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Abstract: Application of bio-based fertilizers is considered a practical solution to enhance soil fertility
and maintain soil quality. However, the composition of bio-based fertilizers needs to be quantified
before their application to the soil. Non-destructive techniques such as near-infrared (NIR) and
mid-infrared (MIR) are generally used to quantify the composition of bio-based fertilizers in a
speedy and cost-effective manner. However, the prediction performances of these techniques need
to be quantified before deployment. With this motive, this study investigates the potential of these
techniques to characterize a diverse set of bio-based fertilizers for 25 different properties including
nutrients, minerals, heavy metals, pH, and EC. A partial least square model with wavelength selection
is employed to estimate each property of interest. Then a model averaging, approach is tested to
examine if combining model outcomes of NIR with MIR could improve the prediction performances
of these sensors. In total, 17 of the 25 elements could be predicted to have a good performance
status using individual spectral methods. Combining model outcomes of NIR with MIR resulted in
an improvement, increasing the number of properties that could be predicted from 17 to 21. Most
notably the improvement in prediction performance was observed for Cd, Cr, Zn, Al, Ca, Fe, S, Cu,
Ec, and Na. It was concluded that the combined use of NIR and MIR spectral methods can be used to
monitor the composition of a diverse set of bio-based fertilizers.

Keywords: Near-infrared (NIR) and Mid-infrared (MIR) spectroscopy; bio-based fertilizers; partial
least square regression; wavelength selection; model averaging

1. Introduction

With an ever-increasing world population, the demand for food is growing at an
alarming rate [1]. To meet this increasing demand for food, agricultural production thrived
on the use of chemical fertilizers during the past few decades to improve soil fertility
and help increase crop yield [2]. However, the use of chemical fertilizers is not without
drawbacks. Chemical fertilizers are based on limited natural resources (e.g., phosphorus
P) or energy-consuming chemical processes (e.g., Nitrogen N). The excessive use of chem-
ical fertilizers can also negatively impact the environment through eutrophication and
acidification [3,4].

To address the negative impacts of synthetic fertilizer, modern agriculture is exploring
the application of bio-based fertilizers. Bio-based fertilizers have a long history of use in
agriculture, including compost, manure, and bio-solids. However, during the post world
war 2 (WW2) era, an increasing focus is on chemical fertilizers due to their effectiveness in
raising crop production by rapid release of nutrients, abundant and low-cost availability,
and ease of application [5]. Most bio-based fertilizers, on the other hand, have slow-release
characteristics that may reduce the risk of environmentally deleterious losses. Bio-based
fertilizers contain not only major nutrients (nitrogen (N), phosphorous (P), and potassium
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(K)) but also contain macro-nutrients magnesium (Mg), calcium (Ca) and iron (Fe). Bio-
based fertilizers have the potential to improve crop yield and improve soil quality by
maintaining organic matter [6,7].

The application of bio-based fertilizers for plant growth and soil fertility enhancement
has many positive attributes, while excessive application may lead to pollution. Depending
on the origin, bio-based fertilizers might also contain elements arsenic (As), boron (B),
cadmium (Cd), chromium (Cr), copper (Cu), fluorine (F), lead (Pb), manganese (Mn),
mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn) [8–10]. If
added in excess, these elements are toxic both for human health and the environment [10].
One major drawback of bio-based fertilizers over their synthetic counterparts is that the
nutrients are not readily available for plant uptake. Without risking the over-application of
one or more key elements, information on their composition ( concentration of nutrients
and their plant-available forms) is needed. This information about composition will allow
agronomists to further assess whether crop-specific, region-specific, and season-specific
fertilizers are feasible [11].

The nutrient concentration of bio-based fertilizers can be quantified by traditional
chemical methods of analysis, which often involve digestion, titration, and distillation
processes. Although these chemical analysis methods are considered accurate and precise,
the steps involved in these chemical analysis methods are time-consuming and involve
the use of different chemicals and complex laboratory equipment [12]. To acquire the
composition information of bio-based fertilizers quickly, accurately, and economically,
nondestructive and pollution-free techniques are needed.

Non-destructive testing (NDT) refers to the assessment process of materials for physi-
cal/chemical analysis without altering the original attributes of the sample. Typically, such
methods require less sample preparation time and are therefore a cost-effective means of
testing if accuracy can be maintained [13,14]. Spectroscopy techniques like near-infrared
(NIR) and mid-infrared (MIR) are an economic alternative when multiple analyses and
samples are required because they do not require expensive and time-consuming sample
preprocessing, provided that the appropriate calibrations exist [15]. For all of these reasons,
spectroscopic techniques have the potential for real-time characterization of bio-based
fertilizers at the time of application to soil.

NIR spectroscopy has been investigated previously for characterization in agro-
industrial compost [16], food [17,18], soils analysis [19–21], plants sciences [22], phar-
maceuticals [23]. The application of NIR spectroscopy to bio-based materials (manure)
has been reported by Ye et al. [24] for the prediction of N, P, K, and NH3-N content.
Huang et al. [25] reported the feasibility of the prediction of (K, Ca, Mg, Fe, and Zn) in
animal manure compost products using NIR. Recently, Bedin et al. [26] reported the use of
NIR to predict the C, N, P, and K content in poultry litter with improved prediction accuracy,
while Baldock et al. [27] found that NIR was capable of predicting the decomposition pa-
rameters of a wide range of bio-based fertilizers. NIR spectroscopy is considered a flexible
technique due to the availability of chemometric evaluation tools and software, and the
often limited sample preparation required [28]. Although NIR spectroscopy is a powerful
tool and can be used to determine many properties within a wide range of analyses, it does
have limitations. An example is the poor detection of phosphates and other inorganic P
compounds due to the weak dipole moment of P–O [29]. Similarly, Heavy metals content
is spectrally inactive in the NIR region, but can be predicted indirectly by correlating them
with Fe, Al and Mn oxides and organic matter [30,31]. Wu et al. [30] concluded that the
indirect correlation is only possible at higher concentration (≥1000 mg kg−1).

To potentially overcome some of these problems associated with NIR spectroscopy,
Mid-infrared (MIR) spectroscopy which ranges from 2500–4000 nm, can be used for the
characterization of different materials where NIR fails to produce acceptable results. MIR
spectroscopy has been shown to give a better estimation of some soil properties compared
with NIR spectroscopy [32,33]. Reeves et al. [34] reported an effective prediction of many
soil properties using MIR spectroscopy. However, MIR has limitations for reliable analysis
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in non-homogeneous samples, and the size of the sample greatly affects its prediction
capability [35]. Rourke et al. [36] and Javadi et al. [37] concluded that NIR and MIR
spectroscopy techniques individually have the potential to predict certain elements with
improved prediction accuracy while not predicting others. Hence, a potentially improved
multi-sensor fusion approach could be realized by taking advantage of both NIR and MIR
spectroscopy to quantify a range of nutrients in bio-based fertilizers.

To use the useful information present in two or more spectral sensors, different ap-
proaches like spectral fusion and model averaging can be utilized. Spectral fusion means
combining spectra from two or more sensors and is expected to improve prediction accuracy.
Previously, Wang et al. [31] showed that spectral fusion through concatenation of portable
X-ray fluorescence (pXRF) with visible near-infrared (Vis-NIR) can improve the prediction
capability for total carbon (TC) and total nitrogen (TN). A similar approach has been pro-
posed by Aldabaa et al. [38] and Chakraborty et al. [39] for soil analysis, where the fused
spectral model outperformed the models that utilized individual spectral information.

The fusion of spectral information from NIR and MIR can increase the useful informa-
tion about a particular component, as well as amplify redundant and unwanted signals.
The inclusion of unwanted signals therefore sometimes results in a reduction in prediction
capability and can make the prediction model more complex [36,40]. The redundant and
unwanted signals can be eliminated by using different wavelength selection techniques. In
wavelength selection techniques only those wavelengths in the NIR and MIR spectral range,
which are highly correlated with the response variables are selected and the unwanted
signals are discarded. This selection of useful wavelengths is expected to improve the
individual prediction from both sensors as well as reduce the redundancy in information.

Alternatively, the model averaging technique proposed by Granger et al. [41] can
be used to overcome the problem associated with spectral fusion [36,42]. In the model
averaging the individual prediction results from different sensors is combined and is
expected to enhance prediction due to the complementary nature of the sensors used.

For use of bio-based fertilizers, a non-destructive measurement technique is needed
that can determine a wide range of components, like nutrients, their plant-available forms
as well as some minerals and heavy metals with sufficient accuracy and precision. A
literature review revealed: (1) that NIR and MIR-based techniques could be used to that
end, but will not be sufficient on an individual basis. Improved performance is expected
from the fusion of information from both sensors. (2) so far NIR and MIR-based techniques
have been investigated on a very limited set of chemical constituents of a limited set of
different bio-based fertilizers.

Thus, this work contributes by sensing the contents of 25 nutrients in different bio-
based fertilizers (manure, bio-solids, plant residues, and composts) using NIR and MIR
spectroscopy. Furthermore, for improvement of estimations, a wavelength selection method
followed by the model averaging technique is investigated to get the benefits of fusing the
results from NIR and MIR sensors.

2. Materials and Methods

A dataset of 85 amendments was taken from Farrel et al. [43], described in
Baldock et al. [27]. The data set describes 85 different bio-based fertilizers, including 50 com-
posts from different composting facilities across Australia, 6 manure samples from different
animals (cow, pig), 10 fresh plant residues derived from the major Australian crop species
and some alternative species, and 19 biosolids obtained from a range of urban and ru-
ral wastewater plants. These spectral datasets enabled the testing of the robustness of
prediction models using NIR and MIR spectra and model averaging.

2.1. Chemical Analysis

Data on the nutrient content and other chemical properties of the 85 bio-based fertiliz-
ers were obtained using standardized chemical analysis [43]. Briefly, pH and electrical con-
ductivity (EC) were quantified using standard electrodes in a solid: water slurry (1:5 w/v).
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Total nitrogen (N) was quantified by high-temperature combustion analysis (Leco CNS
2000, Leco Corporation, St Joseph, MI, USA). The available free amino acid N (FAA-N)
and ammonium-N (NH4-N) were quantified in 1:5 w/v water extracts by fluorimetry and
colorimetry on a multimode plate reader (Synergy MX, Biotek, Winooski, VT, USA) using
the methods of Jones et al. [44], Miranda et al. [45], and Mulvaney et al. [46], respectively.
Total major and minor elements were quantified by inductively coupled plasma-mass
spectroscopy (ICP-MS; 7500cx, Agilent Technologies, CA, USA) following HClO4/HNO3
digestion in open digestion tubes in a heated block [43]. The summary of the different
properties of the 85 bio-based fertilizer samples is shown in Figure 1. The summary shows
that heavy metals and trace elements concentration is for elements Ni, Zi, Mn, Se, Pb, Mo.
Cr, Cu, Cd, and As is very low (less than 1000 mg kg−1) in the selected samples. The lower
concentration of these elements might make it difficult to measure through NIR and MIR
as suggested by Wu et al. [30].

Figure 1. Chemical distribution of plants’ essential nutrients (N, P, K and plant-available form of
nitrogen), and total elements derived through chemical analysis from bio-solid (red-color circles),
composts (orange-color circles), manure (green-color circles) and plants residues (blue-color circles).
y-axis shows the concentration of each element with all units in mg kg−1 except N which is in mg g−1

and the number of each element is shown on the x-axis. (a–x) Different properties of the 85 bio-based
fertilizer samples.

2.2. Sample Characterization

The 25 properties of interest presented in this paper belong to three broad categories.
(1) Essential plant nutrients (N, P, K) and plant-available forms of nitrogen (Nitrate (NO3-
N)free amino acid (FAA-N) and NH4-N), (2) other elements and micronutrients (S, Al, As,
Ca, Cu, Na, Fe, Mg, Mo, Ni, Mn, Zn, Cr, Co, Cd, Pb, and Se) and (3) properties pH and EC.
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The total data set (n = 85) was divided into a training set (80% i.e., n = 67) and test set (20%
i.e., n = 18) according to Table 1 to ensure homogeneity over the train and test sets.

Table 1. Train test split from each sample.

Type Total Train Test

composts. 50 40 10
manure. 6 4 2

plants residues. 10 8 2
bio-solids. 19 15 4

From the chemical distribution shown in Figure 1, it can be seen that the nutrient
content between the sample groups has an obvious gradient distribution, which can well
represent bio-based fertilizers in practical applications. The distribution of the concentra-
tions of the elements is skewed, and the high variation of the concentration of elements
in the data set enabled us to analyze why the predictions of some samples are better than
others and how the concentration of an element changes the prediction capabilities of
the model.

3. Model Development

Partial least squares regression (PLS) is one of the most widely used multivariate
prediction methods in chemometric analysis. PLS projects spectral data into latent variables
that explain the variances within the spectral data. Given a spectral matrix X and the
corresponding truth matrix Y, PLS is used to find the scores (T and U) with loading (P
and Q) and error matrix (F) from the decomposition of X and Y as given in Equations (1)
and (2):

X = TP′ + FxY = UQ′ + Fy (1)

While the original space relation is:

Y = XB + E (2)

where matrix B is the regression coefficient and E is the residuals matrix. After the selection
of characteristics wavelengths, the partial least squares regression model was established.
The model was created using the optimal number of latent variables (lvs). The calibration
set data was used to find the optimal number of latent variables, and the model obtained
was used to predict the prediction set data.

3.1. Data Prepossessing

Pre-processing of NIR and MIR spectra is considered an important part of any quanti-
tative or qualitative analysis [47,48]. Performing spectroscopy in the laboratory or in the
field is often influenced by noise. This noise can reduce the signal-to-noise ratio (SNR) of
the spectral information and, therefore, negatively affect a calibration model’s accuracy.
Other challenges associated with NIR/MIR spectra include complex backgrounds and
baselines, which introduce unwanted variations in the spectra and make calibration of the
model complicated [49]. To deal with these problems the spectra are often pre-processed
before any analysis. In the present study, the data set was mean-centered and pre-processed
for baseline offset followed by a second-order polynomial de-trending algorithm. No fur-
ther preprocessing was performed as this might have a negative impact on the prediction
performance [50,51].

3.2. Optimal Wavelength Selection

In NIR and MIR spectroscopy, it is a challenge to identify upfront or prior to the
wavelength bands, which will contain most of the information about the response vari-
able [52]. Therefore all wavelengths are measured in the full NIR and MIR range. Sensing
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the whole range of wavelengths automatically also leads to the inclusion of irrelevant or
less informative wavelengths. This inclusion of irrelevant or less informative signals has
a negative impact on the prediction ability of the model and also might make the model
unnecessarily complex [42,53,54]. In addition, the inclusion of this irrelevant information
makes model interpretation difficult. Therefore, it is challenging to determine in advance
which wavelengths or combinations are responsible for estimating the property of inter-
est [52]. Hence measurement of the full NIR and MIR range, and then the identification
and selection of a combination of wavelengths that contain information about response
variables (nutrient content) are expected to improve prediction performance [55]. The
wavelength selection can also help interpret fingerprint regions across the NIR and MIR
spectral data which correspond to each response variable.

A simple method proposed by Frenich et al. [56] based on the PLS regression coeffi-
cients (B) is used in this paper for the selection of characteristic wavelengths. The method
proposes that the value of B can be used as a measure of importance for an individual
wavelength in the prediction of the response variable. This is similar to the interpretation of
parameters in linear regression. A high absolute value of B indicates that the corresponding
wavelength λi is more important and has a high correlation with the response variable and
vice versa [42].

The method of wavelength selection using B is implemented in three steps. First,
the PLS model is fitted and optimized in the entire spectrum to find the optimum latent
variables (lvs). The latent variables are optimized by observing the mean square error
(MSE) as shown in Figure 2. The optimum number of lvs are the ones where the MSE of
cross-validation is minimum.

Figure 2. Mean square error as a function of the number of latent variables (without variable selection
for nitrogen content).

PLS regression coefficients are extracted and their absolute values are arranged in
ascending order. The NIR spectra and the corresponding regression coefficients for nitrogen
as a response variable are shown in Figures 3 and 4.
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Figure 3. NIR pretreated spectrum.

Figure 4. PLS regression coefficients absolute values against each wavelength for nitrogen contents.

In the second step, the wavelengths (for each spectra) are sorted using the indices as
corresponding to the sorted absolute value of the PLS regression coefficient.

In the third step, wavelengths that had a low B value and low correlation with the
response variable are discarded using Algorithm 1. The algorithm iterate and discard one
wavelength at a time (the one with the lowest absolute value of the associated regression
coefficient) and rebuild the calibration model and evaluate the mean square error (MSE) of
the cross-validation set. At some point, removing wavelengths will increase the MSE, and
that is the stopping criterion for the optimization algorithm. The remaining wavelengths
were selected and it was expected that they will improve the prediction performance of
the model. The wavelength selected for the nitrogen content in NIR spectra is shown in
Figure 5.
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Algorithm 1 Wavelength selection algorithm

1: Fit PLS model on NIR/MIR spectral data
2: Find MSE of cross-validation (CV)
3: Store MSE as MSE(0) for the start of the loop
4: Find all the regression coefficients(B)
5: Arrange B in ascending order
6: Arrange spectra accordingly
7: procedure WAVELENGTH SELECTION(λ)
8: initialize i = 1
9: Discard one wavelength at time λ(i)

10: Fit PLS on remaining wavelengths
11: Find MSE of CV
12: if MSE(i) ≤ MSE(i− 1) then
13: Discard Wavelength
14: i = i + 1
15: Repeat step 9
16: else
17: Stop
18: Print all the discarded wavelengths
19: Print all the remaining wavelengths
20: Selected wavelengths = remaining wavelengths

Note: The remaining number of wavelengths must be greater than or equal to optimize
the number of lvs.

Figure 5. Selected bands of wavelengths for nitrogen contents.

3.3. Model Averaging

In the model averaging method, the results of the NIR and MIR spectral analysis are
combined to improve the prediction results as proposed by Granger et al. [41] and shown in
Figure 6. The proposed method uses ordinary least squares regression to utilize covariance
structure in the prediction errors, where the weighting attributed to the prediction result of
each sensor does not necessarily sum to one [36]. The wavelength selection algorithm is
applied individually on NIR and MIR to select the characteristics wavelengths and then
the prediction results from each sensor are combined using Equation (3). To the predictions
obtained from each individual sensor, weights are assigned according to their performances
in the training set. The results from NIR spectra get a higher weight if it has a lower RMSE
value compared to MIR spectra and vice versa as shown in Equation (3).

Y′i = W0 + (W1 ·Y′NIR) + (W2 ·Y′MIR) (3)
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where Y′i contains the observed vector of the response variable (element of interest), Wo
is the intercept, Y′NIR and Y′MIR are the individual prediction results of the NIR and MIR
spectral models, and W1 and W2 are the weights assigned to the NIR and MIR predictions,
respectively. Ordinary least squares (OLS) regression is used to find the values of Wo, W1,
and W2. For model development, the prediction results of training and test data sets from
NIR and MIR were concatenated, resulting in a two-column feature matrix.

Figure 6. Model averaging for NIR and MIR prediction.

3.4. Model Assessment Criteria

For model assessment, the performance parameters, root mean square error (RMSE),
correlation coefficient R2, and the ratio of performance deviation (RPD) were used. R2

shows the goodness of fit between the predicted value and the experimental value. As
proposed by Saeys et al. [57], a value for R2 (0.66∼0.80) indicates approximate quantitative
predictions, whereas a value for R2 (0.81∼0.90) reveals good prediction. Calibration models
having R2 > 0.90 are considered to be excellent. RPD is defined as the standard deviation
of the predicted value divided by the RMSE, which is a measure of the effectiveness
and overall predictability of the regression model. According to Saeys et al. [57] and
Zornoza et al. [58] RPD < 2 is considered insufficient for applications, whereas a value
for RPD between 2 and 2.5 makes approximate quantitative predictions possible. For
values between 2.5 and 3 predictions can be classified as good, and an RPD > 3 indicates
an excellent prediction. RMSE is used to measure the deviation between the predicted
value and the experimental value. The smaller the value of RMSE indicates a smaller
deviation between the predicted value and the experimental value. The calculation of these
parameters are as follows:

RMSE =

√
1
n

Σn
i=1

(Y′i −Yi

σi

)2
(4)

R2 = 1−
Σn

i=1(Yi −Y′i )
2

Σn
i=1(yi − y)2 (5)

RPD =
STD(Yi)

RMSE
(6)

Here y′i and yi are the predicted and actual values of the response variables, y is
the mean value of the actual value of the response variable, and STD(Yi) is the standard
deviation of the actual response variables.
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4. Results
4.1. Near-Infrared (NIR) and Mid-Infrared (MIR) Predictions

The prediction results before and after characteristic wavelength selection for each
sensor (NIR and MIR) are presented in Table 2. The prediction results based on the full
spectrum from both NIR and MIR for N, NH4-N, Al, P and EC were better, However, for
the metal and mineral contents, the results were not satisfactory in the current study. It can
be observed that the results of wavelength selection outperformed the results based on the
full spectrum for all elements. The essential plant nutrients (N, P, and plant-available forms
of nitrogen) are predicted relatively better than the rest of the elements. Nitrogen has the
highest (R2 = 0.94) followed by aluminum (R2 = 0.92), phosphorous, and ammonium ion,
while K was predicted more poorly. The prediction results of N, FAA-N, NO3, pH, Cr, Cu,
Se, Ca, Mn, and P were better in the NIR range, while the predictions of NH4-N, Ec, As, Cd,
Zn, Al, Fe, K, Mg, Na, and S was better in the MIR range in both cases (with and without
wavelength selection). For Co, Mo, Ni, and Pb, the results of the prediction of NIR and MIR
were comparable, though MIR results were slightly better than NIR. The ranking in Table 2
was established for each sensor by observing the RMSE, R2, and RPD values for each sensor.
The sensor having the lowest RMSE, and highest R2 and RPD values are preferred for the
prediction of a particular nutrient. The table shows the ability of individual sensors and
the ranking of each sensor in predicting the nutrient contents. For Na, Zn, Ni, Mo, Cr, Co,
Cd, As and Mn, the prediction of NIR and MIR did not reach an acceptable range, i.e.,
(R2 < 0.7) even with wavelength selection. This is due to the fact that these elements are
featureless in NIR and MIR range [30]. They are mostly indirectly predicted using NIR
and MIR spectroscopy. In terms of predictive performance with R2 > 0.7, 8 elements were
predicted to an acceptable range using NIR spectral method, while 9 elements reached to
an acceptable range using MIR spectral method. The results in Table 2 suggests that MIR
performed better for Al, and Fe. and that is why the prediction performances of metal
content is better in MIR range [36].

If the result with R2 > 0.7 is an acceptable prediction for a particular response variable,
then a total of 17 out of 25 elements were sufficiently predicted with wavelength selection,
as shown in Table 2. Improvement in prediction results is expected by combining the results
from both NIR and MIR using model averaging as proposed by Rourke et al. [36] and are
presented in the next section.

Table 2. The goodness of fit for essential nutrients for plants (N. P, K and plant-available form of
nitrogen) and total elements derived from near-infrared (NIR) and mid-infrared (MIR) with and
without wavelength selection. All units are g kg−1, except Cd, As, Cr, Se, Mo, and Ni in mg kg−1.

Prediction Results without Wavelength Selection Prediction Results with Wavelength Selection

NIR MIR NIR MIR

Element RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD Ranking

N 3.92 0.88 2.86 4.87 0.85 2.3 2.88 0.94 6.94 3.56 0.92 5.4 NIR
FAA-N 0.46 0.68 1.96 0.54 0.63 1.81 0.24 0.79 2.21 0.27 0.78 2.12 NIR
NO3-N 0.60 0.66 1.74 0.62 0.61 1.58 0.4 0.73 2.48 0.59 0.70 2.18 NIR
NH4-N 0.71 0.82 2.43 0.63 0.87 2.85 0.66 0.88 2.87 0.59 0.92 3.69 MIR

EC 1.23 0.8 2.31 1.12 0.82 2.56 1.13 0.85 2.61 1.08 0.86 2.72 MIR
pH 0.31 0.78 2.21 0.43 0.71 1.92 0.27 0.82 2.38 0.35 0.76 1.83 NIR
As 3.38 0.63 1.8 3.35 0.67 1.86 3.06 0.68 1.66 3 0.7 1.82 MIR
Cd 0.45 0.47 1.32 0.39 0.54 1.51 0.37 0.54 1.47 0.32 0.63 1.66 MIR
Co 7.43 0.61 1.7 7.54 0.63 1.73 5.59 0.66 1.78 5.6 0.67 1.79 MIR/NIR
Cr 17.17 0.53 1.37 21.01 0.47 1.31 13.76 0.67 1.69 18.11 0.56 1.5 NIR
Cu 0.13 0.63 1.43 0.15 0.57 1.37 0.09 0.72 1.89 0.097 0.7 1.81 NIR
Mo 10.21 0.09 0.97 10.06 0.11 0.98 8.81 0.12 1.08 8.76 0.15 1.1 MIR/NIR
Ni 10.13 0.39 0.92 10.07 0.41 0.98 8.7 0.45 1.12 8.6 0.47 1.2 MIR/NIR
Pb 0.09 0.67 1.91 0.081 0.71 1.98 0.043 0.75 2.03 0.042 0.76 2.06 MIR/NIR
Se 0.51 0.79 2.64 0.54 0.75 2.61 0.38 0.87 2.82 0.39 0.86 2.72 NIR
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Table 2. Cont.

Prediction Results without Wavelength Selection Prediction Results with Wavelength Selection

NIR MIR NIR MIR

Element RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD Ranking

Zn 0.36 0.26 1.11 0.25 0.34 1.23 0.27 0.32 1.5 0.18 0.41 1.55 MIR
Al 7.8 0.75 2.11 6.12 0.83 3.24 5.5 0.84 2.5 3.8 0.92 3.68 MIR
Ca 6.13 0.73 2.09 6.38 0.67 1.96 4.3 0.82 2.39 4.72 0.78 2.18 NIR
Fe 15.56 0.61 1.74 12.23 0.76 2.48 12.88 0.73 1.98 9.91 0.84 2.58 MIR
K 1.82 0.65 1.87 1.78 0.71 1.93 1.67 0.76 2.03 1.62 0.77 2.1 MIR

Mg 1.83 0.67 1.89 1.79 0.71 1.94 1.56 0.75 2.03 1.53 0.76 2.05 MIR
Mn 0.31 0.61 1.78 0.33 0.58 1.67 0.17 0.73 1.98 0.18 0.66 1.74 NIR
Na 2.12 0.43 1.31 2.21 0.53 1.39 2.014 0.56 1.51 1.95 0.59 1.56 MIR
P 3.54 0.86 3.23 3.92 0.81 2.89 2.67 0.93 3.8 3.12 0.9 3.24 NIR
S 1.38 0.76 2.33 1.36 0.78 2.45 1.08 0.83 2.46 1.05 0.85 2.57 MIR

4.2. Prediction of Elements Using Model Averaging NIR and MIR Results

The combined results from NIR and MIR prediction using model averaging are shown
in Table 3. The wavelength selection algorithm is applied individually to spectral data of
NIR and MIR and then the prediction results are combined using Equation (3). The percent
improvement in prediction from both NIR and MIR sensors indicates that model averaging
is a good technique for combining the prediction results. The percent improvement in
Table 3 shows that model averaging improved the prediction of Zn, Al, Cr, Cd, Ca, and Fe
substantially in terms of RMSE, R2, and RPD from both NIR and MIR individual results. A
positive improvement in prediction results was observed for all properties compared to the
results obtained from individual sensor predictions.

For elements Pb, K, Cu, Cr, Mn, As, Cd, and Co, 0.75 ≤ R2 < 0.81 was observed using
model averaging. The prediction result for elements Cr, Co, Cd, As and Mn using model
averaging reached to an acceptable range (R2 > 0.7). Major and trace elements (Ni, Zn,
Mo, and Na) were difficult to predict using individual senor results and model averaging
couldn’t improve their prediction to acceptable range. The unreliable predictions of Ni, Zn,
Mo, and Na present a barrier for the combine use of NIR and MIR for the quantification of
composition of bio-based fertilizers. If the result with R2 > 0.7 is considered an acceptable
prediction as proposed by Saeys et al. [57], then a total of 21 out of 25 elements are predicted
with wavelength selection and model average, as shown in Table 3. overall, the reasonable
to good prediction of most nutrients, trace elements and metal contents in the current study
using model averaging of NIR and MIR results suggests that measurement of full suite
composition of bio-based fertilizers might be possible if other sensors are combined with
NIR and MIR.

Table 3. The goodness of fit for major nutrients (N. P, K and plant-available form of nitrogen), and
other properties derived from model averaging of NIR and MIR prediction results. All units are
g kg−1, except Cd, As, Cr, Se, Mo, and Ni in mg kg−1.

Model Averaging Percent Improvement from NIR Percent Improvement from MIR

Element RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

N 2.84 0.96 6.98 −1.39 2.13 0.58 −20.22 4.35 29.26
FAA-N 0.22 0.81 2.34 −8.33 2.53 5.88 −18.52 3.85 10.38
NO3-N 0.37 0.76 2.57 −7.50 4.10 3.60 −37.28 8.57 17.88
NH4-N 0.57 0.94 3.8 −13.64 6.82 32.40 −3.39 2.17 2.98

EC 0.99 0.89 2.97 −12.39 4.71 13.79 −8.33 3.49 9.19
pH 0.25 0.85 2.6 −7.41 3.66 9.24 −28.57 11.84 42.08
As 2.91 0.75 2.1 −4.90 10.29 26.51 −3.00 7.14 15.38
Cd 0.27 0.75 2.02 −27.03 38.89 37.41 −15.63 19.05 21.69
Co 4.84 0.75 1.98 −13.42 13.64 11.24 −13.57 11.94 10.61
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Table 3. Cont.

Model Averaging Percent Improvement from NIR Percent Improvement from MIR

Element RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

Cr 9.82 0.77 2.08 −28.63 14.93 23.08 −45.78 37.50 38.67
Cu 0.079 0.8 2.21 −12.22 11.11 16.93 −18.56 14.29 22.10
Mo 8.34 0.16 1.2 −5.33 33.33 11.11 −4.79 6.67 9.09
Ni 8.58 0.48 1.21 −1.38 6.67 8.04 −0.23 2.13 0.83
Pb 0.038 0.81 2.32 −11.63 8.00 14.29 −9.52 6.58 12.62
Se 0.35 0.89 3.06 −7.89 2.30 8.51 −10.26 3.49 12.50
Zn 0.14 0.53 1.67 −48.15 65.63 11.33 −22.22 29.27 7.74
Al 3.18 0.94 4.12 −42.18 11.90 64.80 −16.32 2.17 11.96
Ca 3.22 0.9 3.19 −25.12 9.76 33.47 −31.78 15.38 46.33
Fe 9.56 0.85 2.68 −25.78 16.44 35.35 −3.53 1.19 3.88
K 1.54 0.8 2.2 −7.78 5.26 8.37 −4.94 3.90 4.76

Mg 1.36 0.81 2.28 −12.82 8.00 12.32 −11.11 6.58 11.22
Mn 0.16 0.75 2.02 −5.88 2.74 2.02 −11.11 13.64 16.09
Na 1.77 0.66 1.71 −12.12 17.86 13.25 −9.23 11.86 9.62
P 2.51 0.94 4.31 −5.99 1.08 13.42 −19.55 4.44 33.02
S 0.81 0.91 3.33 −25.00 9.64 35.37 −22.86 7.06 29.57

5. Discussion

The potential of NIR and MIR spectroscopy was investigated both in full range, as
well as selected wavelengths, the range for estimation of bio-based fertilizers composition.
The results based on the full range of NIR and MIR spectrum were encouraging for some
essential nutrients (N, NH4, Al, and P) but could not produce promising results for other
elements. The prediction results for the full range of NIR and MIR spectrum, suggest that
a total of 13 properties were predicted to an acceptable range (R2 > 0.70) [57]. The poor
results might be due to the irrelevant information included in the spectral range [42,53,59]
which makes the calibration model complex. Therefore, the wavelength selection technique
for each response variable resulted in improved prediction from both NIR and MIR full
range. The improvement in the prediction performance can be viewed in terms of RMSE,
R2, and RPD as shown in Table 1. Prediction results from selected wavelength enabled
the prediction of 17 elements out of 25 to an acceptable range in the current study. The
prediction results and the corresponding ranking in Table 2 suggest that NIR can produce
better results for certain elements while MIR can be useful for others. By combining both
NIR and MIR using model averaging outperformed both the individual results as shown
in Table 3.

The model averaging of results obtained from individual sensors improved the pre-
diction for each response variable. Maximum improvement in terms of RMSE, R2 and
RPD are observed for Cd, Co, Cr, and Mn which were not predicted to an acceptable range
according to the criteria of R2 > 0.7 by individual sensors. For Al, Ca, Fe, Mg, S, NH4-N
substantial improvements were observed. The prediction results for both individual sen-
sors and the model averaging for Ni, Zn, Mo, and Na did not reach an acceptable range
(R2 > 0.70), although, substantially improved from individual sensor predictions [57]. The
lower prediction of metal content was expected as they are spectral inactive in NIR and
MIR range. Their predictions are only possible by linking them with other properties which
show more features in NIR and MIR range [59]. As proposed by Wang et al. [30] NI, Zn,
Mo, and other metals contents can indirectly be predicted only if their concentration is
not less than 1000 mg kg−1. Thus the lower concentration of these elements in the current
study might be another reason for their poor predictions.

The set of sample in the current study is diverse and contain four different sources, the
correlation between metal content and the spectrally active element might be different in
each source. This can affect the indirect prediction of some of the metal elements and result
in their poor prediction. In order to overcome the problem associated with NIR and MIR
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alternate sensors can be investigated in future studies [36]. Alternative sensors namely,
X-ray fluorescence (XRF) and Fourier transform infrared photoacoustic spectroscopy (FTIR-
PAS) sensors might be more effective in predicting these properties [60,61].

Overall, model averaging improved the prediction of all the elements of interest in
the current study. The results shown in Table 3, demonstrate that 21 out of 25 properties
were predicted using the model averaging strategy. This improvement for the detection of
nutrients and other elements can be compared with the results obtained for NIR and MIR
in the literature. Huang et al. [25] evaluated different nutrients and elements (N, Fe, Mg,
Ca) in manure using NIR and, in comparison, the model averaging perform better in terms
of R2 in the current study, despite the fact that the samples selected in the current study
contain four variants (manure, bio-solids, plant residues, and composts).

6. Conclusions

In this study, a wide range of nutrients, their plant-available forms, minerals, and
heavy metal contents are quantified using NIR and MIR spectroscopy in a diverse set
of bio-based fertilizers. A wavelength selection technique is applied for the selection of
characteristic wavelengths, and then the Individual prediction capabilities of NIR and MIR
are investigated for quantification of nutrient contents. A model averaging technique that
combines model outcomes derived from NIR and MIR was then used which resulted in an
improved prediction performance predicting 21 out of 25 nutrients and other properties.
The most notable improvement in prediction was obtained for Cd, Cr, Zn, Al, Ca, Fe, S,
Cu, Ec, and Na. However, for Ni, Zn, Mo, and Na, the obtained prediction results from
model averaging could not reach the acceptable range (R2 > 0.70); although it improved
substantially from individual sensors predictions. Therefore, combining the results from
NIR and MIR spectral methods using model averaging is well placed to replace traditional
wet chemical analysis methods for the analysis of bio-based fertilizers composition. In the
future, we plan to investigate the potential of NIR and MIR with other sensors (XRF, and
FTIR-PAS) to provide more comprehensive coverage of bio-based fertilizer composition.
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