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Abstract: The accurate and timely identification of the degree of building damage is critical for
disaster emergency response and loss assessment. Although many methods have been proposed, most
of them divide damaged buildings into two categories—intact and damaged—which is insufficient
to meet practical needs. To address this issue, we present a novel convolutional neural network—
namely, the earthquake building damage classification net (EBDC-Net)—for assessment of building
damage based on post-disaster aerial images. The proposed network comprises two components:
a feature extraction encoder module, and a damage classification module. The feature extraction
encoder module is employed to extract semantic information on building damage and enhance the
ability to distinguish between different damage levels, while the classification module improves
accuracy by combining global and contextual features. The performance of EBDC-Net was evaluated
using a public dataset, and a large-scale damage assessment was performed using a dataset of post-
earthquake unmanned aerial vehicle (UAV) images. The results of the experiments indicate that this
approach can accurately classify buildings with different damage levels. The overall classification
accuracy was 94.44%, 85.53%, and 77.49% when the damage to the buildings was divided into two,
three, and four categories, respectively.

Keywords: building damage; deep learning; earthquake building damage classification net (EBDC-Net);
aerial images

1. Introduction

As some of the most catastrophic events in nature, earthquakes can cause significant
structural damage to buildings [1]. The timely and accurate classification of the degree
of building damage is of great importance to the government’s emergency response and
rescue operations. Remote sensing images can be used to obtain abundant spatiotemporal
information in the affected area so that buildings can be evaluated on a large scale, at low
cost, and quickly [2].

Convolutional neural networks (CNNs) have powerful feature learning and inference
capabilities, as well as strong performance in image processing tasks [3]. Therefore, CNNs
are widely used in the damage assessment of buildings. According to the number of
images used, building damage assessment methods are classified as dual-temporal and
single-temporal methods [4].

The dual-temporal methods extract features from the pre- and post-disaster images,
and then determine the localization and the degree of damaged buildings [4]. Wu et al.
constructed a Siamese neural network with different backbones to automatically detect
damaged buildings, and used the attention gate to filter useless features [5]. Xiao et al.
proposed a dynamic cross-fusion network that enables the localization and classification
tasks of buildings to share feature information from different levels of the CNN network,
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enhancing information exchange across tasks [6]. Adriano et al. developed a damage as-
sessment network by combining multimodal and multi-temporal data to increase the utility
of the model under different data sources [7]. Since the dual-temporal methods employ
both pre- and post-disaster images, they usually have a high classification accuracy [8].
However, the practicality of these methods is greatly limited due to the accessibility of
dual-temporal images [9,10].

Single-temporal methods only use post-disaster images for building damage assess-
ment tasks. Therefore, they are subject to relatively few constraints. Duarte et al. proposed
a CNN with multiresolution feature fusion to increase the performance of the model in
multiresolution images [11]. Ji et al. explored the use of pre-trained CNN and fine-tuned
CNN strategies for the damage classification of buildings after earthquakes [12]. Nex et al.
assessed the migration performance of the CNN using images of different locations and
spatial resolutions [13]. Ishraq et al. replaced the fully connected layer in the CNN with a
global average pooling layer to assess building damage caused by hurricanes [14]. How-
ever, the majority of the existing research divides buildings into two categories—intact and
damaged—which cannot meet the needs of rescue and post-disaster damage refinement
assessment. More detailed classification information about the degree of damage to build-
ings is needed [15]. Ci et al. combined a CNN with ordinal regression to classify building
damage as intact, slightly damaged, severely damaged, or collapsed [16]. Ma et al. used
geographic information system (GIS) data to provide evident boundary characteristics of
buildings. A CNN model combined with GIS data was proposed to classify building dam-
age into slight damage, moderate damage, and severe damage [17]. However, these studies
ignore the impact of the extraction of building damage features on classification accuracy.
In post-disaster images, the shape and texture of the building change significantly [18].
Distinguishing between slight damage and severe damage is a challenging task because
they share similar characteristics. For instance, the damage characteristics of buildings
are mainly manifested in roofs, except that the damaged area is different. Therefore, it is
necessary to aggregate similar features to enhance the discrimination of different degrees of
building damage [2]. In addition, texture and spatial information around the buildings can
provide necessary auxiliary information for evaluation. Exploring the relationship between
global features and context features in images helps the model to classify the damage levels
of buildings more accurately.

To address the abovementioned issues, this study proposes a novel CNN—namely,
the earthquake building damage classification net (EBDC-Net)—for assessment of building
damage using post-disaster aerial images. The proposed network is made up of a feature
extraction encoder module and a damage classification module. The feature extraction
encoder module is used to extract the semantic information and enhance the feature
representation capability of different damage levels of buildings from the images, while the
damage classification module is used to fuse the global and contextual features to improve
the accuracy of damage classification.

The rest of this paper is organized as follows: Section 2 introduces the data sources and
the proposed method. The experimental results are presented in Section 3. Section 4 dis-
cusses the role of historical earthquake data in new earthquakes. Finally, some conclusions
are drawn in Section 5.

2. Materials and Methods
2.1. Data Sources

The datasets used in this study contain post-earthquake images from three different lo-
cations. The first comprises post-earthquake aerial images of the 7.1 magnitude earthquake
that occurred on 14 April 2010 in Yushu County, Qinghai Province, China [16]. The second
comprises post-earthquake aerial images of the 6.5 magnitude earthquake that occurred
on 3 August 2014 in Ludian County, Yunnan Province, China [16]. The third comprises
post-earthquake UAV images of the 6.4 magnitude earthquake that occurred on 21 May
2021 in Yangbi County, Yunnan Province, China. The Yushu and Ludian datasets are public
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datasets, and can be downloaded from https://github.com/city292/build_assessment
(accessed on 1 April 2022) [16]. For the Yangbi dataset, the region of interest (ROI) was
first cropped from the post-disaster UAV images of the Yangbi earthquake. Then, the ROI
was cropped into patches of different sizes according to the resolution of the images and
the structural features of the local buildings. Finally, all patches were uniformly resized
to 88 × 88 pixels. As shown in Table 1, the datasets classify building damage into four
categories: intact, slightly damaged, severely damaged, and collapsed. As shown in Table 2,
the number of images with four damage levels in the dataset was counted.

Table 1. Building examples and image information of the four damage levels in the datasets.

Dataset Intact Slightly Damaged Severely Damaged Collapsed Image Size Resolution

Yushu Dataset [16]
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Damage Level Description Ludian Dataset Yushu Dataset Yangbi Dataset 
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L3 Collapsed 1984 1140 -

Total 8337 3510 1241

To verify the performance of EBDC-Net on the different classification criteria, the 
buildings with different damage levels were divided into three groups, as shown in Table 
3. Group 1 simply divided all of the buildings into non-collapsed and collapsed, without
distinguishing the degrees of damage to the buildings. Group 2 contained three categories,
namely, intact, severely damaged, and collapsed. Slightly damaged buildings were con-
sidered to be intact. For Group 3, a more detailed classification criterion was devised, and
all of the buildings were divided into four categories: intact, slightly damaged, severely
damaged, and collapsed.
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Table 2. Statistics on the number of buildings sampled in the datasets with the four levels of damage.

Damage Level Description Ludian Dataset Yushu Dataset Yangbi Dataset

L0 Intact 1630 778 928
L1 Slightly damaged 3074 918 202
L2 Severely damaged 1685 665 111
L3 Collapsed 1984 1140 -

Total 8337 3510 1241

To verify the performance of EBDC-Net on the different classification criteria, the
buildings with different damage levels were divided into three groups, as shown in Table 3.
Group 1 simply divided all of the buildings into non-collapsed and collapsed, without
distinguishing the degrees of damage to the buildings. Group 2 contained three categories,
namely, intact, severely damaged, and collapsed. Slightly damaged buildings were con-
sidered to be intact. For Group 3, a more detailed classification criterion was devised, and
all of the buildings were divided into four categories: intact, slightly damaged, severely
damaged, and collapsed.

2.2. Methods

As shown in Figure 1, a building damage classification framework—namely, EBDC-
Net—is proposed in this study. EBDC-Net is composed of a feature extraction encoder
module and a building damage classification module. First, a building damage feature
extraction encoder module was constructed to extract the semantic information of different
damage levels. In feature extraction, the spatial attention mechanism (SAM) is used to
gather similar features in the image to enhance the feature representation ability of the

https://github.com/city292/build_assessment
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network. Second, two parallel modules—global feature extraction (GFE) and contextual
feature extraction (CFE)—were included in the building damage classification module
to fully exploit the global features and contextual features in the images for building
damage classification.

Table 3. Distribution of building damage levels for the three classification criteria.

Group Description Damage Level

Group 1 Non-collapsed L0, L1, L2
Collapsed L3

Group 2
Intact L0, L1

Severely damaged L2
Collapse L3

Group 3

Intact L0
Slightly damaged L1
Severely damaged L2

Collapse L3
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2.2.1. Feature Extraction Encoder Module

Extracting useful features from the post-disaster aerial images helps to determine the
degree of damage to buildings [19]. As shown in Figure 1, the post-disaster aerial images
were used as input data for EBDC-Net. The encoder module of EBDC-Net consists of four
convolutional blocks stacked together. In blocks 1 and 2, each convolutional block contains
two 2D convolutions (kernel = 3). In blocks 3 and 4, each convolutional block contains three
2D convolutions (kernel = 3). Both convolution operations were followed by a maximum-
pooling downsampling operation (kernel = 2). In addition, due to the small size of the
input images in this study, there was significant feature loss as the network deepened. The
structure of the residual connections can reduce the difficulty of optimization, and enables
the training of deeper networks [20]. Therefore, residual connections were added to the last
three convolution blocks to alleviate the gradient disappearance and gradient explosion
problems during feature extraction.

Although convolutional blocks can extract the semantic information of different levels,
in the post-disaster aerial images, the damage features of slightly and severely damaged
buildings were scattered in different areas of the images, and the proportion of damage
features in the images was small, resulting in a large intraclass variance between different
damage categories in the same image. To enhance the feature representation ability of the
encoder module and obtain better classification accuracy, a spatial attention mechanism
(SAM) was introduced at the end of each convolutional block [21]. The SAM adaptively
explores similarities between features at different locations in the image, integrates similar
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features at any scale, increases intraclass consistency between different damage classes,
and suppresses unwanted information and noise.

As shown in Figure 2, the SAM received the feature maps FA ∈ RC×H×W extracted
from the convolutional block, where C, H, and W represent the channel, height, and width
of FA, respectively. First, FA was used as an input, and two new feature maps¯FB and
FC—were obtained through two convolutional layers (kernel = 1). The output channels
of these two convolutional layers were C/8. Second, FB was reshaped as RN×( C

8 ), and FC

was reshaped as R( C
8 )×N , where N = H ×W. Subsequently, FB and FC underwent matrix

multiplication to generate the feature map FS′ ∈ RN×N . Finally, FS was fed into the softmax
layer, and the attention weight map FS ∈ RN×N was generated.

FS ji =
exp

(
FBi·FC j

)
∑N

i=1 exp(FBi·FC j)
(1)
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FS ji was used to measure the influence between the features of any two positions in
the space. The closer the representation of the features of two positions, the stronger the
correlation between them, and the larger the value of FS ji. After obtaining the attention
weight map, FA was fed into a new convolution layer to generate a new feature map FD.
FD and FA had the same shape. A matrix was multiplied between the sum space of the
attention weight feature map FS and the feature map FD, and the result was reshaped as
RC×H×W . Finally, this result was multiplied by a trainable scale factor α and summed with
FA to obtain the final feature map FE, with α initialized to 0.

FEj = SAM(FA) = α
N

∑
i=1

FS jiFDi + FAj (2)

According to Equation (2), the value of each position of FEj was obtained through the
weighted fusion of the original features, with the values in FS as weights. Therefore, SAM
selectively aggregated similar semantic features to improve intraclass compactness and
semantic consistency between different damage classes, enabling the network to better
distinguish between buildings of different damage classes.

2.2.2. Building Damage Classification Module

When using post-disaster aerial images to classify building damage levels, focusing
only on the characteristics of the building itself is not enough to accurately distinguish its
damage level. Scenes around buildings can provide necessary auxiliary information for
damage assessment. If the global information and contextual dependencies in the images
are taken into account, it may improve the final damage classification results. As shown
in Figure 1, two parallel modules were designed in the building damage classification
module to capture the global information and contextual feature dependencies in the
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images, respectively. The feature F extracted by the feature extraction encoder module was
used as the input to the building damage classification network. Specifically, F was first fed
into the GFE module, where the global feature vector FG of the image was extracted using
a global-level pooling layer. Then, F was fed into the CFE module. In the CFE module,
the long short-term memory (LSTM) layer [22] was used to extract the contextual feature
dependencies FC in the image.

As a deep regression neural network, LSTM can handle long-term relationships of
memory sequence information [22]. Many remote sensing image classification studies
use LSTM to extract spatial and spectral features from images [23–25]. In this study,
LSTM was used to explore the contextual dependencies between different regional feature
sequences. The generation of feature sequences is the key to learning contextual feature
dependencies. As shown in Figure 3, F ∈ RC×H×W was transformed into a feature sequence
V = [x1, x2, ···, xK] ∈ RC, where K = H ×W. Each C-dimensional feature vector xk was
fed into the LSTM sequentially as a feature sequence.
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As shown in Figure 4, LSTM has three inputs: the input value xk of the current feature
sequence, the output value hk−1 of the previous feature sequence, and its cell state Ck−1.
LSTM has two outputs: the output value hk of the current feature sequence, and its cell
state Ck. The forgetting gate fk combines hk−1 and xk to determine how much of the cell
state Ck−1 of the previous feature sequence is retained in the current feature sequence. The
input gate ik combines hk−1 and xk to determine how much of the input C̃k of the current
feature sequence is preserved in the new cell state Ck. The output gate ok combines the cell
state Ck of the current feature sequence to control the current output value hk. Based on
these components, the storage cells and their outputs can be computed as follows:

fk = σ
(

W f [hk−1, xk] + b f

)
(3)

ik = σ(Wi[hk−1, xk] + bi) (4)

C̃k = tanh(WC[hk−1, xk] + bC) (5)

Ck = fk ◦ Ck−1 + ik ◦ C̃k (6)

ok = σ(Wo[hk−1, xk] + bo) (7)

hk = ok ◦ tanh(Ck) (8)

where σ represents the sigmoid function, ′◦′ is the Hadamard product, and W f , Wi, WC, W0,
b f , bi, bC, and bo are learnable weights. The output state of the last feature sequence was
used as the contextual feature FC to describe the contextual feature dependencies in the
image. In the contextual feature extraction module, two LSTM layers were stacked, and the
output dimensions were set to 256.

After obtaining the global feature FG and the contextual feature FC, the two features
were fed into the concatenate layer for effective connection to obtain the fusion feature
Ff usion. Then, Ff usion was fed into two fully connected layers of 256 dimensions. It is worth
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noting that the dropout strategy was used to avoid overfitting. Finally, the features were
processed using the softmax function to output the damage level of the building.

Ff usion = [FG, FC] (9)
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3. Results
3.1. Implementation Details of the Experiment

All of the experiments and tests in this study were conducted on the same platform,
configured with 32 GB RAM, an i7 9800X @3.8 GHz CPU, and a GeForce RTX 2080 Ti GPU.
The ratio of the training set, validation set, and test set in the Ludian dataset was 8:1:1,
respectively. Since the numbers of images in the Yushu and Yangbi datasets are smaller, the
ratio of the training set, validation set, and test set was 6:2:2, respectively.

To obtain the optimal hyperparameters, different batch sizes and learning rates were
tested individually, where one of the hyperparameters was fixed.

As shown in Tables 4 and 5, the highest accuracy of the model was achieved when the
learning rate was 0.0001 and the batch size was 32. Meanwhile, as shown in Figure 5, the
model converged when it was trained for 100 epochs.

Table 4. The effects of different batch sizes on model classification accuracy.

Test OA (%) Kappa MSE

LR-0001-BS-8 68.39 0.56 0.44
LR-0001-BS-16 75.00 0.65 0.28
LR-0001-BS-32 77.49 0.69 0.26
LR-0001-BS-64 75.96 0.67 0.28

Table 5. The effects of different learning rates on model classification accuracy.

Test OA (%) Kappa MSE

LR-001-BS-32 29.02 0.06 0.93
LR-0001-BS-32 77.49 0.69 0.26

LR-00001-BS-32 68.58 0.57 0.40

The model was trained using the SGD optimizer; the weight decay was 0.001, and
the cross-entropy loss function was used. The pre-training weight on ImageNet was used
to initialize the feature extraction encoder network. Horizontal and vertical flips were
used for data enhancement during training. To ensure fairness, the parameters of all of
the comparison methods were the same as those of the proposed method. In this study,
the overall accuracy (OA), kappa coefficient, and mean square error (MSE) were used as
indicators to evaluate the classification accuracy of the model.
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3.2. Results of the Comparison of Different Baseline Models

We first compared the performance of different baseline models in the Ludian and
Yushu datasets. The classification results for the Yangbi dataset are not presented because
there were no collapsed buildings, meaning that it was not possible to divide the buildings
into three groups according to the aforementioned grouping criteria. Therefore, the Yangbi
dataset was used to discuss the performance of the fine-tuned model. The baseline was
constructed by removing the residual connections, SAM module, and CFE module from
EBDC-Net. The performance of seven baseline models was compared in Group 1, Group
2, and Group 3, including DenseNet [26], ResNet50 [20], InceptionV3 [27], Xception [28],
MobileNet [29], VGG16 [30], and baseline. Tables 6 and 7 show the quantitative comparison
of the building damage classification accuracy of different baseline models in the Ludian
and Yushu datasets, respectively. As can be seen from Table 6, all of the seven baselines
exhibited similar performance for Group 1, with an overall accuracy higher than 90%,
due to its relatively simple classification criterion. However, with the increase in the
number of building damage categories, the differences in performance between the different
models became greater—especially for Group 3, where the classification accuracy dropped
dramatically. Among all of the baseline models, the baseline used in this study performed
the best on OA, kappa, and MSE in the three groups of the Ludian dataset.

Table 6. The quantitative comparison of different baseline models for classification of building
damage in the Ludian dataset.

Model Name Group 1 Group 2 Group 3
OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

DenseNet 91.09 0.76 0.09 79.21 0.65 0.27 69.63 0.58 0.43
ResNet50 92.52 0.79 0.07 81.32 0.68 0.20 71.26 0.61 0.37

InceptionV3 92.62 0.79 0.07 81.41 0.68 0.23 72.99 0.63 0.35
Xception 92.43 0.79 0.08 79.12 0.64 0.26 65.80 0.53 0.43

MobileNet 92.81 0.80 0.07 80.46 0.66 0.24 72.22 0.62 0.33
VGG16 93.29 0.81 0.06 81.61 0.68 0.22 73.37 0.63 0.30
Baseline 93.39 0.82 0.06 83.52 0.72 0.18 74.23 0.64 0.30

The bold font indicates the best accuracy of each indicator.

A similar conclusion can be drawn in the Yushu dataset. As shown in Table 7, for Group
1, all of the baseline models exhibited excellent performance, with an overall accuracy
higher than 90%. VGG16 showed the best OA in Group 1, which was 0.42% higher than
that of the adopted baseline model. For Groups 2 and 3, the best OA was obtained using
the adopted baseline model, which was 0.85% and 1.28% higher than that of VGG-16.
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Table 7. The quantitative comparison of different baseline models for classification of building
damage in the Yushu dataset.

Model Name
Group 1 Group 2 Group 3

OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

DenseNet 92.44 0.82 0.07 76.32 0.60 0.38 63.34 0.50 0.66
ResNet50 93.58 0.85 0.06 76.03 0.61 0.32 63.20 0.50 0.60

InceptionV3 92.58 0.83 0.07 75.46 0.58 0.35 63.62 0.51 0.58
Xception 92.86 0.84 0.07 76.46 0.61 0.29 61.91 0.48 0.59

MobileNet 92.87 0.84 0.07 75.19 0.58 0.39 64.05 0.51 0.59
VGG16 93.72 0.86 0.06 76.18 0.63 0.27 63.91 0.51 0.52
Baseline 93.30 0.85 0.07 77.03 0.64 0.26 65.19 0.53 0.47

The bold font indicates the best accuracy of each indicator.

3.3. Results of Ablation Experiments

In this paper, ablation experiments were performed to demonstrate the contribution of
different modules in EBDC-Net to the classification of building damage, where R represents
the residual connections, S represents the SAM module, and C represents the CFE module.
Tables 8 and 9 show the comparison of the ablation experiments in the Ludian and Yushu
datasets, respectively. Compared with the baseline, when the residual connections, SAM
module, and CFE module were all added to the model, it showed the highest overall
accuracy for the three groups of the two datasets. Compared with the baseline, the OA of
EBDC-Net improved by 1.05% and 1.42% for Group 1, 2.01% and 1.99% for Group 2, and
3.26% and 2.43% for Group 3, in the Ludian and Yushu datasets, respectively.

Table 8. The effects of different modules in EBDC-Net on the accuracy of building damage classifica-
tion in the Ludian dataset.

Model Name
Group 1 Group 2 Group 3

OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

Baseline 93.39 0.82 0.07 83.52 0.72 0.18 74.23 0.64 0.30
Baseline +R 93.58 0.82 0.06 83.81 0.72 0.18 75.19 0.66 0.27

Baseline +R+P 93.67 0.82 0.06 84.10 0.72 0.17 76.14 0.67 0.27
Baseline +R+P+C 94.44 0.83 0.06 85.53 0.75 0.17 77.49 0.69 0.26

The bold font indicates the best accuracy of each indicator.

Table 9. The effects of different modules in EBDC-Net on the accuracy of building damage classifica-
tion in the Yushu dataset.

Model Name
Group 1 Group 2 Group 3

OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

Baseline 93.30 0.85 0.07 77.03 0.64 0.26 65.19 0.53 0.47
Baseline +R 93.58 0.86 0.06 78.60 0.64 0.27 65.48 0.53 0.47

Baseline +R+P 93.86 0.86 0.06 78.74 0.65 0.24 66.48 0.66 0.45
Baseline +R+P+C 94.72 0.88 0.05 79.02 0.65 0.26 67.62 0.56 0.42

The bold font indicates the best accuracy of each indicator.

These results indicate that EBDC-Net showed more significant advantages in building
damage classification tasks where the categories were more finely divided. This is because
the residual connections mitigated the loss of small features as the network deepened. Sec-
ond, SAM enhanced the representation of damage features in the images, and improved the
network’s ability to distinguish between intermediate damage classes. Finally, combining
global and contextual features of the images improved the classification accuracy. Figure 6
is the confusion matrix between the baseline and EBDC-Net in the Ludian and Yushu
datasets. It can be concluded that EBDC-Net is better able to distinguish between buildings
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with different levels of damage. Thus, EBDC-Net helps in the fine-grained assessment of
building damage.
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3.4. Results of Comparison with Different Building Damage Classification Methods

To verify the effectiveness of EBDC-Net in the classification of building damage, we
compared EBDC-Net with four different building damage classification methods. Res-CNN
is a model constructed using the CBR module and residual connection [11]. Dense-CNN is
a CNN model constructed with dense blocks [13]. The full connection layer in VGG-GAP is
replaced by the global average pooling layer [14]. VGG-OR combines the CNN with ordinal
regression [16]. As shown in Tables 10 and 11, the EBDC-Net framework proposed in this
study showed the best performance in all three groups. The OA was 94.44% and 94.72% in
Group 1, 85.33% and 79.02% in Group 2, and 77.49% and 67.62% in Group 3, respectively.
Compared to the other four methods, EBDC-Net had a more significant advantage over
Group 3 than Groups 1 and 2, with an overall accuracy of 13.5% and 9.42% higher than
Re-CNN, 8.34% and 8.13% higher than Dense-CNN, 4.22% and 3.9% higher than VGG-GAP,
and 1.92% and 2.57% higher than VGG-OR, respectively.

Table 10. Comparison of different methods for the task of classifying building damage in the
Ludian dataset.

Model Name
Group 1 Group 2 Group 3

OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

Res-CNN [11] 89.27 0.68 0.10 75.86 0.54 0.37 63.99 0.50 0.49
Dense-CNN [13] 89.08 0.71 0.11 77.68 0.61 0.31 69.15 0.57 0.38
VGG-GAP [14] 93.30 0.81 0.06 83.14 0.71 0.19 73.27 0.64 0.32
VGG-OR [16] 93.29 0.81 0.06 84.58 0.74 0.17 75.57 0.66 0.26

EBDC-Net 94.44 0.83 0.06 85.53 0.75 0.17 77.49 0.69 0.26

The bold font indicates the best accuracy of each indicator.

Table 11. Comparison of different methods for the task of classifying building damage in the
Yushu dataset.

Model Name
Group 1 Group 2 Group 3

OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

Res-CNN [11] 91.44 0.91 0.09 75.32 0.58 0.37 58.20 0.43 0.64
Dense-CNN [13] 92.15 0.83 0.08 76.03 0.60 0.32 59.49 0.44 0.74
VGG-GAP [14] 94.00 0.87 0.06 78.89 0.67 0.23 63.77 0.51 0.56
VGG-OR [16] 93.30 0.85 0.07 77.75 0.65 0.26 65.05 0.53 0.43

EBDC-Net 94.72 0.88 0.05 79.02 0.65 0.26 67.62 0.56 0.42

The bold font indicates the best accuracy of each indicator.

As shown in Table 12, there was a small amount of debris around the intact buildings
in the first and second images, while the buildings in the seventh and eighth images
were buried by large debris, and none of their roofs showed significant damage. EBDC-
Net enhanced the model’s ability to distinguish between texture information and spatial
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structure around the buildings by combining global and contextual features. The third and
sixth images correspond to slightly damaged and severely damaged buildings, respectively.
In both damage classes, the main body of the building was intact, and the damage to the
building was scattered across the roof. SAM can aggregate similar features in images,
enhancing the network’s feature representation, and helping to distinguish buildings in
intermediate damage categories.

Table 12. Comparison of different methods in the refined assessment of building damage (L0: intact;
L1: slightly damaged; L2: severely damaged; L3: collapsed).

Classification Results

Images
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4. Discussion

In the building damage classification task, the model learned the damage character-
istics of buildings from historical earthquake data. After the earthquake, fine-tuning the
model with new data helped to quickly and accurately assess the building damage levels.
In this study, three experiments were designed to explore the role of historical data in the
post-earthquake building damage assessment task. In Test 1, EBDC-Net was trained using
the Ludian dataset and predicted in the Yushu dataset. In Test 2, EBDC-Net was trained
and predicted in the Yushu dataset. In Test 3, the Yushu dataset was used to fine-tune
EBDC-Net, which was trained in the Ludian dataset.

As shown in Table 13, for Test 1, the OA of the model was 88.30% in Group 1, 69.19%
in Group 2, and 56.63% in Group 3. Compared with the results in the Ludian dataset, the
classification accuracy of the model in Groups 2 and 3 decreased sharply. As shown in
Figure 7, the structure, shape, and style of buildings in the two datasets were very different.
The features learned by the model from the Ludian dataset were not enough to represent the
features of damaged buildings in the Yushu dataset, leading to low classification accuracy.

Table 13. Impact of historical data on the refined assessment of building damage.

Test Name
Group 1 Group 2 Group 3

OA (%) Kappa MSE OA (%) Kappa MSE OA (%) Kappa MSE

Test1 88.30 0.75 0.12 69.19 0.52 0.39 56.63 0.41 0.76
Test 2 94.72 0.88 0.05 79.02 0.65 0.26 67.62 0.56 0.42
Test 3 95.86 0.91 0.04 80.02 0.68 0.22 68.33 0.57 0.43

The bold font indicates the best accuracy of each indicator.
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Similarly, in Test 2, the OA of the model in Group 2 and Group 3 was 79.02% and
67.62%, respectively, which was lower than the corresponding accuracy in the Ludian
dataset. The reason for this is that there were much smaller scales of Yushu dataset
images than Ludian dataset images. It was also shown that in the refined assessment of
building damage, the number of samples can have a significant impact on the accuracy of
the assessment.

However, the accuracy of the model was improved dramatically when the network
trained using Ludian images was fine-tuned using a small additional amount of Yushu
images. As shown in Table 11, the OA was 95.86%, 80.82%, and 68.33% for the three groups,
respectively, which was 7.56% and 1.14% higher for Group 1, 10.83% and 1% for Group 2,
and 11.7% and 0.71% for Group 3, compared to Tests 1 and 2, respectively. This is because
the historical earthquake data can provide the basic features of the damaged buildings. By
adding a small number of images from the testing area, more detailed and local features
can be learned, bringing about the improvement of classification accuracy. This indicates
that fine-tuning is an effective strategy for the classification of building damage

Through the visual qualitative analysis of the prediction results of some areas, we can
intuitively understand the model through the assessment of building damage. In this study,
we divided the images into patches, rather than segmentations of individual buildings.
Therefore, a patch may contain several buildings. When a building was cropped into two
or more patches, the damaged features of the building were retained in the corresponding
patches. The EBDC-Net model trained using the Ludian dataset was fine-tuned using the
Yangbi dataset. Figure 8 shows the visualization results of the model evaluation and the
visual interpretation results (ground truth). The model evaluation results were generally
consistent with the visual interpretation results, with an overall accuracy of 75%, a kappa of
0.66, and an MSE of 0.26. In addition, the time needed for UAV image evaluation was tested.
The results show that the average processing time for an image of 5474 × 3648 pixels was
19 s.
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5. Conclusions

In this work, we propose a novel network called EBDC-Net to solve the finer classifi-
cation problem of damaged buildings after earthquakes. The proposed method was tested
using two datasets and compared with four state-of-the-art methods. In addition, the roles
of the residual connection, spatial attention mechanism, and contextual feature extraction
module were also explored. The experimental results demonstrated the following: (1) in the
Ludian and Yushu datasets, the accuracy of the proposed method was at least 1.92% and
2.57% higher compared to state-of-the-art building damage classification methods; (2) with
the introduction of the above three strategies, the classification accuracy was improved by
3.26% and 2.43% in the Ludian and Yushu datasets, respectively, compared to the baseline
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model; and (3) using the historical earthquake data and the fine-tuned model is a good
strategy to quickly classify the buildings damaged in the new earthquake.

The main contributions of this paper can be summarized as follows:

(1) We propose a novel deep-learning-based model to solve the fine-grained classification
problem of damaged buildings, which is critical to earthquake rescue and post-disaster
damage assessment.

(2) The spatial attention mechanism and the contextual feature extraction module are
embedded in EBDC-Net, which can improve the model’s ability to classify buildings
with different levels of damage.

In the future, we will try to explore the classification of building damage under com-
plex conditions through the use of multimodal and multi-temporal remote sensing images.
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