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Abstract: Body to body networks (BBNs) are a kind of large-scaled sensor network that are composed
of several wireless body area networks (WBANs) in the distributed structure, and in recent decades,
BBNs have played a key role in medical, aerospace, and military applications. Compared with the
traditional WBANs, BBNs have larger scales and longer transmission distances. The sensors within
BBNs not only transmit the data they collect, but also forward the data sent by other nodes as relay
nodes. Therefore, BBNs have high requirements in energy efficiency, data security, and privacy
protection. In this paper, we propose a secure and efficient data transmission method for sensor
nodes within BBNs that is based on the perception of chaotic compressive sensing. This method
can simultaneously accomplish data compression, encryption, and critical information concealment
during the data sampling process and provide various levels of reconstruction qualities according
to the authorization level of receivers. Simulation and experimental results demonstrate that the
proposed method could realize data compression, encryption, and critical information concealment
for images that are transmitted within BBNs. Specifically, the proposed method could enhance the
security level of data transmission by breaking the statistical patterns of original data, providing
large key space and sensitivity of the initial values, etc.

Keywords: compressive sensing; information concealment; chaos theory

1. Introduction

With the thriving of technologies that relate to telecommunications, sensors and
networks, the traditional internet with servers, personal computers, and cell phones acting
as interconnection entities have been gradually transforming into the Internet of things
(IoT), which connects vehicles, electric appliances, even human bodies and aims to realize
the interconnection of everything. In order to achieve telemedicine, wireless body area
networks (WBANs), for example, which represent the internet of human beings, implant
specific sensors on the surface of or even in the body of individuals [1–4].

Recently, apart from medical service and health care, WBANs also have the possibility
of applications in military and aerospace fields, such as being applied to monitor vital signs
of soldiers or astronauts and to implement first aid treatments. During routine training,
WBANs could guard trainees by means of collecting training data and adjusting the training
intensity. In military actions, WBANs could assist in developing attackers and defenders’
strategies through monitoring body postures of both our armies and the opponents. On
battlefields, WBANs could contribute to communications between soldiers as well as to
data deliveries to commanders in the base. In addition, WBANs could provide help in
monitoring physical status and positions of soldiers by embedding monitor sensors into
military uniforms. Generally speaking, WBANs play an essential role in enhancing the
accuracy, survivability, and connectivity in virtually every aspect of military operations.
In addition, WBANs could be deployed along with astronauts, and by equipping space
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capsules with WBAN sensors, important data that concern space research as well as physical
status information are transmitted from space to control centers through satellite channels.
Such space applications broaden the scope where WBANs may exert themselves.

The WBAN sensors embedded in human bodies can gather a wide range of vital signs,
such as heart rates, blood pressures, electroencephalograms (EEGs), electrocardiograms
(ECGs), and so forth [5], and some compressive sensing based methods have already been
proposed to deal with such signals [6,7]. The WBAN sensors send data they collect to moni-
toring centers, and thus distant diagnosis could be carried out and proper solutions may be
proposed based on the data received. Because the transmission distances of WBAN sensors
are limited, commonly, WBANs need the aid of additional typical network infrastructures
to transmit data. For example, sensor nodes within WBANs that are distributed in various
parts of individual bodies first send the data they collect to mobile phones, computers,
satellites, or other types of terminals, and then these terminals transmit these data to moni-
toring centers or remote databases through Internet or satellite channels. WBANs are also
sought after as they have expanded the service scope of traditional medical services that
need specific time and workplaces and helped to realize a real-time and mobile mode of
medical services.

Apart from limited transmission distances, the WBANs that concern military or space
technologies and medical applications often have a limited number of participant entities.
When accompanied with the extension of application scopes, being applied in occasions
such as major sport events, military actions, or disaster rescues, for instance, WBANs
are required to be transferred from centralized data communication modes to distributed
ones, and therefore body to body networks (BBNs) are gradually formed. BBNs can be
regarded as extended WBANs, that is, multiple WBANs are interconnected with each other
to generate a BBN. As a result, entities within WBANs could not only interact with other
nodes in the same WBAN, but could also communicate across different WBANs, namely,
WBANs can communicate with each other.

As shown in Figure 1, a BBN that consists of three WBANs is used to monitor vital signs
of human beings, battlefield environment data, enemy intelligence, and other information,
and such information could be exchanged between WBANs or to be sent to remote control
centers. At the same time, in the light of the control signals and feedback commands that
are transmitted from remote control centers, soldier nodes could be timely administered
and arranged, so that efficient military operations are realized. The data gathered by BBNs
vary along with the changes in environment and location. The information monitored
by BBN sensors, such as human postures and vital signs, is sent by wireless networks
and contributes to drawing up operation plans and making decisions, for example, timely
evacuation commands could be instructed beforehand as a result of certain discoveries
found in data transmitted by BBNs, so as to avoid unnecessary casualties or economic loss.

Moreover, compared with WBANs, BBNs often have larger network scales, longer
transmission distances, and wider transmission ranges. Sensor nodes within BBNs not only
transmit data caught by themselves, but also forward data collected by other nodes, and
such a process causes massive energy consumption. However, BBN sensors are frequently
battery-powered, and batteries that are installed on the surface of human bodies or even
embedded in the body of individuals are inconvenient to be recharged or replaced. When
battery power is exhausted, BBN nodes tend to lose efficiency. Therefore, it is critical to
settle energy saving issues when designing data transmission schemes within BBNs, and a
practical measure could be to reduce the amount of communication data by compressing
the data to be transmitted.
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Figure 1. The network structure of a BBN. Each WBAN consists of a number of person nodes with
sensors on or in their bodies. Three WBANs form a BBN and could interact with one another.

Another difficulty to be overcome is to address eavesdropping problems within BBNs.
Because BBNs commonly use wireless transmission technology, network links throughout
BBNs may be open and vulnerable to eavesdropping. In particular, such networks are often
teeming with private data related to human bodies or confidential information concerning
militaries, space technologies, etc. Therefore, in the process of BBN data transmission, an
encryption scheme is a must to prevent eavesdroppers from obtaining sensitive information
so that the security level of data transmission is enhanced. Furthermore, in order to avoid
the potential risk brought by the ownership of a master key that is solely possessed by a
single node in the network of the cryptosystem, a certain security protection mechanism
is needed. For example, it is necessary to ensure that the secret information carried by
original signals will not be disclosed when the person who carries critical data is arrested
by enemies. A feasible method is concealing critical information in original signals by
means of hierarchical authorization for multilevel receivers. At present, the encryption
and compression processes of common schemes are independent. Another issue is, when
processing images or videos by sensor nodes within BBNs or WBANs, their storage or
computing resources barely meet the requirements of the energy, computing, or other
resource consumption level brought by the introduction of classical encryption algorithms.
How to accomplish data compression, encryption, and critical information concealment
efficiently becomes a burning issue to be addressed.

2. Related Work

This section briefly summarizes the medical and military applications of BBNs, re-
source consumption and security problems faced by sensor nodes in BBNs, and recent
progress in the research of compressive sensing (CS) theory.

In recent years, BBNs have already developed a number of applications for medical
services and health care. The CodeBlue project launched by Harvard University attempted
to achieve multi-hop transmission through routing nodes in WBANs [8]. A project called the
Advanced Health and Disaster Aid Network [9], which applied WBANs in disaster rescues,
could only allow a rather limited number of sensors taking part in the communication
process due to restrictions of the bandwidth. A. Milenkovic et al. proposed a Wearable
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Health Monitor System [10], in which a large-scale WBAN for health monitoring was
deployed, but the performance of this system was impacted by energy consumption issues.

There are also a number of research achievements in military applications of BBNs.
At Walter Reed Army Medical Center (WRAMC), research on supplementary treatments
involving cell phones as tools for diabetes treatment was conducted [11], and this could
have a profound impact on the outcome of remedies for the elderly and patients with
diabetes or other chronic diseases by introducing WBANs in remote health monitoring.
Emeka E. Egbogah et al. proposed a cost-efficient data transmission method to meet
the demands of monitoring soldiers’ vital signs [12]. This method reduced the energy
consumption of WBANs worn by soldiers through the means of formulating and solving
two optimization problems.

Currently, WBANs and BBNs offer new possibilities for improving the performance of
individuals and teams in terms of military operations. For instance, WBANs could play
a fundamental role in preventing critical information from being stolen by enemies [13].
In this paper, in order to avoid threats generated by the single node problem, a group
of sensors were deployed to collect important information about the circumstances and
nearby new actions, and, at the team level, the information gathered by sensors could
enable commanders to coordinate tasks with team members. Singh D. et al. visualized
a military health service platform and designed a model based on semantic edge [14].
Salayma M et al. proposed a new military medical application that could assess the level of
soldier fatigue and combat readiness, so as to protect staff in uniform [15].

Aiming at secure and efficient data transmission within BBNs, some solutions are
raised. Several energy harvesting methods are proposed in [16–19]. Energy harvesting
means that nodes within BBNs collect or generate power from human bodies or other
sources to supplement the batteries of sensors. The batteries may be charged by bioenergy
or energies generated from body heat, vibration, or friction of movement, etc. However,
such energy harvesting functions always add specific circuits to the hardware of BBN
sensors, such as energy collectors or power management circuits. In this way, the costs
of sensor nodes are increased, which may be detrimental to widespread deployment of
BBNs. For energy saving, Zhang C et al. proposed a novel medium access control (MAC)
protocol with the function of reducing power consumption [20]. In [21–23], efficient routing
protocols suitable for BBNs were designed, and several energy optimization and control
algorithms were proposed in [24,25].

To account for security, there have been several proposed schemes. S. Al-Janabi et al.
presented a solution for encryption and authentication processes in the link layer of BBNs
and proposed a security suite based on IEEE 802.15.6 standard [26]. X. Liu et al. offered an
information security management system for WBANs to ensure data confidentiality and
integrity [27]. A key generation method that introduced attributes of wireless channels
of BBNs was raised in [28]. L. Wu et al. purveyed an anonymous authentication method
for BBNs, which could resist man-in-the-middle attacks [29]. Finally, in [30], H. Zhu et al.
applied homomorphic encryption to BBNs to realize data collection and query without the
neglect of privacy protection.

The following paragraphs contain a brief introduction of the main research progress
in (compressive sensing) CS. CS theory is a signal sampling and compression theory that
was first proposed by Tao in 2006 [31–33]. Once put forward, this theory has been widely
used in telecommunications, networks, signal processing, radars, aviation, biomedical
applications, etc. CS does not merely address the problem of data compression. It also
achieves data encryption simultaneously. Such characteristics may meet the requirements
of data compression and encryption of sensor networks. Noticeably, CS can realize data
compression and encryption in solely one step [34–36]. Peng et al. improved the generation
process of the measurement matrix and enhanced the security level of data transmission by
introducing chaotic systems, but concealing critical information was not considered [37].
Mehmet Yamaç et al. combined CS and data hiding, although their scheme has not achieved
the acme of perfection in terms of resisting statistical attacks [38].
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To the best of our knowledge, research on BBNs commonly considers data security,
energy efficiency, and critical information concealment issues separately. Although a pro-
portion of existing CS based schemes could accomplish data encryption and compression
at the same time, or could realize efficient data transmission to a certain extent, they did
not address the problems that concerns critical information concealment.

According to the characteristics of BBNs and the above-mentioned issues to be settled,
this paper proposes a secure and efficient data transmission method based on the chaotic
CS model and there are three main contributions.

(1) For the purpose of achieving energy efficiency, it should be considered that the
capacity of batteries installed on BBN sensors is fairly limited, and recharging or replacing
these batteries are often not convenient, especially when the batteries have been implanted
into human bodies. And because of the expansion of network scales, the complexity of
natural or external environments, or the huge volume of data to be transmitted, power of
BBN batteries may consume fast. So, energy saving issues become a must while designing
data transmission schemes applied in BBNs. Based on CS theory, this paper gives an
efficient data transmission method, which completes data compression, encryption and
critical information concealment simultaneously.

(2) For the purpose of realizing transmission security, it should be considered that the
majority of data transmitted in BBNs may contain confidential sections, especially when the
data concern vital signs of human beings or personal information. Especially, while being
applied to medical care or military affairs, BBNs highly probably transmit a substantial
amount of data involving critical or private information. On the one hand, under complex
circumstances of the real world, open links may be vulnerable to be eavesdropped, which
may lead to critical information leaking or other problems. Moreover, even if data are
transmitted solely in internal channels, secure data transmission scheme is also imperative,
since data may be forwarded several times and these processes may generate many copies
of original signals involving critical information. Based on chaos theory, this paper designs
a novel secure data transmission method, which could enhance the security level of data
transmission by breaking the statistical patterns of original data, providing large key space
and sensitivity of the initial values, etc.

(3) For the purpose of enhancing flexibility, the proposed method considers from two
aspects. For data senders, the proposed method can flexibly control the proportion and the
quantity of sections to be concealed which may contain critical information, according to
different scenarios and application requirements. For example, the transmitted information
can be concealed completely by senders without affecting the data recovery quality. In
addition, senders could select independently only one or more sections to be concealed.
For the data receivers, the information they could obtained varied according to their
authorization levels. For instance, the receivers with the restricted authorization could only
achieve the very part of data without critical information, while the receivers with the full
authorization could recovery nearly intact original information.

3. Preliminaries
3.1. Compressive Sensing

Compressive sensing is a signal processing method that was proposed in [31]. It repre-
sents original signals in dimensionally reduced values that are called observational values.
Suppose the original signal is s ∈ RN , and it has a sparse compressible representation in
a basis Ψ ∈ RN×N , that is x = Ψs, where x ∈ RN is a k-sparse vector, namely, there is at
most k of its entries that are nonzero, and in this paper we consider that Ψ is an orthogonal
matrix (ΨΨT = IN×N ,ΨTΨ = IN×N). The compressive sensing process is then taken as

y = As (1)

where A ∈ RM×N (M < N) is the measurement matrix and y ∈ RM consists of measure-
ment values, also named observational values.
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We then obtain
y = AΨΨTs = AΨTx = Φx (2)

where the matrix Φ = AΨT is the sensing matrix, and the sensing matrix should satisfy the
condition proposed by Candès and Tao in [32,33].

A matrix Φ satisfies the restricted isometry property (RIP) of order k if there exists a
δk ∈ (0, 1) such that

(1− δk)‖x‖2
2≤‖Φx‖2

2≤(1 + δk)‖x‖2
2 (3)

holds for all x ∈ ∑k, where ∑k = {x : ‖x‖0 ≤ k} denotes the set of all k-sparse vectors in
Rn.

From Equation (3), we can also infer that, satisfying the rule of RIP with order 2k, the
measurement matrix Φ approximately preserves the distance between any two k-sparse
vectors, which is essential to noise robustness [39].

There are many methods to reconstruct the original signal s from the measurement
values, and orthogonal matching pursuit (OMP) [40] is one of the simplest greedy ap-
proaches to accomplish CS reconstruction. The OMP algorithm first finds the column of A
that is most correlated with the measurements and then repeats this step by correlating the
columns with the residual signal, which is achieved by subtracting the contribution of a
partial estimate of the signal from the original measurement vector.

3.2. Chaotic System and Chaotic Compressive Sensing

Chaos, which is also called non-linear dynamics, is a seemingly irregular movement
with internal randomness that occurs in a deterministic system. Chaotic systems are char-
acteristic of internal randomness, sensitive dependence on initial conditions, boundedness,
aperiodicity, and ergodicity. Tent and logistic systems are two typical chaotic systems and
are defined as follows.

Based on tent system Equation (4), we can get a chaotic sequence z
′
l , l = 1, 2, 3 · · · ,

z
′
l+1 =

{
z
′
l/b, 0 < z

′
l < b

(1− z
′
l)/(1− b), b < z

′
l < 1

(4)

where b, 0 < b < 1 is the chaotic parameter and z
′
0 is an initial value.

Simultaneously, another chaotic sequence zl , l = 1, 2, 3 · · · , with the chaotic parameter
µ and an initial value z0 as inputs, could be generated by logistic system Equation (5),

zl+1 = µzl(1− zl), µ ∈ (0, 4] (5)

As we noted above, the compressive sensing measurement matrices should be chosen
specifically, in order to guarantee the quality of reconstruction. L. Yu et al. presented
that chaotic matrices could satisfy RIP and perform as well as Gaussian random matri-
ces and Bernoulli random matrices when they act as compressive sensing measurement
matrices [41].

4. Proposed Method

This section presents the details of the proposed method, and Figure 2 illustrates
its main processing procedures. On the senders’ side, to begin with, a chaotic matrix is
generated, which acts as the CS measurement matrix. At the same time, a concealing
matrix is generated according to the critical sections of the original signal. Next, CS is
processed in order to accomplish data compression, encryption, and critical information
concealment through a single step. Last, the encrypted and concealed signal is masked by
a chaotic matrix for the preparation of transmission through an open or insecure channel.
On the receivers’ side, reconstruction procedures are processed by restricted-authorized
receivers and full-authorized receivers separately. Restricted-authorized receivers who
merely possess key A can obtain signals with critical sections concealed. Full-authorized
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receivers who possess both key A and key H can achieve the entire original signals that
contain critical information. In addition, it should be noted that eavesdroppers could
obtain little useful information, even if they manage to catch the processed signals by some
malicious means.

Figure 2. The main workflow of the proposed method. The left side shows the data compression,
encryption, and concealing and masking processes done by a sender. The right side shows the data
demasking, decryption, and retrieving processes done by receivers. The red part in the middle
represents an open or insecure channel that might leak information to eavesdroppers.

As shown in Figure 2, there are four roles in the proposed method.

• Senders process data compression, encryption, and concealment procedures based on
CS theory and then mask the processed data to be transmitted. A typical sender in the
proposed method could be a sensor within BBNs, which is possibly mobile electronic
equipment linked to local area networks (LANs) or wide area networks (WANs).

• Receivers with restricted authorization only possess key A, that is to say, they could
merely reconstruct the portions of the original signals without critical information.

• Receivers with full authorization possess both key A and key H, in other words, they
could realize the original signals that contain critical information after the reconstruc-
tion procedure.
Characteristically, receivers in the proposed method could be sinks or fusion nodes
within BBNs or servers that may be deployed in data centers, etc.

• Eavesdroppers may listen to the transmission channels for the purpose of catching
available information. Attackers between senders and receivers, for example, are
likely to intercept network flows and obtain all or just part of transmitted data.

The details of operations are as follows.

4.1. On the Senders’ Side

The operations of senders enable data compression, encryption, critical information
concealment, and masking before data transmission.

4.1.1. Generation of Chaotic Matrices

Chaotic sequences are used to generate measurement matrices and concealing matrices,
and, to increase the security level of the proposed method, we use two heterogeneous
chaotic systems to generate measurement matrices and concealment matrices separately.
Here, we choose the tent system for measurement matrix generation and the logistic system
for concealing matrix generation. Other chaotic systems, the Chebyshev system for instance,
can also be used to generate such deterministic matrices.

Based on tent equation Equation (4), we get a chaotic sequence z
′
l , l = 1, 2, 3 · · · .

Simultaneously, another chaotic sequence zl , l = 1, 2, 3 · · · could be generated by logistic
equation Equation (5).
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Next, a measurement matrix teeming with chaotic sequences could be generated with
the following two steps:

Step 1: After the chaotic sequence z
′
l is generated, we sample this sequence using the

sampling initial position n0 and sampling distance d. Therefore, the sampled sequence x
′
n

is obtained as Equation (6).
x
′
n = z

′
n0+nd, n = 1, 2, 3 · · · (6)

Step 2: We arrange the elements in the sampled sequence to generate a matrix whose
order is M×N with some mapping relationships, and the formed matrix can be used as the
CS measurement matrix. The following mapping function is available, but is not limited to,

aij = x
′
i(n−1)+j, n = 1, 2, 3 · · · (7)

where the measurement matrix is A ∈ RM×N (M < N) and aij is the entity in matrix A
with a position of row ith and column jth.

Similarly, a concealing matrix could be generated based on chaotic sequence
zl , l = 1, 2, 3 · · · . Suppose s ∈ RN is a k-sparse discrete signal that contains critical in-
formation, and j indicates the row number of elements in s. We define a set C that consists
of the critical entities that are contained in s and then can get a concealing matrix H using
the function as below:

hij =

{
0, i f sj /∈ C

−zi ∗ aij, i f sj ∈ C
(8)

where the concealing matrix is H ∈ RM×Nand hij is the entity in H with a position of the
ith row and the jth column.

4.1.2. Data Compression, Encryption, and Critical Information Concealment

The step given in Equation (9) simultaneously completes the processes including data
compression, encryption, and critical information concealment.

ye = (A + H)s (9)

where ye ∈ RM×1 is the compressed, encrypted, and concealed signal.
Easily, it can be deduced that,

ye = (A + H)ΨTx = Φ∗x (10)

where Φ∗ = (A + H)ΨT acts as the sensing matrix that will be used to reconstruct the
signal x through the OMP algorithm by receivers with full authorization.

We can also rewrite Equation (9) as below:

ye = AΨTx + HΨTx = Φx + ε (11)

where ε = HΨTx denotes noise. The matrix Φ = AΨT acts as the sensing matrix that will
be used to reconstruct the signal x through the OMP algorithm by receivers with restricted
authorization.

4.1.3. Masking

A chaotic masking method is introduced to ensure the processed signal meet main-
stream security benchmarks concerning image encryption. As a result, the proposed
method could prevent malicious attacks to some extent by breaking the statistical patterns
of original data, providing large key space and sensitivity of the initial values, etc.

After the compressed, encrypted, and concealed signal ye is obtained, we mask it with
a chaotic sequence before data transmission. Here the matrix A, which is generated by
Equation (7), is suggested to be partially reused for masking with the consideration to save
computing power and energy consumption.



Sensors 2022, 22, 5909 9 of 25

The masking process is shown in Equation (12).

yc = αye + βa (12)

where parameters α, β are added to adjust masking magnitud, e and a is a column of matrix
A. Apparently, the chaotic matrix A can be expanded using the chaotic sequence according
to the method depicted in Equation (6) if the columns are exhausted when masking.

4.2. On the Receivers’ Side

The operations done by receivers rely on secret keys that contain generation infor-
mation of matrix A and matrix H. The reconstruction processes of original signals with
and without critical information are carried out, respectively, by full-authorized receivers
and restricted-authorized receivers. Restricted-authorized receivers could merely obtain
the data without critical sections, whereas the full-authorized receivers could recover the
complete data.

4.2.1. Receivers with Restricted Authorization

For restricted-authorized receivers, they only possess key A that contains parameters
to generate the measurement matrix A, and this key behaves as a symmetric decryption
key. The details of the data reconstruction process are shown as below.

Step 1: To begin with, from Equations (11) and (12), we can get the transformed
encrypted and concealed signal y∗c ∈ RM×1 as Equation (13).

y∗c =
yc − βa

α
= Φx + ε. (13)

Step 2: The OMP algorithm could be exploited to obtain the estimate of x′, and here x′

represents the concealed form of x.

∧
x′ = arg min

x
‖x‖1 subject to y∗c = Φx = AΨTx (14)

Step 3: Finally, an inverse transformation of x = Ψs is performed to obtain the estimate
of the concealed form of s′.

∧
s′ = ΨT

∧
x′ (15)

4.2.2. Receivers with Full Authorization

For fully authorized receivers, they not only possess key A that contains parameters
to generate the measurement matrix A, but also possess key H that contains parameters
to generate the concealing matrix H, and these two keys work together as symmetric
decryption keys. The details of data reconstruction process are shown as below.

Step 1: To begin with, from Equations (10) and (12), we can get the transformed
encrypted and concealed signal y∗c ∈ RM×1

y∗c =
yc − βa

α
= Φ∗x. (16)

Step 2: The OMP algorithm could be exploited to obtain the estimate of x.

∧
x = arg min

x
‖x‖1 subject to y∗c = Φ∗x = (A + H)ΨTx (17)

Step 3: Finally, an inverse transformation of x = Ψs is performed to obtain the estimate
of the original signal s.

∧
s = ΨT ∧x (18)

Eavesdroppers may manage to complete the same operations as normal receivers
after they capture transmission data that are processed by the proposed method. However,
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because they do not possess secret keys, which act as essential resource for reconstruction,
they cannot obtain the available information sent by senders. When considering the key
distribution issue that could be applied in IoT, there are several existing solutions [42–44].
Therefore, such issues are not discussed in this paper.

5. Feasibility Analysis

This section contains two parts. First, we demonstrate the feasibility of the proposed
method theoretically. Because the reconstruction process of full-authorized receivers is
rather similar to the reconstruction process of traditional compressive sensing, in this
section, we only discuss the feasibility of the reconstruction of restricted-authorized re-
ceivers. In the second part, we conduct experiments to verify that the proposed method is
practically feasible.

To explicitly explain the processes of critical information concealment and retrieval, we
expand Equation (9) in the following way, and assume that sp is the element that involves
critical information.

ye1
ye2
ye3
...

yeM

 =




a11 a12 a13 · · · a1N
a21 a22 a23 · · · a2N
...

...
...

. . .
...

aM1 aM2 aM3 · · · aMN

+


0 0 · · · −z1∗a1p · · · 0
0 0 · · · −z2∗a2p · · · 0
...

...
...

...
. . .

...
0 0 · · · −zM∗aMp · · · 0






s1
s2
...

sp
...

sN



=


a11 a12 · · · (1− z1)∗a1p · · · a1N
a21 a22 · · · (1− z2)∗a2p · · · a2N
...

...
. . .

...
. . .

...
aM1 aM2 · · · (1− zM)∗aMp · · · aMN





s1
s2
...

sp
...

sN



(19)

Let wi = 1− zi = w + ∆i, i = 1, 2, 3 · · · , M, then Equation (19) can be rewritten as
follows: 

ye1
ye2
ye3
...

yeM

 =


a11 a12 a13 · · · a1N
a21 a22 a23 · · · a2N
...

...
...

. . .
...

aM1 aM2 aM3 · · · aMN





s1
s2
...

wsp
...

sN


+


0 0 · · · ∆1

w ∗a1p · · · 0
0 0 · · · ∆2

w ∗a2p · · · 0
...

...
...

...
. . .

...
0 0 · · · ∆M

w ∗aMp · · · 0





s1
s2
...

wsp
...

sN


(20)
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To further simplify the discussion, we assume that all ∆i = 0, i = 1, 2, 3 · · · , M, so we
get,

ye = As
′

(21)

where s
′
=



s1
s2
...

wsp
...

sN


, s
′ ∈ RN×1. When restricted-authorized receivers use the OMP

algorithm with the input ye and A, they obtain the signal s′ as a result.
For the normal case, if at least one ∆i 6=0, then Equation (21) could be rewritten as,

ye = (A + ∆A)s
′

(22)

where ∆A =


0 0 · · · ∆1

w ∗a1p · · · 0
0 0 · · · ∆2

w ∗a2p · · · 0
...

...
...

...
. . .

...
0 0 · · · ∆M

w ∗aMp · · · 0

, and, as explained in [45], no reduction in

the reconstruction can be achieved when the noise added to the measurement matrix is not
arbitrarily large. Clearly, the boundedness characteristic of chaotic systems is an additional
prerequisite of the successful reconstruction of signal s′.

We conduct a substantial number of experiments to verify the feasibility of the pro-
posed method from a practical perspective. The results of several experiments using
pictures from MATLAB R2020b image library are reported in Figure 3, along with the
values of peak signal-to-noise ratios (PSNRs, dB) recorded in Table 1.

Table 1. PSNR values under compression rates 0.7 and 0.8 (Unit: dB).

Compression Rate 0.7

Image Channel r Channel g Channel b Average

trailer 30.53562 31.50471 32.48743 31.50925
hallway 35.46249 35.70703 37.18625 36.11859

kids 33.41342 33.73252 33.98569 33.71054
llama 32.27819 32.25344 32.39616 32.30926

car 31.82822 31.75158 31.79017 31.78999
football 31.67541 31.59554 31.27668 31.51588

Compression Rate 0.8

Image Channel r Channel g Channel b Average

trailer 30.10448 30.32083 31.74121 30.72217
hallway 34.85190 35.30434 36.45469 35.53697

kids 32.73238 33.06132 33.37811 33.05727
llama 31.45512 31.51228 31.61599 31.52780

car 31.44679 31.26573 31.26015 31.32422
football 30.78486 30.87273 30.58413 30.74724

By observing the second and fourth columns of Figure 3, it is crystal clear that the
assumed critical information in the original images is concealed, and other information
contained in the original signals is reconstructed successfully. Simultaneously, from the
third and fifth columns of Figure 3, we can obtain vivid reconstructions of the entire image
without any concealment.

The PSNR values that are calculated based on pixels of the original images and the
reconstructed images from red, green, and blue channels are listed in Table 1. From these
figures, we surmise that, although the values of PSNR varies due to the difference between
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images and compression rates, all the PSNR values exceed 30 dB, which could be regarded
as a benchmark for acceptable image reconstruction qualities.

Figure 3. The first column shows the original images named trailer, hallway, kids, llama, car, and
football, respectively. The second column shows the reconstructed images obtained by restricted-
authorized receivers under compression rate 0.7. The third column shows the reconstructed images
obtained by full-authorized receivers under compression rate 0.7. The fourth column shows the
reconstructed images obtained by restricted-authorized receivers under compression rate 0.8. The
fifth column shows the reconstructed images obtained by full-authorized receivers under compression
rate 0.8.

From Figure 4, we see that flexibility is achieved in terms of concealing portions and
the number of concealed sections, and the related PSNR values in Table 2 all exceed 30 dB,
which represents an acceptable quality of image reconstruction.
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Figure 4. The concealed sections in the first and second rows are 50% and 100%, respectively, and the
last row shows the results of concealing two independent sections of the original image. The first
column contains the original image, the second and third columns show the reconstruction results of
restricted-authorized receivers and full-authorized receivers under compression rate 0.7. The fourth
and fifth columns show the reconstruction results under compression rate 0.8.

Table 2. PSNR values for various concealing sections (Unit: dB).

Compression Rate 0.7

Concealing
Section Channel r Channel g Channel b Average

50% 32.59798 33.13968 33.23807 32.99191
100% 36.11858 36.11858 36.11858 36.11858

two sectors 33.41342 33.73252 33.98569 33.71054

Compression Rate 0.8

Image Channel r Channel g Channel b Average

50% 33.30480 33.67279 33.93345 33.63701
100% 33.33252 33.75152 33.86508 33.64971

two sectors 33.41341 33.73252 33.98569 33.71054

6. Robustness Analysis

To discuss the influence of noise during transmission and the robustness of the pro-
posed method, the impact of random noise is analyzed. Here we assume that the noise in
the transmission channel is white Gaussian noise, and from Equation (12) we get,

yc = αye + βaj + δG (23)

where δG ∈ RM×1 is a vector conformed to white Gaussian noise.
Figure 5 reports the reconstruction results under the impact of white Gaussian noise

with different values of noise power. Table 3 lists the PSNR values under the circumstance
with white Gaussian noise.
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Figure 5. Reconstruction results with the impact of white Gaussian noise. The first column shows
the noise with power values of 0, 5, 15, 25, 35, 40, and 50 in dBW, respectively. The second and third
columns show the reconstruction results under compression rate 0.7, and the fourth and fifth columns
show the reconstruction results under compression rate 0.8.

From Figure 5 and Table 3, we find that noise does have an impact on the quality of
image reconstruction as well as the PSNR values. With increasing noise power, the impact
gradually becomes stronger. When the power of noise is below 15 dBW, the quality of
image reconstruction is almost unaffected, and the PSNR values decrease slightly, although
they are still above 30. When the power of noise has reached 35 dBW, the quality of image
reconstruction is still tolerable, although the values of PSNR are noticeably below 30. When
the power of noise is higher than 40, the quality of image reconstruction seriously decreases,
and the PSNR values also reduce significantly.
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Table 3. PSNR values with the impact of white Gaussian noise (Unit: dB).

Compression Rate 0.7

Concealing
Section Channel r Channel g Channel b Average

none 31.455124 31.512282 31.615987 31.527797
5 31.319548 31.435341 31.660291 31.471726
15 31.22286 31.284546 31.357155 31.288187
25 29.367135 29.356614 29.023638 29.249129
35 20.061426 19.881269 18.988067 19.643587
40 14.417344 14.175233 13.895409 14.162662
50 8.000954 8.06832 8.150955 8.073409

Compression Rate 0.8

Image Channel r Channel g Channel b Average

none 32.278187 32.253436 32.396164 32.309262
5 32.221204 32.178524 32.447941 32.282556
15 32.018806 32.040822 32.220331 32.093319
25 30.019168p 30.058696 29.816343 29.937519
35 20.110191 19.999357 18.652514 19.587354
40 13.602667 13.480053 13.183436 13.422052
50 7.63013 7.679259 7.780847 7.696745

7. Security Analysis

After original signals are processed by the proposed method, even if attackers obtain
the transmitted data, that is Yc, by some sort of deviousness, it is highly likely that they
cannot achieve the original signals under the current computing power level in a tolerable
time duration, because in the proposed method signals are encrypted with a tremendous
key space. Attackers could obtain very little useful information, because the signals
operated by the proposed method leak very few statistics messages.

7.1. Chaotic Compressive Sensing Security Analysis

In a classical cryptosystem, assume the plaintext is p, the ciphertext is c, if
P(c) = P(c|p), then the cryptosystem is considered to be secure [46]. For modern cryp-
tosystems, they are often designed to be computationally secure. Namely, the cryptosystem
could not be broken by existing sophisticated tools within polynomial time. Specifically, if
an encryption scheme is sensitive to initial conditions and has tremendous secret key space,
then we regard such an encryption scheme as a secure encryption scheme [47].

Chaotic systems are famous for sensitive dependence on initial conditions. When this
characteristic is applied to encryption, it behaves as an entirely different decryption result,
even if the secret key changes only slightly.

Figure 6 shows that, after a slight change is applied on the initial value of the chaotic
sequence, that is z

′
0, the experimental reconstruction results greatly change.

In the proposed method, there are four parameters participating in generating chaotic
measurement matrices. The secret key A, which must be used by either restricted-authorized
receivers or full-authorized receivers, is determined by chaotic parameter b, initial value z

′
0,

initial position n0, and sampling distance d. Accordingly, we define Kb, Kz, Kn, Kd, and the
key space K is,

K = Kb×Kz×Kn×Kd. (24)

Suppose we use a 32-bit processor in which the data precision of a double-precision
floating point type is 16 significant digits after the decimal point, and suppose Kn and
Kd are 100 and 10, respectively, then we can calculate from Equation (24) that K ≈ 1035

(See Table 4). Such a number could be enlarged by adjusting the value ranges of the
parameters. For instance, if we change the value range of Kd from [1, 10] to [1, 100], then
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the key space will be increased 10 times. In addition, increasing the precision of numbers
that participate in operations could also be helpful to enlarge the key space of the proposed
method. However, such an operation may increase the running time and complexity of the
proposed method. Therefore, there should be a compromise when setting the range and
number precision of parameters, according to the security and efficiency requirements.

Figure 6. The first row shows the reconstruction results using the right initial value. The second row
shows the reconstruction results using the initial value that is modified 10−15. The third row shows
the reconstruction results using the initial value that is modified 10−16. The fourth row shows the
reconstruction results using the initial value that is modified 10−17.

Table 4. Secret key space analysis.

Parameter Name Parameter Type Value Range Key Space

b double-precision
floating point (0, 1) Kb ≈ 1× 1016

z
′
0

double-precision
floating point (0, 1) Kz ≈ 1× 1016

n0 positive integer [100, 199] Kn = 100
d positive integer [1, 10] Kd = 10

7.2. Pixel Distribution Analysis

Statistical analysis attacks mean that attackers try to obtain the secret key by analyzing
the statistical rules or patterns divulged from encrypted signals and their relevant original
signals. In the Internet or wireless network environment, attackers might easily listen to
the network flows to capture ciphertexts, which contain signal Yc of the proposed method.
These malicious or just curious attackers might sum up the statistical laws and patterns
revealed by the resource they have obtained and manage to extract the transformation
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relationships between plaintexts and ciphertexts, so as to analyze the encryption scheme.
Figure 7 reports histograms of pixel distribution that are calculated based on pixels from
red, green, and blue channels of original RGB images and histograms that are calculated
based on pixels from red, green, and blue channels of signal Yc, which may be transmitted
through open or insecure channels.

Figure 7. The first, second, and third columns show the histograms of pixel distribution that are
calculated based on pixels from red, green, and blue channels of original RGB images that are named
llama, car, and football, respectively. Correspondingly, the fourth, fifth, and sixth columns show the
histograms of pixel distribution that are calculated based on pixels from signal Yc. The compression
rate is 0.7.

Figure 7 implies that the pixel distribution of the original images leaks obvious statisti-
cal laws and patterns, whereas the histograms generated based on signal Yc clearly show
that the pixels in such signals are distributed uniformly. It is noticeable that the histograms
of pixel distribution of the original images and of signal Yc have no internal connections to
each other. As is well known, the more uniform the pixel distribution is, the less statistical
information the signal reveals, and the more secure the encryption scheme is.

7.3. Correlation Analysis

Correlation analysis refers to the analysis of values of two or more variables’ corre-
lation, with the aim of measuring the correlation level between different variables. The
correlation value is calculated by

rXY =
cov(X, Y)√

D(X)
√
(D(Y)

(25)

where X and Y represent two variables. The mathematical expectations of X and Y are

E(X) =
1
N

N
∑

i=1
Xi and E(Y) =

1
N

N
∑

i=1
Yi. The covariance between X and Y is cov(X, Y) =

1
N

N
∑

i=1
(Xi − E(X))(Yi − E(Y)). The variances of X and Y are D(X) = E(X2) − (E(X))2

and D(Y) = E(Y2)− (E(Y))2.
Tables 5–7 list the correlation values of adjacent pixels of original images as well as of

signal Yc. Values are calculated based on pixel pairs from horizontal, vertical, and diagonal
directions, respectively.

Tables 5–7 indicate that the correlation values of adjacent pixels of original images are
approximate to 1, which means that a pixel of an original image is highly likely to leak
information about the pixels surround it. Taking advantage of this feature, attackers may
infer or predict a pixel value according to a known pixel value next to it and then apply
even more to the recovery of the whole image. In addition, it also can be seen that all the
correlation values of adjacent pixels of signal Yc are nearly 0, which means that the strong
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correlations of pixels in the original images are broken, and, therefore, attackers could use
little information about adjacent pixels to launch statistical attacks.

Table 5. Correlation values of adjacent pixels in image llama.

Pixels from Original Image

Direction Channel r Channel g Channel b Average

horizontal 0.976468 0.962231 0.948301 0.962333
vertical 0.983566 0.979146 0.974502 0.979071

diagonal 0.983607 0.979149 0.974644 0.979133

Pixels fromYc

Direction Channel r Channel g Channel b Average

horizontal 0.013742 0.004258 0.001669 0.006556
vertical 0.018640 0.025289 0.025203 0.023044

diagonal 0.024711 0.030140 0.030343 0.028398

Table 6. Correlation values of adjacent pixels in image car.

Pixels from Original Image

horizontal 0.982515 0.979078 0.977904 0.979832
vertical 0.979157 0.974894 0.974456 0.976169

diagonal 0.979092 0.974866 0.974478 0.976145

pixels from Yc

Direction Channel r Channel g Channel b Average

horizontal 0.003977 0.002792 0.000689 0.002486
vertical 0.022264 0.026053 0.029963 0.026093

diagonal 0.027555 0.031170 0.034890 0.031205

Table 7. Correlation values of adjacent pixels in image football.

Pixels from Original Image

Direction Channel r Channel g Channel b Average

horizontal 0.981740 0.944225 0.951633 0.9591993
vertical 0.979666 0.940694 0.948486 0.956282

diagonal 0.979744 0.940788 0.948652 0.956395

Pixels from Yc

Direction Channel r Channel g Channel b Average

horizontal 0.005781 0.004287 0.002708 0.004259
vertical 0.034930 0.026071 0.029472 0.030501

diagonal 0.039611 0.030745 0.034106 0.034821

In addition, we randomly select 1000 pairs of adjacent pixels from the original image
and related signal Yc, respectively, and record pixel values through the coordinate system
to reveal the correlation of adjacent pixels in another form. Figure 8 shows the results
drawn based on image llama, which implies that the correlation of adjacent pixels in the
original image is rather tough and the correlation of adjacent pixels in signal Yc is very
weak. Figures 9 and 10 exhibit the results generated by pixel pairs of image car, image
football, and their related signal Yc. Similarly, points drawn according to original pictures
are distributed unevenly, which indicates a high value of pixel correlation, whereas points
drawn from signal Yc are distributed arbitrarily, which means the value of pixel correlation
of signal Yc is rather low.
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Figure 8. Correlation values of adjacent pixels of image llama. The first, second, and third columns
are drawn based on adjacent pixels from the red, green, and blue channels of the original image,
and the fourth, fifth, and sixth columns are drawn based on adjacent pixels of signal Yc. The three
rows show the results calculated from horizontal, vertical, and diagonal directions, respectively. The
compression rate is 0.7.

Figure 9. Correlation values of adjacent pixels of image car. The first, second, and third columns
are drawn based on adjacent pixels from the red, green, and blue channels of the original image,
and the fourth, fifth, and sixth columns are drawn based on adjacent pixels of signal Yc. The three
rows show the results calculated from horizontal, vertical, and diagonal directions, respectively. The
compression rate is 0.7.

Figure 10. Correlation values of adjacent pixels of image football. The first, second, and third columns
are drawn based on adjacent pixels from the red, green, and blue channels of the original image,
and the fourth, fifth, and sixth columns are drawn based on adjacent pixels of signal Yc. The three
rows show the results calculated from horizontal, vertical, and diagonal directions, respectively. The
compression rate is 0.7.
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Furthermore, we calculate the correlation of the pixels with exactly the same position
chosen from the critical section of the original image and from its concealed form, and the
results are reported in Table 8. All the values in Table 8 are extremely close to 0, which
implies that the correlations of pixels between the original and concealed sections are low.
In other words, the critical information in the original image is well protected.

Table 8. Correlation values for concealing analysis. The compression rate is 0.7.

Image Channel r Channel g Channel b Average

trailer 0.078644 0.099305 0.088672 0.088874
hallway 0.052972 0.058863 0.051743 0.054526

kids 0.094172 0.112676 0.120774 0.109207
llama 0.090918 0.081103 0.127626 0.099882

car 0.107737 0.049603 0.063837 0.073726
football 0.048435 0.068405 0.051792 0.056211

7.4. Image Entropy Analysis

Commonly, entropy is defined to judge whether the complexity or randomness is
strong enough. Information entropy plays an essential role in measuring randomness of
information. Image entropy can act as a reference index of information randomness of
an image. Each pixel in either channel r, channel g, or channel b of an RGB image has
an intensity value or gray value between 0 to 255, and the ideal entropy value of such
encrypted message is 8, which means that the information that is contained in such a
massage is arbitrary. High values of image entropy also represent that the ability to resist
statistical analysis. We use Equation (26) to calculate image entropy.

H(x) = −
L

∑
i=1

P(xi)log2 P(xi) (26)

where xi ∈ 1, 2, 3, · · · , L represents the gray value of pixels, and P(xi), 0 ≤ P(xi) ≤ 1,
L
∑

i=1
P(xi) = 1 is the probability of gray value xi.

Table 9 lists the experimental results of information entropy of both original images
and signal Yc, and it implies that all the values calculated based on signal Yc are approaching
8, albeit with various entropy values of original images.

Table 9. Experimental results of image entropy. The compression rate is 0.7.

Entropy of Original Image

Image Channel r Channel g Channel b Average

trailer 7.6132 7.3457 7.1752 7.3780
hallway 7.1481 7.2374 6.704 7.0298

kids 7.2444 7.0481 6.8418 7.0447
llama 7.6599 7.2238 7.3275 7.4037

car 7.6715 7.6285 7.6061 7.6353
football 6.5350 6.6437 6.9785 6.7190

Entropy of Signal Yc

Image Channel r Channel g Channel b Average

trailer 7.9890 7.9886 7.9891 7.9889
hallway 7.9881 7.9885 7.9889 7.9885

kids 7.9879 7.9882 7.9886 7.9882
llama 7.9877 7.9884 7.9886 7.9882

car 7.9883 7.9883 7.9880 7.9882
football 7.9887 7.9882 7.9883 7.9884
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8. Discussion

In this section, we compare the compression performance of the proposed method
with some recently proposed CS-based image processing methods [48–50]. It is worth
noting that here we select methods that use chaotic measurement matrices or other types of
measurement matrices that are generated by deterministic means, similar to the proposed
methods.

We conduct experiments using the same images used by [48–50]. The original images
and their reconstruction results are exhibited in Figure 11. The related PSNR values are
listed in Table 10. From data shown in Table 10, we can infer that, although the PSNR
values vary when using different original images, the proposed method could archive
similar reconstruction quality as Refs. [48–50], when the compression ratios reach 0.5. More
importantly, the proposed method could achieve multi-level reconstruction for users in
different groups. Namely, restricted-authorized users could merely reconstruct images
with concealed critical information, whereas full-authorized users could reconstruct the
entire images.

Figure 11. The first column shows the original images named lena, cameraman, peppers, and woman,
respectively. The second, fourth, and sixth columns show the reconstructed images obtained by
restricted-authorized receivers under compression rates 0.75, 0.5, and 0.25, respectively. The third,
fifth, and seventh columns show the reconstructed images obtained by full-authorized receivers
under compression rates 0.75, 0.5, and 0.25, respectively.

Table 10. Compression performance comparison via PSNR values (Unit: dB).

Compression Rate 0.75

Image Proposed
Method Ref. [48] Ref. [49] Ref. [50]

lena 31.23 34.19 29.56 -
cameraman 28.90 30.85 28.93 -

peppers 32.51 - - 31.25
woman 36.16 - - 33.92
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Table 10. Cont.

Compression Rate 0.5

Image Proposed
Method Ref. [48] Ref. [49] Ref. [50]

lena 25.79 29.82 29.82 -
cameraman 22.91 26.71 29.43 -

peppers 26.03 - - 24.85
woman 31.16 - - 30.82

Compression Rate 0.25

Image Proposed
Method Ref. [48] Ref. [49] Ref. [50]

lena 13.95 25.93 26.06 -
cameraman 15.07 22.64 25.23 -

peppers 17.80 - - 19.16
woman 17.47 - - 25.05

9. Conclusions

In this paper, we propose a secure and efficient BBN data transmission method that
could accomplish critical information concealment and retrieval. Generally, BBN sensors
are resource constrained, and CS-based methods are naturally suitable for these sensors, as
CS can accomplish data compression while sampling, and this process just needs simple
operations of addition and multiplication, which could achieve the aim of reducing energy
consumption of sensors during data processing and transmitting. The experimental results
show that the proposed methods could compress and encrypt the original data and render
different reconstruction results to users in different authorization groups. Namely, users in
restricted-authorized groups could only obtain reconstruction results with critical sectors
concealed, whereas users in full-authorized groups could reconstruct entire data.

Moreover, in the proposed method, chaotic systems are introduced to generate mea-
surement matrices, so the senders and receivers do not need to transmit the entire measure-
ment matrices to one another, which further saves transmission energy. Specifically, the
proposed method could enhance the security level of data transmission by breaking the
statistical patterns of original data, providing large key space and sensitivity of the initial
values, etc. The key space of the proposed method is discussed, and simulation results
show that when even a slight change is applied to the initial value of the chaotic sequences,
10–15 to 10–17, for example, the experimental reconstruction results greatly change.

Last but not least, experimental results also show that the proposed method enables the
senders to conceal critical information with flexibility in terms of proportions and quantities
of the concealed sectors. In summary, the proposed method realizes the protection of
critical information that may be transmitted within BBNs. In the future, the combination of
information concealment and semi-tensor compressive sensing could be studied, in order
to enhance efficiency and flexibility levels of data transmission catering to the coming
requirements of appliances in BBNs and even in IoT.
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