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Abstract: This paper introduces a Hexa parallel robot and obstacle collision detection method based
on dynamic modeling and a computer vision system. The processes to deal with the collision issues
refer to collision detection, collision isolation, and collision identification applied to the Hexa robot,
respectively, in this paper. Initially, the configuration, kinematic and dynamic characteristics during
movement trajectories of the Hexa parallel robot are analyzed to perform the knowledge extraction
for the method. Next, a virtual force sensor is presented to estimate the collision detection signal
created as a combination of the solution to the inverse dynamics and a low-pass filter. Then, a vision
system consisting of dual-depth cameras is designed for obstacle isolation and determining the
contact point location at the end-effector, an arm, and a rod of the Hexa robot. Finally, a recursive
Newton-Euler algorithm is applied to compute contact forces caused by collision cases with the
real-Hexa robot. Based on the experimental results, the force identification is compared to sensor
forces for the performance evaluation of the proposed collision detection method.

Keywords: collision detection; collision isolation; collision identification; parallel manipulator

1. Introduction

A six-degree-of-freedom parallel structure called the Hexa parallel robot was intro-
duced by Pierrot et al. in [1,2]. Despite its complicated kinematics structure and limited
workspace, the Hexa robot has remarkable advantages over the serial robot: high accuracy,
high stiffness, high speed, and high carrying capability. However, working with this type
of robot must imply solving complex and computationally not only inverse/forward kine-
matics problems but also dynamics ones, which are complicated. Meanwhile, the inverse
kinematics issue is tractable by geometrical methods [3,4], but the forward kinematics
problem involves a system of nonlinear equations that usually has no closed-form solution.
Therefore, the artificial neural networks (ANNs) method is proposed for finding a unique
closed-form analytic solution to the forward kinematics problem [5]. There have been
few studies on the dynamic modeling of the experimental configuration Hexa parallel
robot [6,7]. In-depth study of the Hexa robot dynamics is needed to take full advantage of
its strengths for trajectory control and fault detection.

It is a critical issue to study the collisions of a robot manipulator due to diverse ap-
plication scenarios. An approach for accurate and real-time monitoring of serial robot
manipulator collisions is presented in [8], which uses proprioception and IMU sensing
for velocity and acceleration estimation. Another observer method to adapt the erroneous
dynamics model of the serial manipulators is introduced in [9], where the observer signifi-
cantly improves the collision detection sensitivity. Sensorless collision detection approaches
based on different methods are presented in [10–12]. Accelerometers are attached along
the surface of the robot arm to detect and localize contact events [13]. Tactile sensors
mounted with the robot manipulator are applied to provide a tactile perception of the
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robot [14–16]. In [17,18], a virtual force sensor has been proposed for collision detection
and estimating external forces. Authors of [19] have used neural networks for collision
detection and classification. Most of the above methods are extremely difficult to apply to
parallel manipulators. However, some papers use the dynamics equations and first-order
filter structure in combination to build an observer as the collision identification signal
called a residual [20]. The residual equals zero up to noise and disturbances during free
motion or higher than a suitable threshold in response to a collision. The performance
of this method is suitable not only for robot manipulators, and many pieces of research
related to humanoid robots have been carried out [21,22].

Recently, a vision-based control system has been widely utilized in robotics to provide
information about the target objects or the robot’s pose as position and orientation. Besides
that, many vision-based techniques during the isolation phase have been presented. The
authors of [23,24] have analyzed the problem of sensor-based collision detection and
isolation for a robot manipulator using a set of images taken from several stationary cameras.
A system combining deep learning and stereo vision for object detection, classification,
and distance calculation [24] can be effectively applied for not only autonomous robot
navigation but also collision isolation. For moving object detection, a method of estimating
the motion of objects and extracting shapes of detected objects from stereo video cameras
has been proposed in [25]. Another system with dual-depth camera information and visual
odometry was used to detect moving objects, and an adaptive thresholding method was
adopted to enhance performance [26]. An algorithm based on background subtraction
and edge detection was applied to detect and segment objects in video frames [27]. In the
collision isolation phase, moving objects in the workspace should be detected based on the
multi-camera system, using the advantages of image processing techniques. One of them
is the interesting You-Only-Look-Once (YOLO) algorithm, firstly presented by Redmon
et al. in [23,28], so the contact point location and the Hexa robot pose in this paper are
determined with the improved algorithm.

After collision detection and collision isolation, it is essential to determine the suitable
method for identifying the contact force. In [29], data from a 6D wrist Force/Torque
sensor is combined with the probabilistic approach to link contact estimation based on
geometric considerations and compliant motions. In [12,30], the time series model and
fuzzy identification were used for determining contact location. Once the contact point is
detected, the exchanged force estimation must be the next stage for a complete identification
phase. Some dynamics algorithms are approached to perform the external force estimation,
such as the recursive Newton–Euler algorithm (RNEA) for the inverse dynamics [31,32], the
articulated body algorithm (ABA) for the forward dynamics, and the composite-rigid-body
algorithm (CRBA) for calculating the joint-space inertia matrix (JSIM) [33,34]. A recursive
Newton-Euler method for inverse dynamics is suitable to analyze external forces acting
on the Hexa parallel robot. Based on the above discussion, this paper is motivated by the
primary algorithms to solve the detected collision issues as follows:

• The analysis of implementing a dynamic model of the moving Hexa parallel robot for
the collision detection problem is proposed.

• The obstacles and the Hexa robot are isolated by the proposed geometrical algorithm
and the set of real-time images taken from the multi-cameras system is used to locate
the contact point.

• Finally, the Cartesian external force at the contact point is estimated by the recursive
Newton-Euler algorithm for the Hexa parallel robot, compared to the force sensor in
different collision point cases.

The rest of this paper is organized as follows. We present the configuration, the
kinematics and dynamics problems of the Hexa robot in Section 2. In Section 3, the
proposed collision detection, isolation, and identification methods applied to the Hexa
robot are presented. We show block diagrams to illustrate the entire Hexa robot system and
introduce equipment used in this study in Section 4. Section 5 includes the experimental
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scheme of study cases where the proposed methods are validated based on the given
trajectories. Finally, we conclude the paper in Section 6.

2. Modeling of the Hexa Parallel Robot
2.1. Configurations of the Hexa Robot

The model of the Hexa parallel robot with six serial kinematics chains is shown in
Figure 1. Each kinematic chain is described as a revolute-universal-spherical chain link
between the base platform and the active plate. The arms driven by six motors at revolute
joints connect with the rods at the universal joints. These rods are associated with the
active plate at spherical joints. There are two main coordinate frames when the Hexa robot
is considered. The first fixed coordinate frame {O} = {OXYZ} is located in the center
of the base platform with the Z-axis perpendicular to the base platform upwards. The
X-axis direction points from the origin O to the midpoint of the edge A1 A2. The Y-axis is
determined by the right-hand rule. The second rotating coordinate frame {P} = {Pxyz}
is located in the center of the active plate with the z-axis perpendicular to the surface of
the active plate. The x-axis direction points from the end-effector to the midpoint of the
edge C1C2. The y-axis is determined in the same way as as the Y-axis. For the ith kinematic
chain (i = 1, . . . , 6), the point Ai represents the center of the revolute joint located in the ith
arm. The point Bi is the center of the universal joint that connects the ith rod with the ith
arm. The point Ci is the center of the spherical joint that links between the ith rod and the
active plate. The length of the ith arm and the ith rod are la and ld, respectively. The angle
ζi is the rotation angle of the revolute joint of the ith arm.
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Figure 1. The model of the Hexa robot: (a) in 3D view, (b) in top view.

The point P representing the end-effector and the Euler angles (φ, θ, ψ) of the active
plate with respect to the fixed frame {O} are given. Three angles (φ, θ, ψ) are defined in
compliance with the intrinsic rotation convention of Euler angles. The coordinate with
respect to the active frame {P} can be transformed to the coordinate with respect to the
fixed frame {O} by using the rotation matrix RO

P :

RO
P =

cos φ cos θ cos ψ− sin φ sin ψ − cos φ cos θ sin ψ− sin φ cos ψ cos φ sin θ
sin φ cos θ cos ψ + cos φ sin ψ − sin φ cos θ sin ψ + cos φ cos ψ sin φ sin θ

− sin θ cos ψ sin θ sin ψ cos θ

 (1)
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The position and orientation of the active plate can be determined by three Euler
angles and the position of point P:

rO
P = [xP yP zP ]T (2)

The angular velocity ωP of the active plate can be expressed as:

ωP =


.
ψ cos φ sin θ −

.
θ sin φ

.
ψ sin φ sin θ +

.
θ cos φ

.
ψ cos θ +

.
φ

 (3)

At the point O on the base platform, three frames {Oi} = {OiXiYiZi} (i = 1, 3, 5) are
built with the Zi-axis coinciding with the Z-axis. The Xi-axis direction points to the center
of edge Ai Ai+1. The Yi-axis is determined by the right-hand rule. Simultaneously, at the
point P on the active plate, three frames {Pi} = {Pixiyizi} (i = 1, 3, 5) are also constructed.
The rotation matrix of frame {Oi} relative to frame {O} and frame {Pi} relative to frame
{P} can be expressed as:

RO
Oi

= RP
Pi
=

cos αi − sin αi 0
sin αi cos αi 0

0 0 1

 (4)

where

[α1 α2 α3 α4 α5 α6]
T =

[
0 0

2π

3
2π

3
4π

3
4π

3

]T
(5)

At the point Ai on the base platform, a frame {A1i} = {A1iX1iY1iZ1i} (i = 1, . . . , 6) is
built with the Z1i-axis along with the rotation axis. The Y1i-axis is perpendicular to the base
platform upwards. The X1i-axis is determined by the right-hand rule. The rotation matrix
of frame {A1i} relative to frame {Oi} is:

ROi
A1i

=

−1 0 0
0 0 1
0 1 0

 (6)

At the point Ai, a frame {A2i} = {A2iX2iY2iZ2i} (i = 1, . . . , 6) attached to the ith arm
is established with the Z2i-axis coinciding with the Z1i-axis. The X2i-axis coincides with the
axial line of the ith arm. The Y2i-axis is determined by the right-hand rule. The rotation
matrix of frame {A2i} relative to frame {A1i} is:

RA1i
A2i

=

cos ζi − sin ζi 0
sin ζi cos ζi 0

0 0 1

 (7)

where ζi is the rotation angle of the revolute joint of the arm.
At the point Bi, a frame {B1i} = {B1ix1iy1iz1i} (i = 1, . . . , 6) attached to the ith arm

and a frame {B2i} = {B2ix2iy2iz2i} (i = 1, . . . , 6) attached to the ith rod are built with the
x1i-axis pointing from Ai to Bi. The x2i-axis points from Bi to Ci. The z1i-axis and the
z2i-axis coincide with the two rotating axes of the universal joint, respectively. The y1i-axis
and the y2i-axis are determined by the right-hand rule. The rotation matrix of frame {B1i}
relative to frame {A2i} is:

RA2i
B1i

=

1 0 0
0 1 0
0 0 1

 (8)

The rotation matrix of the frame {B2i} relative to the frame {B1i} can be calculated
by transformations. Initially, the points of Ai, Bi, and Ci align on the same line. The frame
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{B2i} is obtained by rotating the frame {B1i} around the two rotating axes of the universal
joint by the two rotation angles βi and γi, respectively. The rotation matrix of frame {B2i}
relative to frame {B1i} is:

RB1i
B2i

=

cos βi cos γi − cos βi sin γi sin βi
sin βi cos γi − sin βi sin γi − cos βi

sin γi cos γi 0

 (9)

Finally, the rotation matrix of the frame {A2i} relative to the frame {O} and the frame
{B2i} relative to the frame {O} are:

RO
A2i

= RO
Oi

ROi
A1i

RA1i
A2i

=

− cos αi cos ζi cos αi sin ζi − sin αi
− sin αi cos ζi sin αi sin ζi cos αi

sin ζi cos ζi 0

 (10)

RO
B2i

= RO
Oi

ROi
A1i

RA1i
A2i

RA2i
B1i

RB1i
B2i

=

R11 R12 R13
R21 R22 R23
R31 R32 R33

 (11)

where
βi = −ζi − arctan

(
R31

R11 cos αi+R21 sin αi

)
with− π

2 < βi + ζi <
π
2

γi = arcsin(R21 cos αi − R11 sin αi) with− π
2 < γi <

π
2

(12)

and
R11 = − sin αi sin γi − cos αi cos(βi + ζi) cos γi
R12 = − sin αi cos γi + cos αi cos(βi + ζi) sin γi

R13 = − cos αi sin(βi + ζi)
R21 = cos αi sin γi − sin αi cos(βi + ζi) cos γi
R22 = cos αi cos γi + sin αi cos(βi + ζi) sin γi

R23 = − sin αi sin(βi + ζi)
R31 = sin(βi + ζi) cos(γi)

R32 = − sin(βi + ζi) sin(γi)
R33 = − cos(βi + ζi)

(13)

2.2. Kinematics
2.2.1. Inverse Kinematics

In the inverse kinematics, the position and Euler angles of the active plate are given.
The rotation angles of motors need to be determined. A kinematics chain of the Hexa robot
is shown in Figure 2. The coordinate of point Ai in frame {O} and Ci in frame {P} are
given. The vector rO

Ci
can be expressed as follows:

rO
Ci

= rO
Ai

+ ABi + BCi = rO
P + PCi (14)

The kinematics equations can be expressed as follows:

l2
r =l2

a +
(

xAi − xCi

)2
+
(
yAi − yCi

)2
+
(
zAi − zCi

)2

. . . . . .+
(
−2la cos αi

(
xAi − xCi

)
− 2la sin αi

(
yAi − yCi

))
cos ζi +

(
2la
(
zAi

−zCi

))
sin ζi

(15)

where
rO

Ci
=
[
xCi yCi zCi

]T

rO
Ai

=
[
xAi yAi zAi

]T (16)

ai = l2
r − l2

a −
(
xAi − xCi

)2 −
(
yAi − yCi

)2 −
(
zAi − zCi

)2

bi = −2la cos αi
(
xAi − xCi

)
− 2la sin αi

(
yAi − yCi

)
ci = 2la

(
zAi − zCi

)
with i = 1, . . . , 6

(17)
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The rotation angle ζi can be calculated as the following expression:

ζi = arctan
aic2

i − bi

√
−c2

i
(
a2

i − b2
i − c2

i
)

ci

(
aibi +

√
−c2

i
(
a2

i − b2
i − c2

i
)) (18)Sensors 2022, 22, x FOR PEER REVIEW 6 of 24 
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Figure 2. A kinematics chain of the Hexa robot.

2.2.2. Forward Kinematics

The procedure of neural network training is presented in Figure 3. In the forward
kinematics problem, the rotation angles of the arms are given, and the pose of the end-
effector is determined by solving kinematics equations. These equations are nonlinear, so
analytically, finding their solutions is highly complicated. For the above reason, artificial
neural networks (ANNs) are employed to calculate the approximate pose of the end-effector.
Firstly, a data set consisting of the potential pose positions of the active plate is created
randomly. This data set should be modified to reject the singular points and points outside
the workspace. The modified data set is called the target data in ANN training. From the
target data, the inverse kinematics problem is solved and the data set of angles ζi of six
arms is created. This data set is called the input data in ANN training. The training results
for weight and bias factors are used to calculate the forward kinematics problem.
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Figure 3. The procedure of neural network training [3].
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2.3. Dynamics

The dynamics equations can be obtained by several methods, such as the Newton-
Euler Formulation, Lagrange equations of the first type, and the Virtual Work Principle. In
this study, the Lagrange equations of the first type are applied to derive dynamics equations.
Those equations are arranged into two sets and expressed as follows:

d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
= τj +

6

∑
i=1

λi
∂ fi
∂qj

(j = 1, . . . , 6) (19)

d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
= Qj +

6

∑
i=1

λi
∂ fi
∂qj

(j = 7, . . . , 12) (20)

where q =
[
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 xp yp zp φ θ ψ

]T presents the generalized coordinates; L de-
notes the Lagrangian function of the whole system, which is the Lagrangian functions
summation of the active plate, the arms, and the rods; τj = Kt Ij is the actuator torque; Kt
is the motor torque constant and Ij is the motor armature current; Qj is the generalized
force; λi (i = 1, . . . , 6) is the ith Lagrangian multiplier; fi = (bi cos ζi + ci sin ζi − ai) is the
ith constraint equation; ai, bi, and ci are in Equation (17).

2.3.1. Inverse Dynamics

Twelve motion variables qj and six generalized forces τj contributed by the actua-
tors are given. Solving the inverse dynamics problem is to find out the six generalized
external forces.

The first six-equation set Equation (19) contains the six Lagrange multipliers
λi (i = 1, . . . , 6) as the unknowns. The first set can be written in the form:

6

∑
i=1

λi
∂ fi
∂qj

=
d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
− τj (j = 1, . . . , 6) (21)

The six generalized external forces Qj (j = 7, . . . , 12) can be calculated by solving the
second six-equation set Equation (20):

Qj =
d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
−

6

∑
i=1

λi
∂ fi
∂qj

(j = 7, . . . , 12) (22)

2.3.2. Forward Dynamics

Six generalized external forces Qj and six generalized forces τj contributed by the
actuators are given. Solving the forward dynamics problem is to find out the twelve motion
variables qj.

Analyzing the problem, we have eighteen equations, including twelve dynamics
equations in Equations (19) and (20), and six kinematics equations in Equation (15). There
are eighteen unknown variables, including twelve motion variables qj and six Lagrange
multipliers λi (i = 1, . . . , 6). This equation system is a differential-algebraic equations
system containing differential equations and algebraic equations. The strategy to solve
this system of equations is to reduce differential order, leading to an increment in the
number of variables and equations. Then, this system of equations becomes algebraic
equations. MATLAB has a function to solve differential algebraic equations (DAEs), but
solving forward dynamics problems is still extremely complicated.

3. Collision Detection, Isolation and Identification of the Hexa Robot
3.1. Collision Detection

When robot manipulators move freely in the environment, an obstacle may come
to the workspace of the robot manipulator at any time. If that obstacle collides with the
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robot, a collision has occurred. Implementing collision detection is to recognize whether a
robot collision occurred or not. An observer calculated based on the dynamics equations
can detect the occurrence of a collision. A suitable threshold is selected based on the
requirement of the accuracy for this observer. A collision occurs if the observer signal is
greater than the chosen threshold.

The generalized momentum of the Hexa robot is defined as:

pj =
∂L
∂

.
qj
(j = 1, . . . , 12) (23)

According to the second dynamics equations set Equation (19), the generalized force
can be written in the form:

Qj =
.
pj −

∂L
∂qj
−

6

∑
i=1

λi
∂ fi
∂qj

(j = 7, . . . , 12) (24)

The collision identification signal, or simply the residual r, is:

.
r = −Kr + KQ (25)

Substituting Qj from (24) into (25), we obtain:

.
rj = −Kjrj + Kj

(
.
pj −

∂L
∂qj
−

6

∑
i=1

λi
∂ fi
∂qj

)
(j = 7, . . . , 12) (26)

Lagrange multipliers λi (i = 1, . . . , 6) can be computed using the first dynamics equa-
tions set Equation (19). When a collision occurs, at least an element rj of vector r raises with
a time constant 1/Kj. The detection is performed as soon as

∣∣rj
∣∣ > rlow, where rlow is the

chosen threshold.

3.2. Collision Isolation

After the residual indicates that a collision occurs on the Hexa robot, it is necessary
to identify the collision location. Collision isolation aims at localizing the contact point.
In our paper, a vision system consisting of dual depth cameras is applied to detect the
contact point if a collision occurs. The first camera’s photos at the time of a collision case are
analyzed to identify whether the contact point is at the active plate or the rods. Otherwise,
the contact point is detected by processing the image captured by the second camera. Based
on the multi-camera vision system, we propose the flowchart of the collision isolation
procedure in Figure 4 and the mathematics processing for localization of the contact point
in Figure 5.

In this study, every external object coming to the workspace should be from the outside
and cause the Hexa robot obscuration. Because the whole Hexa parallel manipulator
cannot be observed in only images captured by the first dual depth camera, this camera
is responsible for the external object isolation on the active plate and the rods from these
images. On the contrary, the external obstacle for the arms case is identified by the second
dual depth camera. Both arm and rod situations are considered in the direction to see the
obstacle obscuring them.
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• Case 1: Contact points are determined by the first camera.

Firstly, a bounding box around the active plate is recognized using YOLOv3. Because
the color of the rods is different from the background, the rods can be isolated from the
image, so the RGB color image is converted to a YCbCr color image. Then, the Canny edge
detector and Hough transform are applied to recognize straight-line profiles around rods.
From these detected lines, the rods are identified in the image. The considered image and
the background image are converted to grayscale images. A binary image is created by
subtracting the grayscale background image from the grayscale considered image. After
combining the image subtraction with depth conditions of the objects in the workspace, the
external object is identified by removing the Hexa robot from the binary image.

To find the contact point on the active plate, all points belonging to the external object
are checked to see if any of them touch the bounding box around the active plate. Then,
the image depth is considered at these points. The difference between the depth of these
points and the bounding box must be less than a chosen threshold. A point represents
intersections of the external object and the bounding box around the active plate, which
is obtained by taking an average. A line passes through the mentioned point and the
end-effector. Finally, the contact point is located at the junction of the line and the active
plate’s hexagonal border.



Sensors 2022, 22, 5923 10 of 25

To find the contact point on a rod, the possible pairs of points belonging to the external
object are checked respectively to see if the midpoint of these points is on the rod. Then,
the image depth is considered at these points. The difference between these points’ depth
and the midpoint’s depth on this rod must be less than the chosen threshold. All of these
midpoints are probably the contact point. As a result, a point represents the contact point
location, obtained by averaging all the midpoint locations.

• Case 2: Contact points are determined by the second camera.

Based on the image depth, only objects in a limited workspace are considered in
the image captured from the second camera. Because the color of the arms is blue, the
arms can be isolated from the image. An appropriate threshold for the HSV color scale is
chosen for probable extracting of the blue region from the image. Then, the Canny edge
detector and Hough transform are applied to recognize straight-line profiles along arms.
The direction of arms can be identified from these lines. Two fixed points are chosen as the
motor location where two arms are connected with two motors. According to the fixed
points and the directions of the arms, all points belonging to the blue region in the arm
directions are checked to see if any of them intersect the non-blue region. The intersections
are probable contact point locations. The correct contact point location can be detected with
the depth conditions.

After the RGB color image is converted to a YCbCr color image, the rods can be
isolated from the image. The Canny edge detector and Hough transform are applied to
recognize straight-line profiles along rods. The direction of rods is calculated from these
profiles. Two points are computed as the connector location where two arms are connected
with two rods. According to the computed points and the direction of the rods, the white
region points in the rod direction are checked for the non-white intersect probability. The
intersections are probable contact point locations. The correct location of the contact point
is determined based on the depth conditions and the above junctions.

3.3. Collision Identification

After the collision occurs and the contact point location is known, the information
on the contact force should be determined. This study applies a Recursive Newton-Euler
Algorithm (RNEA) to calculate how much the contact force was instead of using more
devices. The inputs for this algorithm are the current intensity measured from current
sensors and the pose of the end-effector obtained from image processing.

Three cases correspond to three possibilities that a collision occurs at an arm, a rod, or
the active plate. RNEA is developed separately for the application with the Hexa robot in
each case.

Fai = ma
.
vai

Mai = Iai
.

ωai + ωai × (Iaiωai)
Fri = mr

.
vri

Mri = Iri
.

ωri + ωri × (Iriωri)
Fp = mp

.
vp

Mp = Ip
.

ωp + ωp ×
(
Ipωp

)
(27)

where Fai is the inertia force acting on the ith arm; Mai is the inertia moment acting on the
ith arm; ma is the mass of the arm; vai is the linear velocity of the center of mass (CoM) of
the ith arm; Iai is the tensor of mass moment of inertia of the ith arm; ωai is the angular
velocity of the ith arm; Fri is the inertia force acting on the ith rod; Mri is the inertia moment
acting on ith rod; mr is the mass of the rod; vri is the linear velocity of the center of mass
(CoM) of the ith rod; Iri is the tensor of mass moment of inertia of the ith rod; ωri is the
angular velocity of the ith rod; Fp is the inertia force acting on the active plate; Mp is the
inertia moment acting on the active plate; mp is the mass of the active plate; vp is the linear
velocity of the center of mass (CoM) of the active plate; Ip is the tensor of mass moment of
inertia of the active plate; ωp is the angular velocity of the active plate.
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• Case 1: A collision occurs on the active plate.

First step: According to six kinematics chains, calculate fBi
and fCi

(i = 1, . . . , 6).

ABi × fBi
= nAi − nBi −

1
2

ABi × Fai −Mai (28)

fBi
− fCi

= Fri (29)

BCi × fCi
= nBi − nCi −

1
2

BCi × Fri −Mri (30)

where fAi
and nAi are the reaction force and the reaction moment exerted on the ith arm, a

quantity of nAi can be computed by the ith motor torque; fBi
and nBi = 0 are the force and

the moment exerted on the rod by the arm; fCi
and nCi = 0 are the force and the moment

exerted on the active plate by the ith rod.
Second step: Calculate the external force Fep.

Fep = −
6

∑
i=1

fCi
+ Fp (31)

• Case 2: A collision occurs at an arm.

First step: Assume collision occurred on the first kinematics chain. According to the five
remaining kinematics chains, calculate fBi

and fCi
(i = 2, . . . , 6) according to Equations (28)–(30).

Second step: Calculate fC1
based on the force balance equation at the active plate.

fC1
= −

6

∑
i=2

fCi
+ Fp (32)

Third step: Calculate the external force Fe1 on the first arm.

AD1 × Fe1 = nB1 − nA1 + AB1 × fB1
+

1
2

AB1 × Fa1 + Ma1 (33)

where D is the contact point, which is determined in the collision isolation.

• Case 3: A collision occurs at a rod.

First step: Assume collision occurred in the first kinematics chain. According to the five
remaining kinematics chains, calculate fBi

and fCi
(i = 2, . . . , 6) according to Equations (28)–(30).

Second step: Calculate fC1 based on the force balance equation at the active plate
according to Equation (32).

Third step: Calculate the external force Fe1 on the first rod.

AB1 × fB1
= nA1 − nB1 −

1
2

AB1 × Fa1 −Ma1 (34)

fB1
+ Fe1 = fC1

+ Fr1 (35)

BD1 × Fe1 = nC1 − nB1 + BC1 × fC1
+

1
2

BC1 × Fr1 + Mr1 (36)

where D is the contact point, which is determined in the collision isolation.

4. Experimental Setup

Figure 6 is the block diagram of the Hexa robot system. Both the computer and control
software are responsible for controlling the robot via RS232 and solving collision problems.
The robot controller is an Arduino Uno R3 microcontroller board. The six Servo motors
are used to drive the arms. A current sensor module measures and sends current signals
to Arduino Mega 2560. The vision system, including dual stereo cameras, monitors the
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Hexa robot. Meanwhile, the computer and software perform image processing. The first
camera is mounted under the base platform, and the second camera is fixed away from
the workspace of the Hexa robot. A force sensor should be used to verify the accuracy
of the algorithm. A force/torque sensor is attached to the active plate to measure forces
and torques.
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Figure 7 is the block diagram of the collision problems solving process. In the first step,
the end-effector pose

[
xp yp zp φ θ ψ

]T can be obtained from processed images captured
by the first camera. Six rotation angles [ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ]

T and the actuator torque τ
can be sequentially computed by solving the inverse kinematics problems based on the
current [I1 I2 I3 I4 I5 I6 ]

T measured by current sensors. In the second step, with the above
variables, Lagrangian multipliers λi (i = 1, . . . , 6) can be calculated using the first dynamics
equations set. In the third step, the residual r = [r1 r2 r3 r4 r5 r6 ]

T can be computed with
the end effector pose and Lagrangian multipliers. According to the residual r, it denotes
whether a robot collision occurred or not. In the fourth step, the contact point location
rD is determined based on images captured by two stereo cameras. In the final step, after
collision isolation, the Recursive Newton-Euler Algorithm is used to identify the external
force Fe. This system is like a sensor wherein the inputs are measured current and the pose
of the end-effector, and the outputs are the external contact force and the contact point
position. Further research will probably cover exploiting those outputs and regenerating
the trajectory.

Figure 8 shows the Hexa robot system used in this study. Six arms are driven by six
Servo motors fixed on the base platform. The first stereo camera is mounted under the base
platform to monitor the workspace from above. The second stereo camera is fixed on an
immovable bar to observe from the outside. The force/torque sensor is mounted on the
active plate to evaluate the external force in the experiment.
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5. Experimental Results
5.1. Case 1: Collision at the Active Plate
5.1.1. Collision Detection at the Active Plate

In this experiment, the Hexa robot is controlled to move the active plate in a circular
trajectory in the workspace. A collision occurred due to an external force acting on the
active plate. When the active plate moves in a circle trajectory, the first camera mounted
under the base platform captures images. These images are processed to compute the pose
of the end-effector, shown in Figure 9. The analog voltage signal from six current sensors is
continuously sent to the computer via RS232. The measured current intensity is shown in
Figure 10. Equations of the circular trajectory are presented as follows:

x = 100 cos(0.4πt) (mm)
y = 100 sin(0.4πt) (mm)

z = −550 (mm)
α = −6 (deg)

β = 1− 30 cos(0.4πt) (deg)
γ = 1 + 30 sin(0.4πt) (deg)

(37)
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(b) the 4th, 5th, and 6th sensor.

Three angles (α, β, γ) are defined in compliance with the Z-Y-X extrinsic rotation
convention of Tait–Bryan angles. The three angles (α, β, γ) can be converted to the three
angles (φ, θ, ψ). The rotation matrix is expressed as follows:

R =

cos α cos β cos α sin β sin γ− sin α cos γ cos α sin β cos γ + sin α sin γ
sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ + cos α sin γ
− sin β cos β sin γ cos β cos γ

 (38)
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According to Equation (26), the residuals are computed to detect a collision, shown
in Figure 11. Because there is a model error less than 2 (N), a suitable threshold rlow is
chosen equal to 2 (N). When a collision occurs, the residual rj (j = 7, 8, 9) raises with a
time constant 1/K. Detection is performed as soon as

∣∣rj
∣∣ > rlow, where rlow is the chosen

threshold. According to Figure 11, a collision occurred at 3.4 s because the residual in the
Z-axis is greater than rlow = 2 (N). The external force reached the maximum value at 3.8 s
during the collision. When contact is lost,

∣∣rj
∣∣ decreases quickly until

∣∣rj
∣∣ < rlow.
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5.1.2. Collision Isolation at the Active Plate

The image captured when a collision started occurring is considered to find out the
contact point location. According to the flowchart of the procedure of collision isolation
shown in Figure 4, a bounding box around the active plate is recognized using YOLOv3,
shown in Figure 12. The RGB color image shown above is converted to a YCbCr color
image. Then, the Canny edge detector and Hough transform are applied to recognize
straight-line profiles around rods. These straight lines are shown in Figure 12b. The
rods can be identified in the image, shown in Figure 12c. The considered image and
the background image are converted to grayscale images. A binary image is created by
subtracting the grayscale background image from the grayscale considered image. After
performing image subtraction, objects that are not in the workspace cannot be completely
eliminated. Combined with the image depth, only objects in the workspace are considered
in the image, which is shown in Figure 12d. Because the Hexa robot, including the active
plate and the rods, is determined, the external object can be identified by removing the
Hexa robot from the binary image. The image containing the external object is shown in
Figure 12e. According to the flowchart of the mathematics processing shown in Figure 5,
180 points are determined to satisfy the conditions. All of them are intersections between
the external object and the bounding box around the active plate, shown in Figure 12f.
A point represents the above 180 pixels by taking an average. A line passes through the
mentioned pixel and the end-effector. According to the marker’s location, the hexagonal
profile of the active plate can be calculated. The contact point location is the intersection
between the mentioned line and the hexagonal profile, shown in Figure 12g. Following
the strategy mentioned above, the contact point location in the considered image is de-
termined as [358.87 618.66]T (pixels). According to the camera model, the contact point
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coordinate is also identified as [−10.65− 48.46− 578.45]T (mm) when a collision occurs at
the active plate.

A collision occurred on the active plate, and the external force reached the maximum
value at 3.8 s. Similarly, 155 points are intersections between the external object and the
bounding box around the active plate. The contact point location in the considered image
is determined as [406.37 580.09]T (pixels). The contact point coordinate is also identified as
[15.96− 71.62− 579.72]T (mm) when the external force reaches the maximum value.
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5.1.3. Collision Identification at the Active Plate

According to Equation (27), the inertia forces acting on the arms, the rods, and the
active plate are calculated. According to Equations (28)–(31), the external force acting on
the active plate can be calculated, which is shown in Figure 13.
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Based on Figure 13, the external forces computed by Lagrange’s equations and RNEA
are close to each other and acceptable when these results are compared with the force
sensor. The collision started occurring on the active plate at 3.4 s, and the external
force was about [−0.67− 0.69 3.13]T (N). Then, the force reached the maximum value
of [−5.36− 2.27 11.036]T (N) at 3.8 s.

The root mean square error (RMSE) is applied to evaluate the accuracy of RNEA,
expressed as follows:

RMSE =

√
∑n

1 e2
i

n
(39)

where ei (i = 1, 2, . . . , 50) is the error between the computed force by RNEA and the force
sensor; n = 50 is the number of samples.

RMSE in the X-axis is equal to 0.819 (N), RMSE in the Y-axis is equal to 0.4762 (N),
and RMSE in the Z-axis is equal to 1.2823 (N).

5.2. Case 2: Collision at an Arm
5.2.1. Collision Detection an Arm

In this experiment, when the active plate moved in a helix trajectory, a collision
occurred due to an external force acting on this arm. The pose of the end-effector is shown
in Figure 14. The measured current intensity is shown in Figure 15. Equations of the helix
trajectory are presented as follows:

x = 100 cos(0.4πt) (mm)
y = 100 sin(0.4πt) (mm)

z = −550 + 5t (mm)
α = −6 (deg)

β = 1− 25 cos(0.4πt) (deg)
γ = 1 + 25 sin(0.4πt) (deg)

(40)
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Figure 15. Current signal measured from current sensors in Case 2: (a) The 1st, 2nd, and 3rd sensor;
(b) the 4th, 5th, and 6th sensor.

According to Figure 16, a collision occurred at 5.2 s because the residual in the Z-axis
is greater than rlow = 2 (N). The external force reached the maximum value at 5.6 s during
the collision.
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5.2.2. Collision Isolation an Arm

When a collision started occurring, no contact point was detected in the image captured
from the first camera. The image captured from the second camera at 5.2 s is considered to
find out the contact point location, shown in Figure 17a. According to the flowchart of the
procedure of collision isolation, shown in Figure 4, objects in this limited workspace are
considered in the image captured from the second camera, shown in Figure 17b. Because
the color of the arms is blue, the arms can be isolated from the image. An appropriate
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threshold for the HSV color scale is chosen to extract the blue region in the image, which is
shown in Figure 17c. Then, the Canny edge detector and Hough transform are applied to
recognize straight-line profiles along arms. These straight lines are shown in Figure 17d.
According to the flowchart of the mathematics processing, shown in Figure 5, a fixed pixel
is chosen as a motor location where an arm is connected with that motor. According to
the fixed pixel and the direction of the arm, all pixels belonging to the blue region in the
arm direction are checked to see if any of them intersect the non-blue regions, shown in
Figure 17e. The intersections are potential contact point locations. Two intersections should
be considered, shown in Figure 17f. The first intersection coordinate is [145 811]T (pixels),
the depth at this point is 440 (mm). This intersection is not the contact point location
because a point in the non-blue region has a coordinate equal to [165 818]T (pixels), and
its depth is 379 (mm). The difference between two point’s depth is larger than a chosen
depth threshold. The second intersection coordinate is [262 850]T (pixels), and the depth at
this point is 419 (mm). This intersection is the contact point location because a pixel in the
non-blue region has a coordinate equal to [242 845]T (pixel), and its depth is 408 (mm). The
difference between two point’s depth is smaller than a chosen depth threshold. The contact
point coordinate is identified as [−113.25 263.67− 111.3]T (mm), shown in Figure 17g.
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Figure 17. The collision isolation procedure in Case 2: (a) The image captured; (b) The limited
workspace; (c) The blue region; (d) Straight lines along arms; (e) The direction of the arm; (f) The
intersections of the blue region and the non-blue region in the arm direction; (g) The contact point.

At 5.6 s, a collision occurred on the arm, and the external force reached the maximum
value. The intersection coordinate is [232 885]T (pixels), and the depth at this point is
409 mm. The contact point coordinate is identified as [−121.99 278.95− 99.66]T (mm).

5.2.3. Collision Identification an Arm

According to Equation (27), the inertia forces acting on the arms, the rods, and the
active plate are calculated. According to Equations (32) and (33), the external force acting
on the arm can be calculated, shown in Figure 18.
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Based on Figure 18, the collision started occurring on the arm at 5.2 s, and the external
force was about

[
1.976 −2.557 −2.254

]T (N). Then, the force reached the maximum value

of
[
4.941 −7.38 −5.785

]T (N) at 5.6 s.
According to Equation (39), root mean square error (RMSE) is applied to evaluate the

accuracy of RNEA. RMSE in the X-axis is equal to 1.1193 (N), RMSE in the Y-axis is equal
to 1.4974 (N), and RMSE in the Z-axis is equal to 1.1056 (N).

5.3. Case 3: Collision at a Rod
5.3.1. Collision Detection at a Rod

In this experiment, when the active plate moved in an ellipse trajectory, a collision
occurred due to an external force acting on this rod. The pose of the end-effector is shown
in Figure 19. The measured current intensity is shown in Figure 20. Equations of the ellipse
trajectory are presented as follows:

x = 80 cos(0.4πt) (mm)
y = 110 sin(0.4πt) (mm)

z = −550 (mm)
α = −6 (deg)

β = 1− 30 cos(0.4πt) (deg)
γ = 1 + 30 sin(0.4πt) (deg)

(41)
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Figure 20. Current signal measured from current sensors in Case 3: (a) The 1st, 2nd, and 3rd sensor;
(b) the 4th, 5th, and 6th sensor.

According to Figure 21, a collision occurred at 4.4 s because the residual in the X-axis
is greater than rlow = 2 (N). The external force reached the maximum value at 4.6 s during
the collision.
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Figure 21. Comparison of the residuals for the force sensor in Case 3.

5.3.2. Collision Isolation at a Rod

In a similar method to Case 1, the collision isolation results are shown in Figure 22a–e.
According to the flowchart of the mathematics processing shown in Figure 5, 46 midpoints
are determined to satisfy the conditions, as shown in Figure 22f. A point represents the
above 46 pixels by taking an average. The contact point location is shown in Figure 22 g.
Following the strategy mentioned above, the contact point location in the considered image
is determined as [382.8 698.83]T (pixels). According to the camera model, the contact point
coordinate is also identified as [122.93− 144.08− 411.59]T (mm) when a collision occurs at
a rod.
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Figure 22. The collision isolation procedure in Case 3: (a) The bounding box around the active plate;
(b) straight lines around rods; (c) the recognized rods; (d) objects in the workspace; (e) the external
object; (f) potential contact points; (g) the contact point.
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At 4.6 s, a collision occurred on the rod, and the external force reached the maximum
value. Similarly, 447 pixels are potential contact points on the rod. The contact point
location in the considered image is determined as [399.56 702.97]T (pixels). The contact
point coordinate is also identified as [125.49− 137.89− 406.5207]T (mm) when the external
force reaches the maximum value.

5.3.3. Collision Identification at a Rod

According to Equation (27), the inertia forces acting on the arms, the rods, and the
active plate are calculated. According to Equations (34)–(36), the external force acting on
the rod can be calculated, which is shown in Figure 23.
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Figure 23. Residuals, the computed forces by RNEA and the force sensors in Case 3.

Based on Figure 23, the collision started occurring on the rod at 4.4 s, and the external
force was about [−2.487− 0.925− 1.121]T (N). Then, the force reached the maximum value
of [−8.055− 2.631− 3.837]T (N) at 4.6 s.

According to (39), the root mean square error (RMSE) is applied to evaluate the
accuracy of RNEA. RMSE in the X-axis is equal to 1.2268 N, RMSE in the Y-axis is equal to
1.1874 N, and RMSE in the Z-axis is equal to 1.2627 N.

6. Conclusions

This study has presented a strategy to solve collision problems for the Hexa parallel
robot. The proposed virtual force observer is created by combining the inverse dynamic
problem solution and a low-pass filter. When the Hexa robot controls the active plate move
with the designed trajectory, the observer monitors and indicates the collision time in the
cases of three main parts: active plate, rods, and arms. The multi-dual depth camera system
performs effectively for monitoring the workspace and the external obstacle. The contact
point location in each collision case is obtained based on the proposed flowchart for the
collision phases. The Recursive Newton-Euler algorithm is applied to analyze the dynamics
free-body diagram of the Hexa robot. With the determined contact point location, finally,
the intensity and directions of the external force are identified based on the Recursive
Newton-Euler algorithm. The comparison results for the experimental force sensor show
the potential for solving the collision problem in the Hexa robot structure.
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