the time difference as a timely reward

10: updateQtable() // update Qtable according to Formula (7)
11: if t’ < getTime( bestState ) then
12: bestState = s′ //store the best state
13: ratio = (t − t′)/t //compute the ratio of performance improvement
14: s = s′

15: return bestState

4. Experiments

In this section, we introduce the experimental environment (including Spark cluster
configuration, Spark applications, and experimental data statistical methods), evaluation
metrics for Spark performance prediction models, and the analysis of experimental results.

4.1. Experimental Setup

In order to evaluate the effectiveness of our proposed optimizer, we implemented the
experiments on a cluster of six computing machines, each with Intel(R) Core(TM) i9-10900K
CPU @ 3.70 GHz processor, 20 cores, 64 GB main memory, and 1 GigE Ethernet network.
Our Spark cluster was based on CentOS Linux release 8.2.2004, JDK version 1.8, Apache
Hadoop version 2.7.7, and Apache Spark 3.1.3.

To test the effectiveness of our method on different Spark application types, we
chose WordCount, PageRank, KMeans, and TeraSort, provided by Hibench [27], as our
benchmark applications. These four applications represent different workloads of Apache
Spark. WordCount is CPU- and I/O-intensive, TeraSort is memory-intensive, and PageRank
and KMeans are iteration-intensive.

After the collecting training data, we measured the execution time of each Spark
application under a given configuration 9 times, and used the median as the real execution
time of each application to eliminate bias caused by other factors such as the computer
hardware and network.
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4.2. Performance Metrics

In order to evaluate the quality of the Spark performance prediction model, we used
the following evaluation metrics:

Mean absolute error (MAE): The average value of the absolute error can reflect the
actual situation of the predicted value error. The smaller the MAE value is, the higher the
model accuracy is. Assuming that the real values in the test set were y1, y2, y3..., yn and
the corresponding Spark performance model predicted values were f1, f2, f3..., fn, MAE is
represented in Equation (8).

MAE =
1
n

n

∑
i=1
|yi − fi| (8)

Root mean square error (RMSE): The standard deviation of the residuals (prediction
errors). The smaller the RMSE value is, the higher the accuracy of the Spark performance
prediction model is. The representation of RMSE is in Equation (9).

RMSE =

√
1
n

n

∑
i=1

(yi − fi)
2 (9)

R-squared (R2): The coefficient of determination can measure the fitness of one model.
The closer the value of R2 is to 1, the better the fit of the Spark performance prediction
model is. The mean of the true values is ȳ = 1

n ∑n
i=1 yi. The representation of R2 is:

R2 = 1− ∑n
i=1(yi − fi)

2

∑n
i=1(yi − ȳ)2 (10)

Mean absolute percentage error (MAPE): The deformation (percentage value) of the
MAE. The smaller the value of MAPE is, the better the accuracy of the Spark performance
prediction model is. The representation of MAPE is shown in Equation (11):

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣ (11)

4.3. Experimental Results

Relationship between the performance prediction model and the number of train-
ing data: As with most machine-learning tasks, using more training data leads to better
predictive models. However, in practice, since each training datum is collected by the
Spark application execution in a real cluster environment, collecting too many training
data increases the time cost. Therefore, we need to find a balance between various model
evaluation indicators and the number of training data, that is, reduce the number of train-
ing data as much as possible under certain conditions. Figure 3 shows the changes in the
evaluation indicators of different Spark application performance prediction models from
100 to 1000 training data. Figure 3a shows that, with the continuous increase in the number
of training data, the MAE value of the prediction model of each Spark application gradually
decreased, of which Kmeans varied most significantly. When the number of training sam-
ples reached 700, the MAE value was no longer significantly decreased. Figure 3b,d shows
that the changing trends of RMSE and MAPE were similar to those in Figure 3a. Figure 3c
shows that, with the continuous increase in the number of training data, the value of R2

also rapidly increased, that is, the fitting degree of our model was improved. After the
number of training data had reached 800, the value of R2 tended to be stable. The above
experimental analysis shows that it is better to build a performance prediction model for a
Spark application when the number of training data is greater than 800.
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Figure 3. The number of training data is from 100 to 1000, and the evaluation indicators of different
Spark application performance prediction models changed: (a) Mean absolute error. (b) Root mean
square error. (c) R-squared. (d) Mean absolute percentage error.

Performance comparison of deep neural network models and other regression mod-
els: We compared Spark performance prediction models built with linear regression (LR),
support vector machine regression (SVR), external tree regression (ETR), random forest re-
gression (RFR), decision trees (DTR), and deep neural networks (DNNs). To fairly compare
these methods, we used the same training environment, training dataset, and testing set as
those of our proposed DNN method. Figure 4 shows the comparison of various evalua-
tion metrics between different performance prediction models on four Spark applications.
The DNN model showed significant improvement over the other models in all evaluation
metrics for all Spark applications. For the Kmeans application in Figure 4b, the RMSE
of the DNN model was reduced by 49.7%, 45.1%, 32.4%, 35.6%, and 40.8% compared to
the LR, SVR, ETR, RFR, and DTR regression models, respectively. This is because Spark
not only has a huge configuration parameter space, but the inter-relationship between
configuration parameters is also very complex. Spark configuration parameter performance
prediction models are definitely not linear, so LR performed the worst. For such high-
dimensional and feature-related problems, shallow machine-learning methods such as SVR,
ETR, and DTR are also not very effective. Deep learning can gradually learn through multi-
ple networks, extract complex and effective features, and has higher prediction accuracy
and generalization ability.



Sensors 2022, 22, 5930 10 of 14

Figure 4. Performance comparison of deep neural-network models with other regression models
on different Spark applications: (a) Mean absolute error. (b) Root mean square error. (c) R-squared.
(d) Mean absolute percentage error.

Performance comparison between the improved Q-learning algorithm and other
parameter search algorithms: Table 2 shows the optimal values and search times for
random search, simulated annealing, and the variant of the Q-learning algorithm on four
Spark applications. In terms of optimal values, the random search algorithm performed
the worst, with simulated annealing and improved Q-learning yielding very similar values.
In terms of search time, the simulated annealing algorithm had the longest parameter
search time, and the improved Q-learning algorithm had the shortest parameter. In the
TeraSort application, the parameter search time of the improved Q-learning algorithm
was reduced by 60.4% compared to the simulated annealing algorithm. The improved
Q-learning algorithm could greatly reduce the time cost of parameter searching while
obtaining better results, and achieved better time performance. This is because the agent
of the improved Q-learning algorithm started from the best state at the current moment
in each epoch of learning. If the next state was not better, the learning of this epoch was
ended immediately, so as to prevent the agent from performing invalid searches among
parameter sets with poor performance.

Time performance overhead evaluation: Our scheme consists of a performance pre-
diction model and an improved Q-learning search algorithm. We applied the scheme
proposed in this paper to four different types of Spark applications. Each type of applica-
tion was conducted 9 times to search for the better configuration parameters and calculate
the exact time cost, which is shown in Table 3. The time overhead of Spark configuration
parameter optimization is about 61 s, which is within an acceptable range.
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Table 2. Performance comparison of the improved Q-learning algorithm and other search algorithms
on different Spark applications.

Algorithms
WordCount PageRank Kmeans TeraSort

Value (s)1 Time (ms)2 Value (s)1 Time (ms)2 Value (s)1 Time (ms)2 Value (s)1 Time (ms)2

Rand 51.9 653.0 50.5 463.8 26.2 589.4 42.6 818.6

Simulated
Annealing 50.9 830.6 49.4 835.8 25.8 854.0 41.8 905.4

Q-learning 50.2 463.8 49.6 435.0 26.1 296.4 42.5 358.0

1. The optimal value searched by the algorithm; 2. time indicates the time spent by the algorithm to search for the
optimal value.

Table 3. The time overhead of better configuration parameter solving for different types of Spark
applications.

Spark Application Time (s)

WordCount 61.571
PageRank 61.402
Kmeans 61.543
TeraSort 61.345

Performance comparison between recommended configuration parameters and de-
fault configuration parameters: By using our method, the recommended configuration
parameters for four different types of Spark applications were obtained, as shown in Table 4.
In order to avoid the contingency of the experiment, we submitted four types of Spark
applications to the Spark cluster 9 times with the default and recommended configuration
parameters, and obtained the median of execution time of Spark applications under the
two configurations. The experimental results are shown in Figure 5. Compared with the
default configuration, the recommended configuration for WordCount, PageRank, Kmeans,
and TeraSort achieved performance improvement of 47%, 43%, 31%, and 45%, respectively,
which shows that our Spark configuration parameter optimizer is effective in improving
the performance of different types of Spark applications.

Figure 5. Execution time comparison between recommended configuration parameters and default
configuration parameters on different Spark applications.
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Table 4. Default parameter values and recommended parameter values for different Spark applications.

Parameter Default
Recommend

WordCount PageRank Kmeans TeraSort

spark.executor.cores 1 8 6 7 5

spark.executor.memory 1 g 5 g 4 g 4 g 7 g

spark.executor.instances 2 4 5 5 6

spark.driver.cores 1 2 3 3 3

spark.driver.memory 1 g 3 g 1 g 2 g 3 g

spark.reducer.maxSizeInFlight 48 m 48 m 72 m 56 m 36 m

spark.shuffle.compress true true true false true

spark.shuffle.spill.compress true true false true false

spark.shuffle.file.buffer 32 k 48 k 96 k 48 k 112 k

spark.broadcast.blockSize 4 m 4 m 10 m 6 m 6 m

spark.broadcast.compress true true false true false

spark.memory.fraction 0.6 0.4 0.7 0.5 0.4

spark.memory.storageFraction 0.5 0.6 0.5 0.5 0.4

spark.rpc.message.maxSize 128 m 256 m 128 m 192 m 160 m

spark.rdd.compress false true false false true

spark.io.compression.code lz4 lz4 snappy lz4 snappy

5. Conclusions

For Spark’s configuration parameter optimization problem, we employed a deep
neural network to build a Spark performance prediction model, and designed an improved
Q-learning algorithm as our Spark configuration parameter optimizer to search for better
configuration parameters. The experimental results show that the Spark performance
prediction model based on deep neural network is more accurate, and the improved
Q-learning algorithm could greatly reduce the time cost of parameter searching while
obtaining better results compared with the default configuration parameters for four
different types of Spark applications.

Not only can the configuration parameters of the Spark application affect the per-
formance, but the state of the Spark cluster (such as memory utilization, CPU utilization,
and network bandwidth) can also influence the performance of the application. When CPU
utilization is too high, it is better to allocate a small number of CPU cores to the application
to reduce waiting time.

Our current work can only solve the optimizer problem for a single Spark application
on a given Spark cluster. In future work, we aim to simultaneously optimize multiple Spark
applications with the resource constraints of a Spark cluster.
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