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Abstract: Many studies on alpine skiing are limited to a few gates or collected data in controlled
conditions. In contrast, it is more functional to have a sensor setup and a fast algorithm that can
work in any situation, collect data, and distinguish alpine skiing activities for further analysis. This
study aims to detect alpine skiing activities via smartphone inertial measurement units (IMU) in
an unsupervised manner that is feasible for daily use. Data of full skiing sessions from novice
to expert skiers were collected in varied conditions using smartphone IMU. The recorded data is
preprocessed and analyzed using unsupervised algorithms to distinguish skiing activities from
the other possible activities during a day of skiing. We employed a windowing strategy to extract
features from different combinations of window size and sliding rate. To reduce the dimensionality
of extracted features, we used Principal Component Analysis. Three unsupervised techniques were
examined and compared: KMeans, Ward’s methods, and Gaussian Mixture Model. The results show
that unsupervised learning can detect alpine skiing activities accurately independent of skiers’ skill
level in any condition. Among the studied methods and settings, the best model had 99.25% accuracy.

Keywords: human activity recognition; alpine skiing; unsupervised learning; inertial
measurement units

1. Introduction

Alpine skiing is an interesting, competitive, and complex sports activity that has been
a part of the Winter Olympics since the first event. Most studies in this area focused on
performance analysis where scholars analyzed the biomechanics of skiers to find the main
factors affecting alpine skiing performance such as turning techniques, aerodynamic drag,
ground reaction force, or turn radius [1,2]. While skiers attempt to optimize these factors
to enhance their performance, the risk of injuries will increase [3]. Therefore, scholars
developed an interest in related factors to injury risk [4]. In [5], authors studied the effect
of ski sidecut on turning mechanics in the context of injury prevention. This motivated
scholars to examine turns in detail as the fundamental part of alpine skiing [4] and develop
methods to detect turns [6,7].

The mentioned studies utilized several different sensors ranging from video to wear-
able sensors. Additionally, most of the analyses have been performed under controlled
conditions in laboratories or through a limited number of gates. One potential solution
to expand these studies is the use of inertial measurement units (IMU) to detect entire
activities during a whole day of skiing where a skier performs several skiing techniques.
Therefore, it will be possible to analyze each activity in detail.

In recent years, there has been an increasing interest in research on human activity
recognition (HAR) due to advances in wearable and visual sensors [8]. The goal of HAR
is to classify incoming signals from human motions into different categories of activities
such as human daily activities. Despite the wealth of analysis on human daily activities,
the application of HAR to alpine skiing activities has not been researched extensively [9].
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Additionally, many scholars have employed various sensors from visual to commercial
IMUs that are not suitable for daily use.

In [10], scholars investigate finding the place on the skier’s body to attach an inertial
sensor so that it is possible to collect the most informative signals. They concluded that
the pelvis is the best place to locate a sensor. Although, there the other parts of the body
which could be alternatives due to the similar results in their analysis. In [7], the authors
developed an algorithm to detect the starting point of a turn, which can be utilized for
regular use. In another study on turn detection [11], the use of gyroscopes was examined.
The data collection for both of these studies was carried out under controlled conditions and
still needs validation in the wild. These studies show that turn behavior is well represented
in IMU signals which is a key to distinguishing alpine skiing activities. In [12] they classified
four popular turning styles, snowplow, snowplow-steering, drifting, and carving, using a
global navigation satellite system (GNSS) and IMU. They analyzed a dataset of 2000 turns
from 20 advanced skiers. In another study, Han et al. employed a motion sensor and
piezo transducer to collect data from subjects. Then, they analyzed the collected data in a
supervised manner to predict the status of a skier during winter sports such as alpine skiing
and snowboarding [13]. In [14] three IMU sensors were attached to the skier’s chest and
skis to collect data from several skiers on one slope. This dataset is analyzed using two long
short-term memory (LSTM) networks for skiing activity recognition to detect left/right
turn, left/right leg lift, ski orientation, and body position. Although the LSTM classification
results show high accuracy, the model needs more validation in different locations under
varied conditions. Additionally, they did not report the skill level of subjects in their study.

Our ultimate goal is to provide recreational alpine skiers with performance analysis
insights about their skiing. However, in this study, the primary goal is to have an unobtru-
sive sensor setup feasible for daily use along with an algorithm that is able to distinguish
between skiing and not skiing. Today, access to smartphones equipped with IMUs offers
the possibility to detect different sorts of activities on the phone [15]. In this work, we
investigate the application of unsupervised machine learning in alpine skiing activity
recognition of recreational alpine skiers using smartphone IMU. Often, HAR has been
formulated as a supervised task [15,16]. Here, we study the use of unsupervised learning
in distinguishing skiing activities from other activities. We prefer unsupervised learning
over supervised learning since it is not dependent on large labeled samples [17], which is
not easy to gather in the case of alpine skiing. Additionally, in this study, we only need
to find the beginning and the end of skiing activities, and we will not differentiate skiing
techniques from each other. Moreover, depending on the level of expertise, every subject
has a different skiing style, which may affect the supervised learning process negatively
due to varying patterns generated by each skier. Finally, employing unsupervised learning
increases scalability since we can add more data without any concern about labeling, which
eases adding more subjects to the project without prior knowledge about the data labeling.

In the rest of the paper, we give an explanation of data collection in detail. Then,
we go through data preprocessing, including orientation tracking, filtering, and feature
engineering. The results section compares the results from different settings and algorithms.
Finally, we summarize the experiment and present future works.

2. Materials and Methods
2.1. Data Collection

Overall, we conducted six data collection sessions, see Table 1. In the first two record-
ings, we employed fourteen Xsens sensors to follow the research done by [10] where they
concluded that sensors attached to the pelvis, right and left thigh generate highly similar
patterns, and the pelvis is the best place to locate a sensor. As in our study, the aim is to
have only one smartphone in the skier’s pocket, which could be at the right/left thigh or
right/left pelvis, so we attached two smartphones to the right and left pelvis and two Xsens
sensors at the right and left thigh to examine their similarities in captured patterns. Our
very first result showed that the incoming data from these smartphones had characteristics
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in common with the sensor placed at the pelvis. In Figure 1, one can see the similarity
between smartphones and Xsens sensors from two different activities. Therefore, in the
rest of the study, we only use one smartphone placed on the right thigh. The smartphone’s
IMU returns acceleration and angular velocity signals with a frequency of 500 Hz.

Figure 1. We located two smartphones on the right and left pelvis and three Xsense sensors at the
pelvis, right thigh, and left thigh to record alpine skiing activities. As diagrams imply, all the sensors
recorded similar periodic patterns of skiing.

We asked subjects to ski several times with different techniques. These techniques are
chosen by an experienced alpine skiing instructor based on the Austrian Ski Instruction
Teaching Plan that consists of four stages: Green, Blue, Red, and Black, from start to
perfection. These techniques are as follows: Parallel Basic-Long (red), Parallel Basic-
Short (red), Parallel Dynamic-Long (red), Parallel Dynamic-Short (red), Race Carving-Long
(black), and Race Carving-Short (black). Each subject takes a lift to go up the piste, and from
there, skis a bit to reach the starting point, and then starts driving for at least 30 s to finish
an activity at the lift. Therefore, each session includes different sorts of activities other
than alpine skiing, e.g., getting on the lift. In this study, we tried to consider a high level
of complexity in data collection. Therefore, data have been recorded in varying seasons
at several places on different slopes, see Table 1. Additionally, we collected data from
skiers with various abilities to validate our approach to recognizing alpine skiing activities
because skiers with varying levels of expertise ski differently.

Table 1. Data collection has taken place in varied locations and conditions, including snow quality
and slopes. Subjects in this study have different capabilities ranging from novice to expert, and each
performed from three to six different skiing styles. On the first three recordings, data collection has
been done using our smartphones (Galaxy S9). In the other two recordings, data collection is done
through our application on the subject’s smartphone, though we started recording on the application
in the fourth session. * The abbreviation in the skill column is as follows: Expert: E, Advanced: A,
Intermediate: I, Novice: N. + Time duration is in minutes.

Session Where When Subjects Skill * Techniques Self-Recorded Glacier Duration +

1 Hintertux June 2019 4 AAII 3 No Yes 50

2 Dachstein November 2019 1 N 5 No Yes 28

3 Galterbergalm February 2020 1 E 6 No No 151

4 Hintertux July 2020 1 E 6 Partially Yes 71

5 Ramsau February 2021 4 EEAN 6 Yes No 728

In the first recording session, two advanced and two intermediate subjects performed
three techniques each. Then, a novice user was asked to ski five different alpine skiing



Sensors 2022, 22, 5922 4 of 14

styles in the second session. In the third data collection, an expert user skied all the alpine
skiing styles three times on different slopes. He performed all six skiing styles and skied
some of the techniques more than once. During the fourth data gathering, the other expert
performed all six skiing techniques. Lastly, at Ramsau, we recorded data at longer sessions,
in terms of time duration and the number of activities, from four subjects with different
capabilities, see Table 1. Since these sessions are long, they are comparable to a day of
skiing. In three of these sessions, three of the subjects skied for about four hours and the
other one for more than one hour.

For ease of data collection, we developed a mobile app so that any user will be able to
record their data simply on their smartphones. Thus, self-recorded in the Table 1 means
that the user recorded a skiing session on their smartphone via our application. In the
fourth session, we trained users on using the application and started the application on
their smartphones. Therefore, we consider this session partially self-recorded. Finally,
the term Not self-recorded means that the skier only carried the smartphone and was not
involved in attaching the phone or controlling data recording processes.

2.2. Experimental Design

For our experiment, we implemented a pipeline to analyze incoming data from each
user, see Figure 2. Our pipeline begins with orientation tracking to transform acceleration
signals from the body frame to the world reference. Next, it filters the transformed signals
through a two-stage filtering approach and extracts a set of features on the filtered signals
based on a windowing strategy. Finally, it clusters the extracted features into two classes
Skiing and Not_Skiing. At validation, the pipeline drops activities that are not long enough
(shorter than 30 s) which means that any alpine skiing activity must be at least 30 s. This
threshold avoids mixing up the other short semi-skiing actions with alpine skiing activities.
Additionally, we ensure that in activities with long turns e.g., Race Carving Long, at least
two turns are performed within 30 s. In the following sections, we explain each of these
modules in detail.

Figure 2. The schematic architecture of the proposed algorithm setup. This pipeline consists of two
main modules: data processing to preprocess incoming signals and activity detection to classify
preprocessed data into two categories of skiing and not skiing. The smartphone is only used for
data collection.

2.2.1. Orientation Tracking

In the first step, our analysis starts with orientation tracking, where we fuse the
acceleration and angular velocity signals to transform the acceleration from the body frame
to the world reference frame. This approach helps in isolating gravity on one axis (here
Y-axis) and proper acceleration on the other two axes. To have such an IMU-based motion
tracking, we followed the orientation tracking with quaternion developed in [18]: 3-DOF
orientation tracking with IMUs where they adopted the math and notation from [19] and
also Chapters 9.1 and 9.2 of [20].

At each time step, we compute a rotation quaternion using the complementary filter
to correct tilt error. This rotation quaternion will correct tilt error by rotating accelerometer
measurements from the body frame to the world frame. In the world frame, we will have
a fixed reference system, wherein gravity always points up along the y-axis, see Figure 3.
Hence, by rotation, we can project the gravity on one axis and the proper acceleration
on the other two axes. We apply a complementary filter that contains a low and a high
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pass filter to fuse the gyroscope and accelerometer to have a better orientation estimation.
The accelerometer measurements are reliable in the long term. Therefore, a low pass filter
can correct errors in acceleration values and removes high-frequency noise. On the other
hand, the gyroscope works accurately in the short term and drifts in the long run. So,
a high-pass filter can integrate gyroscope measurements to remove drift.

During a full session of skiing, from time to time, users may check their phone and put
it into the pocket in another orientation, any change in the axes could be problematic due
to having a different feature for the same axis in the feature space. As a result of orientation
tracking, we are not any longer concerned about changes in orientation while recording.
Figure 4 shows an example of orientation change during a session where the annotated
changes in the body frame are fixed in the world frame. As one can see, in the world frame
the gravity is projected on the y-axis.

Figure 3. Orientation transformation (OT) from the body frame to the world reference frame.
(a). Smartphone in an arbitrary orientation. (b). Fixed reference system where the Y axis is aligned
with the gravity vector.

Figure 4. In the raw acceleration plot on the top, the boxes show several changes in the orientation
that are corrected in the world frame at the bottom. This diagram also implies that any orientation
change in the body frame causes different axes to measure gravity. While in the world frame, gravity
is projected on the y-axis.
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2.2.2. 2-Stage Filtering

Filtering of Data is necessary due to the shaking of the smartphone in the user’s
pocket and skiing conditions such as the quality of snow. Therefore, the accelerometer and
gyroscope channels from the world frame are filtered twice to reduce all the mentioned
effects to a minimum level. First, a moving average filter is applied to keep permanent
patterns in the entire signal. Second, a low pass filter keeps a clear and smooth pattern of
the activities and drops noise nicely. Figure 5 shows the effect of filtering on a signal where
the high-frequency noise is removed, and a smooth pattern of activity is kept.

Figure 5. This figure shows a part of the signal before and after filtering. First, a moving average is
applied to raw signals to keep the permanent patterns. Then, the 1st filtered signal is passed to a
low-pass filter to achieve the 2nd filtered signal. One can see that the two-stage filtering has nicely
removed all the high-frequency noise, and we get a clear pattern of the activity.

2.2.3. Feature Engineering

In the feature engineering step, we extract a set of features from each signal required
by machine learning algorithms. We follow a windowing strategy to divide signals into
smaller segments and extract several features so that, from each window, various features
will be calculated. These features have been studied and used in the literature for HAR
purposes [21–23]. The list of features is as follows:

• mean, standard deviation, root mean square, minimum, maximum, median, variance,
median absolute deviation, the energy of the window and its auto-correlation

• mean crossing, 50 percent crossing, 25 percent crossing, 75 percent crossing of the
window and its auto-correlation

• mean, the median of Power Spectrum of the window
• SMA: Signal Magnitude Area

The auto-correlation technique is useful in finding repetitive patterns in a signal since
it keeps the same properties as the original signal. Figure 6 represents how auto-correlation
detects the presence of periodic patterns inside a signal where the windows containing a
skiing activity have a higher correlation coefficient.

After extracting features, we normalize these values via min-max scaling to the range
of [−1, 1]. This normalization is necessary for unsupervised learning since the majority of
clustering methods, as well as Principal Component Analysis (PCA), will not work without
normalization [24]. The normalized data set of features is called the normalized feature
set (NFS). Then, we apply PCA to the NFS data set to reduce the dimensionality and get
another data set which we name PCA. Having two feature sets (FST) enables us to train
more models and find the best solution.

2.2.4. Clustering

We consider any alpine skiing activity as an active session to detect for further analysis.
Therefore, the task here is to divide the input signal into two clusters: Skiing and Not-
Skiing. Since we have only two classes, clustering algorithms will be initialized to detect two
clusters of activities. In this experiment, we employ three different unsupervised learning
algorithms: Gaussian Mixture Models (GMM), KMeans, and hierarchical clustering Ward’s
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method which is widely known and studied by other scholars [23,25,26]. In combination
with two datasets from feature extraction (NFS and PCA), we will have six different models
as the output of cluster analysis.

Figure 6. The plot on the top shows a part of the signal which contains an activity. The one at the
bottom shows an auto-correlation result based on a window of 8 s moving from left to right. Each
arrow shows a window of 10 s with color with respect to auto-correlation.

2.2.5. Validation

To evaluate our results, we refer to the accuracy of each model and compare it with a
baseline. Here, the baseline is considered a model which predicts everything as Not Skiing
since this class is the majority class. In this way, we better see how efficiently each model
improves the baseline. The accuracy is calculated as a fraction of correctly predicted values
over the number of samples. Moreover, having applied unsupervised methods, we use two
unsupervised metrics to assess the goodness of clustering: Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI). Both NMI and ARI are external measures that need
the ground truth. They score 0 for random labeling and 1 for perfectly complete labeling
(negative values are invalid).

ARI [27] is a measure of similarity between two data clustering. The ARI is calculated
as [28]:

ARI =
RI − E[RI]

max(RI) − E[RI]
(1)

where E[RI] is the Expected Rand Index and Rand Index is given by:

RI =
a + b

C
nsamples
2

(2)

Here, C is considered the ground truth. If we assume K is the clustering result, a is
the number of pairs in the same cluster in C and K, and b shows the number of pairs in
the different clusters in C and K. And C

nsamples
2 shows the total amount of possible pairs in

this dataset.
NMI is computed as [26]:

NMI =
∑r

i=1 ∑s
j=1 ni,jlog(

n.ni,j
ni.nj

)√
∑r

i=1 nilog
ni
N ∑s

j=1 njlog
nj
N

(3)
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Here, r is the number of true clusters, s is the number of assigned clusters, ni,j is the
number of samples in both cluster i and a cluster assignment j, ni is the number of samples
in cluster i, nj is the number of samples in assigned cluster j, and N is the total number
of samples.

2.3. Data Analysis

The window size and sliding rate selection have been discussed a lot in the HAR
domain [21,23]. Choosing the right window size and sliding rate plays a critical role in the
feature extraction to ensure that all the patterns are covered throughout an incoming signal.
Additionally, we must choose the proper algorithm for our analysis that works accurately
and fast. Moreover, we have two data sets as the output of the feature selection phase,
which in combination with three clustering methods give six different models. In this way,
we must find the best setting for the model, feature selection, window size, and sliding rate.

Activities shorter than 30 s will be dropped since we assume that any alpine skiing
activity at least lasts 30 s, and activities smaller than this could be similar to activities of
interest. To evaluate our selection, we consider the average of metrics (NMI, ARI, and ac-
curacy) and their standard deviation to ensure the algorithm works stable independently
of different settings (The provided values in the result section are averaged). The other
evaluation metric is the number of detected activities. Each model needs to find the correct
number of activities to ensure that the chosen model does not over-fit in the cases where a
detected activity is similar to activities of interest.

In the first phase of our analysis, we start with data sets from the first four recording
sessions (Table 1) where we have enough complexity of data considering varied skill levels,
seasons, and locations. In the rest of this paper, We refer to a setting as any combination of
algorithms, datasets, window sizes, and sliding rate. To choose the best combination of
window size and sliding rate, we generate features on windows of [3, 4, 5, . . . , 10] seconds
and [0, 20, 50, 80] percent overlap. Through such a tuning search, we can make sure of
finding optimal values. To find the best setting, we compare different combinations not
only through clustering metrics but also by using their time consumption. Since feature
engineering on shorter window sizes takes longer and generates more samples, this directly
affects the overall response time.

In the second phase of the analysis, we carry out the same experiment as the first
phase on the data sets recorded at Ramsau. The main reason we executed the second
phase of the analysis is that the setting in the Ramsau recording is different from the other
recordings, see Table 1. In Ramsau recording, all the users recorded their activities on their
smartphones, while we employed our smartphone in the first four data gathering sessions.
Additionally, we asked them to ski all the techniques focused and unfocused. So, we collect
various patterns of activities if they are performed differently. Moreover, these sessions are
long enough to be compared with a day of skiing. Therefore, Ramsau recording is more
similar to the real skiing scenario.

3. Results
3.1. Analysis Result: Phase One

In our analysis, first, we find which algorithm works the best independent of the other
settings. Results show that KMeans on data set NFS has the highest scores on all the metrics
(Accuracy, NMI, and ARI). The Table 2 shows the result of algorithm selection where we
can see that Kmeans_NFS works slightly better than the others.

In the second step, we examined window size and sliding rate to see which one gives
the best result despite the other settings and skiers. Since there are 32 combinations of
window sizes and sliding rates, only the best five are shown in Table 3.
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Table 2. Results for algorithm examination averaged over the other settings (window size and sliding
rate). Results show that KMeans_NFS and KMeans_PCA work with slightly higher accuracy, NMI,
and ARI than GMM_NFS. Even though there is not a high difference in accuracy between these three
models with two Ward models, one can see that NMI and ARI drop considerably. So, we chose this
model for further examination.

Algorithm FST Accuracy [%] NMI ARI Accuracy [σ] NMI [σ] ARI [σ]

Kmeans NFS 96.56 0.68 0.80 1.85 0.12 0.14

Kmeans PCA 96.53 0.68 0.80 1.87 0.12 0.14

GMM NFS 96.02 0.67 0.79 4.99 0.12 0.14

Ward NFS 95.49 0.64 0.75 3.17 0.17 0.16

Ward PCA 95.12 0.62 0.73 3.13 0.18 0.17

GMM PCA 92.88 0.58 0.67 3.39 0.12 0.11

Baseline – 88.7 0.0 0.0 0.45 0.0 0.0

Table 3. Results of Windowing strategy examination averaged over the other settings (Algorithm
and FST). The experiment on window size and sliding rate shows that a 6-s window without overlap
works slightly better than others, considering higher accuracy and ARI. However, all the results in
this table are pretty similar.

Window Size [s] Sliding Rate Accuracy [%] NMI ARI Accuracy [σ] NMI [σ] ARI [σ]

6 1 96.07 0.68 0.79 2.81 0.12 0.12

7 0.2 95.81 0.68 0.78 2.84 0.12 0.12

9 0.2 95.75 0.68 0.78 2.89 0.12 0.13

6 0.5 95.76 0.67 0.78 3.41 0.17 0.16

8 0.2 95.53 0.67 0.78 3.39 0.13 0.12

Considering findings from Tables 2 and 3, the best setting is KMeans as an unsuper-
vised method, NFS as a feature set, and a window size of 6 s with a 100% sliding rate (which
means no overlap). To check this further, we compare this setting with the other possible
settings. Table 4 shows the five best results, no matter who skies, to have a comparison
between our selected setting with the others.

Based on the above analysis, the best setting is a window size of 6-s with a 50% sliding
rate for feature extraction and applying GMM on the NFS feature set to detect activities.
Although, the other settings in the Table 4 can be an option due to their similar performance.
In the next phase, we examine this further to see whether this setting works the best for the
other datasets or not.

Table 4. Finding the best setting. The top five results show that our chosen setting (KMeans_NFS
with a 6-s window and no overlap) works similarly to the highest accuracy. Additionally, the KMeans
algorithm and window size of 6-s show up the most in the best results.

Algorithm FST Window Size [s] Sliding Rate Accuracy [%] NMI ARI Accuracy [σ] NMI [σ] ARI [σ]

GMM NFS 6 0.5 97.43 0.74 0.85 1.33 0.08 0.11

KMeans PCA 6 0.5 97.41 0.73 0.85 1.32 0.08 0.11

KMeans NFS 9 0.2 97.01 0.73 0.84 1.41 0.07 0.10

KMeans NFS 6 0.5 97.32 0.72 0.84 1.26 0.07 0.10

KMeans NFS 6 1 97.14 0.72 0.84 1.10 0.05 0.07

3.2. Analysis Result: Phase Two

As before, we examine the algorithms’ performance independent of the other settings
that show Kmeans_PCA has the best performance with average values of 98.94% accuracy,
NMI 0.83, and ARI 0.92. In the next step, we check different combinations of window
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size and sliding rate that indicates window size of 8 s with 100% sliding rate performs
the best with 97.5% accuracy, NMI 0.77, and ARI 0.86. Finally, we analyze all the sessions
from the Ramsau recording using the chosen setting from the first two steps to find the
best setting Table 5. Based on results from the first two steps, the chosen setting should be
KMeans_PCA with a window size of 8 s and 100% sliding rate, but it does not show up in
Table 5. Scores for this setting are as follows: 99.12% accuracy with NMI 0.85 and ARI 0.93
which is comparable to the best score. This means that we have a handful of models with
acceptable performance.

Table 5. Finding the best setting. Results show that our chosen setting (KMeans_NFS, window size
of 6 s, and 100% sliding rate) works similarly to the highest accuracy. However, the table of the top
five best models shows that KMeans_PCA with a 6-s window and 50% overlap performs the best due
to its highest accuracy. The average baseline for this session is 91.46%.

Algorithm FST Window Size [s] Sliding Rate Accuracy [%] NMI ARI Accuracy [σ] NMI [σ] ARI [σ]

KMeans NFS 6 0.2 99.28 0.87 0.95 0.09 0.01 0.01

KMeans PCA 6 0.2 99.27 0.87 0.95 0.09 0.01 0.01

KMeans PCA 7 0.2 99.25 0.87 0.94 0.12 0.02 0.01

KMeans PCA 8 0.5 99.25 0.87 0.94 0.10 0.02 0.01

KMeans NFS 7 0.2 99.23 0.87 0.94 0.13 0.02 0.01

Comparing the last tables of analysis phases one and two, we see that none of the
settings shows up in both. As the data collection condition in the Ramsau recording is
more realistic, we rely on the results from phase two. Additionally, to choose the most
efficient model and setting, we look at their time consumption at different stages. Our
analysis shows that applying any of the algorithms on the NFS dataset takes longer than
PCA. For example, the average time consumption of all the windowing strategies for one
of the sessions recorded at Ramsau is 0.12 s for KMeans_PCA and 0.5 s for KMeans_NFS.
Additionally, we are more interested in choosing windowing strategies with longer window
lengths and less overlap so that feature engineering would be faster. To sum up, considering
the results from Tables 4 and 5, our final selection is model KMeans_PCA with a window
size of 8 s and sliding rate of 50%.

4. Discussion

The goal of the study was to detect alpine skiing activities via smartphone IMU in
an unsupervised manner that is feasible for daily use. Our result shows that by locating a
smartphone IMU in the skier’s pocket on the right side, it is possible to record informative
signals to recognize alpine skiing activities using unsupervised learning.

Even though orientation tracking works pretty well in isolating gravity, there is still
an issue with proper acceleration decomposition. This problem is referred to as rotation
about the gravity vector (in our study Y-axis in the world frame). One possible solution
to this obstacle is Yaw correction via employing the magnetometer. This enhancement is
especially essential for more analysis where we take a closer look into each activity, classify
them in different techniques, and avoid drift in speed estimation.

We applied unsupervised learning in our analysis because it gives the possibility to
start our study with a small dataset of alpine skiing activities and increase the number of
samples incrementally without more training. In contrast, supervised learning needs a
large data set of labeled skiing activities which are not easy to collect. This means that we
do not use the labeled data in the learning process. However, it is necessary for evaluation.
This implies that the quality of data labeling has a direct impact on the assessment of each
method, Figure 7a, where a part of the activity is not labeled but is detected. In addition, we
do not distinguish different alpine skiing techniques from each other, so we only need to
find the beginning and the end of activities. Although the results show that our approach
recognizes skiing activities from the rest of the activities with acceptable accuracy, there is
still room for improvement.
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Figure 7. The plot (a) shows the ground truth, and diagram (b) shows detected activity using
KMeans_PCA. Box 1 depicts one cycle of the activity that is not labeled while it is a repeated pattern
and recognized by KMeans_PCA. Box 2 illustrates the last part of the detected activity is different
from the rest, which is overfitting. This part is an example of semi-skiing activity.

If we take another look at the detected skiing activities, it is clear that the beginning
and end of each skiing activity include some semi-skiing activities, Figure 7b, which we
should avoid to have an accurate detection pipeline. This issue is the effect of using fixed-
size windows where a window covers the majority of activity and some semi-skiing activity.
See similarities between a window of “mainly activity” and “activity” in Figure 6. The other
benefit of unsupervised learning is that we can automatically label recorded skiing activities
from different recreational skiers into Skiing and Not-Skiing and then classify them in
different skiing styles as future work. Additionally, using our mobile application, any
skier can easily record their data. This unsupervised approach combined with the mobile
application helps considerably in saving time and ease of data collection.

Some of the sessions are very long, which causes high accuracy even when some parts
of the activities are not detected. In such cases, getting a very high accuracy value does not
show that the algorithm works perfectly, while clustering metrics are more descriptive and
show these differences. For example, in a session of more than one hour where there are
seven skiing activities, our chosen model finds all the seven activities with an accuracy of
99.17, and GMM_PCA recognizes 8 activities with an accuracy of 98.12. While there is no
significant difference between these accuracies, their clustering metrics vary considerably.
Figure 8 and Table 6 explain these consequences more and show how overfitting affects
clustering metrics. So, when the number of samples increases, NMI and ARI are more
reliable for evaluation since, as metrics of the goodness of clustering, any overfitting and
underfitting affect them negatively.

Figure 8. (a). Ground truth consists of seven alpine skiing activities, where different skiing styles
are shown in different colors. (b). Our chosen model detected all the seven activities with 99.17%
accuracy, where the green color indicates skiing class. (c). GMM_PCA recognized eight activities with
an accuracy of 98.12%. One can see the overfitting at the end of the signal, which affects clustering
metrics significantly, see Table 6.
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Table 6. Accuracy does not drop considerably due to over/under-fitting which is expected because
of high baseline accuracy. In contrast, clustering metrics drop significantly as a result of under/over-
fitting as they qualify the goodness of cluster analysis.

Algorithm FST Window Size [s] Sliding Rate Accuracy [%] NMI ARI Detected Activities

KMeans PCA 8 0.5 99.17 0.86 0.94 7

GMM PCA 8 0.5 98.12 0.77 0.87 8

Baseline - - - 90.76 0 0 0

In our experiment, we tried to consider the highest complexity in the data collection.
However, there is still a lack of female skiers. In the future, the proposed algorithm
must be evaluated and validated through female skiers with various capabilities, so we
ensure that this analysis can detect all the alpine skiing activities independent of users
and their physical features. Additionally, we have only two novice skiers. Since novice
skiers generate different patterns than more advanced skiers, this approach needs to be
examined with more beginner skiers to confirm that it works similarly for skiers with any
skill level. Moreover, our chosen model only detects three activities out of five from one of
the novice skiers. Figure 9 shows a comparison between two subjects, one expert and the
other novice skier. As the figure implies the expert skier performs the skiing activity faster
while generating a consistent pattern.

Figure 9. Comparing generated patterns from an expert and a novice skier on different axes of an
accelerometer demonstrates that the expert subject skis faster and more consistently as the user
finishes the activity in a shorter time than the novice and keeps repeating similar patterns. On the
other hand, the novice skier cannot produce such a pattern the whole way.

There are three points in the pipeline which are time-consuming and affect the response
time. First of all, orientation tracking has to be applied to the entire input signal and is
dependent on the number of samples. So, the length and frequency of the input will
influence time consumption at this step. One uncomplicated solution for this issue is to
sub-sample the input signal to 50 Hz, which is concluded to have enough information
for high-frequency activities [29]. Second, feature extraction is heavily dependent on the
windowing strategy. Scholars concluded a window size between [2, 3, 4, 5] seconds is
ideal for HAR applications [30,31] which are mainly low-speed activities. But, our analysis
shows that short-size windows generate a higher number of samples in the feature space
than larger window sizes, which takes longer as an issue of time consumption. Here, one
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solution is assigning larger window sizes where there is no significant difference in the
accuracy. Finally, clustering methods are heavily dependent on the number of samples.
As it is studied in [32], KMeans works better on larger datasets. Therefore, it can always be
an option where input is a large set of features.

5. Conclusions

In summary, we provide an easy-to-use sensor setup for data collection so that every
skier with any level of mastery can record their skiing data with a smartphone. Then, we
examined unsupervised learning to see whether it can distinguish skiing activities from
the other activities during one session of alpine skiing. Additionally, we explored different
combinations of window size and a sliding rate for feature engineering to ensure we extract
the most relevant features. Our result shows that this approach can detect active sessions of
alpine skiing for further analysis. Therefore, our pipeline offers an automatic data collection
and pre-labeling of alpine skiing signals, which can be used together with other sensors.
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