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Abstract: This paper presents a method to monitor the thermal peaks that are major concerns when
designing Integrated Circuits (ICs) in various advanced technologies. The method aims at detecting
the thermal peak in Systems on Chip (SoC) using arrays of oscillators distributed over the area of
the chip. Measured frequencies are mapped to local temperatures that are used to produce a chip
thermal mapping. Then, an indication of the local temperature of a single heat source is obtained
in real-time using the Gradient Direction Sensor (GDS) technique. The proposed technique does
not require external sensors, and it provides a real-time monitoring of thermal peaks. This work is
performed with Field-Programmable Gate Array (FPGA), which acts as a System-on-Chip, and the
detected heat source is validated with a thermal camera. A maximum error of 0.3 ◦C is reported
between thermal camera and FPGA measurements.

Keywords: Field-Programmable Gate Array (FPGA); Integrated Circuits (ICs); System on Chip (SoC);
Gradient Direction Sensor (GDS); thermal camera; thermal monitoring; thermal peak

1. Introduction

The evolution of integrated circuits (ICs) has led to the design of increasingly dense
circuits to allow implementing much more complex systems in a smaller silicon area [1].
This allows for reducing manufacturing costs and boosting systems’ performance. However,
chips with high integration density dissipate high power, which consequently induces
overheating problems that can cause disastrous thermal peaks. Thus, an appropriate
management of thermal dynamics including thermal monitoring is required to avoid
performance degradation and lifetime reduction of ICs [2–4]. On-chip thermal behavior can
be obtained by adopting an on-chip distributed oscillator network [5,6], where the frequency
variations generated by the integrated oscillators indicate the thermal changes in the chip.
Then, using the Gradient Direction Sensor (GDS) technique the authors could monitor the
temperature source of the thermal sensors on the surface of the chip [7]. This source implies
isotherms around it. The GDS method is a practical solution to locate the thermal peak in
the simplest case of a single heat source [8,9], and the functional range of this GDS method
is between −55 ◦C and 125 ◦C because, as the supply voltage decreases, the temperature
dependence of the propagation delay can change from negative to positive for supply
voltage levels between 0.7 V and 1.2 V [10,11]. However, the measured temperatures are
not processed in real-time, which has an impact on the accuracy of the readings. In order
to improve this accuracy, we propose in this work to collect and process the temperatures
in real-time based on FPGAs. Therefore, FPGAs offer the possibility to perform real-time
simulation and implementation with a time step of tens of nanoseconds in addition to the
real-time reconfiguration that dynamically modifies the memory content of an FPGA [12].

In this paper, we propose a method that aims to detect thermal spikes in SoC using
oscillator arrays distributed on the chip surface. An indication of the local temperature
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of a single heat source is obtained using the GDS technique. The measured frequencies
are mapped to local temperatures which are used to produce a thermal map of the chip.
The proposed technique does not require external sensors.

This work is validated with a Field-Programmable Gate Array (FPGA) implementation
and temperature measurements performed with a thermal camera. A maximum error of
0.3 ◦C is reported between thermal camera and FPGA measurements. This is significant as
the majority of designers of ICs and system-on-chips (SoCs) do not have effective means of
predicting an internal thermal cartography in real-time.

This paper is organized as follows: Section 2 describes the theory of operation of
the on-chip thermal peak detection unit, and the modeling analysis of the single heat
source equation of the thermal peak detection unit. The obtained simulation and hardware
implementation results, compared to a temperature prediction by the GDS method, are
given in in Section 3. Section 4 concludes the paper by summarizing our main contributions
and findings.

2. Theory of Operation of the Proposed on-Chip Thermal Peak Detection Unit

The heat generated by the operation of various circuits in an SoC creates heat sources at
different points on the chip. Numerous point sources can be approximated as a single source
(the point at that maximum temperature). Figure 1 illustrates the proposed architecture of
a real-time thermal monitoring system based on the GDS method.

Figure 1. Proposed architecture of a real-time thermal monitoring system based on the GDS method:
(a) operation of the on-chip thermal peak detection units, (b) RO units on an SoC; (c) the frequency
counters, and (d) the computer to analyze the received data.

Figure 1a shows the three RO units for two cells on the SoC. Figure 1b shows the
frequency counters connected to the RO units, and Figure 1c shows the computer used to
analyze the received data that completes the thermal peak detection unit. In this system,
six well placed thermal sensors transform temperatures into frequency signals. The ob-
tained RO frequency values give information about the heat source Ts. The temperature
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measurements are derived from signals sA1, sB1, and sC1 representing sensors A, B, and
C, respectively located in cell 1 and from sA2, sB2, sC2 representing sensors A, B, and C,
respectively located in cell 2. In Figure 1b, fA1, fB1, and fC1 represent frequencies obtained
for A, B, and C, respectively located in cell 1 and fA2; fB2 and fC2 represent frequencies
obtained for A, B, and C, respectively located in cell 2. In Figure 1c, the two angles tan(α1)
and tan(α2) represent the deviation of the respective triangles of ROs from the heat source
Ts. The two angles α1 and α2 will be evaluated subsequently based on Equations (1) and (2),
in order to evaluate the performance of our method.

2.1. The Frequency Counter

As shown in Figure 1b, counters are employed to calculate the oscillation frequency of
each RO. As shown in Figure 2, the counter counts until the reset signal is activated and
restarts the counter. In the same figure, it counts up to 10 and then the reset signal goes to
1, which restarts the counter at 0.

Figure 2. The counter counts until the reset signal is enabled.

Our frequency counter based on regression incurs almost no expense. This regression
causes almost no overcharge. At run-time, the counter only has to calculate the temperature
from a simple formula Ts (Equation (3)). This does not affect our performance unlike
performance counters that required expensive online computations [13–15].

2.2. Calculation of the Gradient Angle Units for the GDS Method
2.2.1. The Unit to Compute the Angle α

As we already described in Figure 1c, two units are used to calculate the angles α1
and α2, respectively. Figure 3 illustrates the operating principle of the GDS method. This
unit is used to evaluate the position and value of a single heat source on the surface of an
SoC. It estimates the geometrical coordinates and temperature of the heat source. To obtain
information on the parameters of a single heat source, we provide information on where the
thermal peak comes from and the speed at which it evolves. To calculate the temperature
of the heat source, a thermal peak detection unit was used. This unit receives the angles
α1 and α2 (computed by the angle calculation unit), the distance h between cell 1 and cell
2, and the oscillation frequency of each RO. The factors requiring special attention during
the development of this unit are the number of sensors, the spatial distribution of the heat
source, and the network interconnections. This unit provides the angle α that is shown in
Figure 3 by according the VHDL code developed in Section 3.

Figure 3. Placement of three sensors cell with α ε (0◦, 60◦).
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The GDS method is based on the three embedded sensors adopted to form the first cell.
Each cell is composed of three ROs that form a triangle. This unit was designed and tested
using VHDL. Equations (1) and (2) define the main functionality of the angle calculation
unit that have been simulated and implemented:

tan(α1) =
2( fB1 − fA1)√
3( fC1 − fA1)

− 1√
3

(1)

and

tan(α2) =
2( fB2 − fA2)√
3( fC2 − fA2)

− 1√
3

(2)

where α1 and α2 indicate the position relative to the heat source. Both formulas were
coded in VHDL. As depicted in Figure 4, the angle calculation unit receives the generated
frequencies fA, fB, and fC from the three sensors A, B, and C, respectively, and calculates
the tangents and angles (in radians) corresponding to these values.

Figure 4. Angle calculation unit.

2.2.2. Source Temperature (Ts) Calculation

In order to obtain the temperature value of a single punctual heat source, we have to
calculate the distance between the sensor and this source. Two sensor cells are required for
this purpose as depicted in Figure 5. The cells are placed in a given distance (H), and each
gives information about angle α (α1 and α2) in the direction of the heat source. Under the
consideration that α is relatively small, we can assume that the heat source and the center
of the cells form a triangle in which the length of one side and values of the angles adjacent
to this side are known. This means that we can calculate the distances R1 and R2 between
the heat source and the sensors. Now we can calculate the temperature gradient along
the known distance. By adding distance to the temperature of the sensor, we obtain the
temperature of the heat source. Two sensor cells A1, B1, C1 and A2, B2, and C2 are placed
in two corners of a monitored layout at the distance H. Hence, the temperature of the heat
source can be obtained by Equation (3). Figure 5 shows the description and distribution of
the sensors cells:

H
a ( fc1 − fA1)(

√
3 + tan α2)(1 + tan α2

1)√
3(1− tan α1 tan α2)− (tan α1 + tan α2)

+ fA1 → Ts (3)

The effects on performance caused by temperature fluctuations are most often treated
as linear scaling, but some sub-micron silicon processes require nonlinear calculations.
For this reason, the oscillator network must be activated for a short period of time in order
to avoid thermal variations involved by the oscillator itself (self heating).
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Figure 5. The description and distribution of the sensors’ cells.

The temperature accuracy must be ensured with respect to a variation within ±0.2 ◦C.
The source temperature Ts is obtained at the output after the unit has processed the input
data.The angle calculation unit was implemented and simulated in the ModelSim tool,
where different values of fA, fB, and fC are applied. The results obtained are compared
with the calculated ones from the Excel tool. To allow obtaining a synthesizable VHDL
code, the tan(α) is calculated not as a real, but as an integer. A factor of 1000 is then used to
obtain an integer result that equals 1000 times tan(α). For simulation based validation, we
used eight different parameter sets (combinations of fA, fB and fC).

The results obtained through ModelSim are presented in Figure 6. Using the fre-
quencies received from the frequency counter unit shown in Figure 1b, we can extract the
results of the tan(α) from this simulation presented in Figure 6. For example, the frequency
collected from sensor A is fA = 101,000 kHz, the frequency collected from sensor B is
fB = 108,000 kHz, and the frequency collected from sensor C is fC = 112,000 kHz given a
value of tan α = 0.157 (see the part circled in red in Figure 6).

Figure 6. Simulation results of the angle calculation unit.

Moreover, the results shown in Figure 6 are compared with the results obtained Excel
in Table 1.

Table 1. Comparison between results obtained with ModelSim and Excel.

fa (kHz) fb (kHz) fc (kHz) tan(α) with Excel tan(α) with ModelSim

10,500 10,600 10,700 0 0
10,400 10,600 10,700 0.192 0.192

101,000 108,000 112,000 0.157 0.157
120,000 130,000 137,000 0.101 0.101
10,000 10,460 10,700 0.181 0.181

125,000 133,000 140,000 0.037 0.038
3,000,000 3,400,000 3,700,000 0.081 0.082
1,500,000 1,500,800 1,501,000 0.345 0.346

As shown in Table 1, the error is small between the Excel and Modelsim models (where
line 6 shows the maximum difference of ∆ = 0.001 radians), which shows the efficiency of
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our test bench code developed in VHDL. In addition, we have simulated the temperature
calculation unit Ts (Equation (3)) using ModelSim. Ts is computed as an integer. A factor of
100 is then used to obtain an integer result that equals 10,000 multiplied by Ts.

The results obtained by ModelSim are presented in Figure 7. Using the received
frequencies and the two units that are presented in Figure 1c, we can extract the results of
the source temperature Ts from this simulation presented in Figure 7; for example, for the
tan(α1) = 0.16 and tan(α2) = 0.35, give a value of source temperature Ts= 10.1051 ◦C (see
the part circled in red in Figure 7).

Figure 7. Simulation results of the temperature calculation unit.

To validate the results in Figure 7, we compare the results obtained with Excel and the
following Table 2, which confirms the validtity of the VHDL model.

Table 2. Results obtained with the ModelSim and Excel.

fa (kHz) fc (kHz) tan(α1) tan(α2) Ts with Excel Ts with ModelSim

10500 10700 0 0.18 1.0486 1.0490
10,400 10,700 0.19 0.04 1.0391 1.0397

101,000 112,000 0.16 0.35 10.1046 10.1051
120,000 137,000 0.10 0.08 12.0020 12.0021

A good matching was achieved between the results obtained by Excel and ModelSim.
The maximum difference is ∆ = 0.06% (as shown in line 2 of Table 2). This small difference
is due to the approximations made with the integer model.

3. Implementation and Results

For the experiment, we used a DE1 Altera FPGA board and the Quartus Prime software.
The FPGA acts as an SoCs with the ability to locate and implement the required ROs for
our sensor cells, whereas Quartus Prime provides us with a frequency counter. The ring
oscillators are implemented by default in the Altera source code by considering six LookUp
Table (LUT) or six delays by default. In addition, Altera’s Quartus Prime configuration
defaults to an ambient temperature of 25 ◦C. This can be seen in Figure 8.

Figure 8. Configuration of the ring oscillator provided by Altera.

In this work, we did not focus on the optimization of the delay cell circuits, which
is a task left for future work. Based on Figure 8, our experimental design divided into
three main parts: simulation, synthesis, and implementation of the VHDL code. Firstly,
we developed the VHDL code, and then the Register Transfer Level (RTL) version of the
model was generated as shown in Figure 9.
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Figure 9. Register Transfer Level structure of the temperature monitoring unit with Quartus Prime.

The logical simulation of the developed VHDL codes is shown in Figure 10, where
three correct values of the frequency as a function of the LUT number were obtained (see
the part circled in red in Figure 10).

Figure 10. Simulation of the temperature monitoring unit with NClaunch tool.

Among the advantages of VHDL coding is the use of the test bench, which allows
for verifying the capability of our algorithm to operate the GDS method according to the
initial specifications. Test vectors were subsequently created to ensure specific coverage by
optimizing the test time, or to minimize performance degradation.

We report that, in this work, we have a conversion time that is around 641 µs, and a
conversion rate of 7.4 kHz.

3.1. Implementation on the FPGA Board

It is worth noting that the Quartus Prime software allows a manual placement of the
circuit on the FPGA. Figure 11 shows the physical location of the six ROs (The RO occupies
a 0.39 µm2) on the FPGA.

Figure 11. Physical location of the six ROs sensors on the FPGA.
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Figure 11 represents the implementation of the six ROs on the FPGA board. Af-
ter downloading the VHDL code, the program was running and the outputs were displayed
in Figure 12.

The clock is set to 50 MHz, and a dryer is used to increase the temperature of the DE1
(Development and Education) FPGA board. Figure 12 shows the obtained temperature results.

Figure 12. Read temperature by: (a) the FPGA board and (b) the Quartus Prime tool.

Figure 12a shows the temperature displayed by FPGA under test. Figure 12b shows
all the information pertinence’s on the six RO sensors by the Quartus Prime tool. Our
experimental results show that the detected temperature from the six ROs is 74.50 ◦C.

As mentioned in the Introduction, the purpose is to detect thermal peaks using the
GDS method, and we tried to vary the temperature to see its influence on the frequency.
The obtained values are reported in the Table 3 below:

Table 3. Results of the oscillation frequency versus temperature obtained.

Temperature (◦C) Frequency (MHz)

25 99.88
30 98.21
40 96.12
50 94.18
60 92.08
70 90.20
80 88.10
90 86.04

100 84.17
110 82.12
120 80.02

Table 3 shows that, as the temperature increases, the frequency decreases by a constant
value of 2.07 MHz for each 10 ◦C difference.

In order to validate the results found in Figure 12 and show the ability of the proposed
GDS method to monitor the temperature in real-time, we then proceeded with thermal
camera measurements as reported in the next section.

3.2. Experimental Measurements by the Thermal Camera

In this work, a JENOPTIK infrared camera [16] is used to capture the board’s tempera-
tures. It offers a spectral range of 7.5 to 13 µm with a frequency of 61 MHz and an image
resolution of 320 × 240 pixels. It also offers an accuracy of ±0.2 ◦C.

The software used for this camera is the IRT analyzer. It is installed on a computer on
which we make the acquisition and extraction of thermal measurements.

Figure 13 shows the whole setup used for measurement by infrared thermography.
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Figure 13. Thermal measurement system exploiting an infrared camera.

To extract the temperature values from the thermal camera, we used an image pro-
cessing tool (IRT analyzer) that allows us to analyze the raw data collected by the infrared
camera and convert them into digital data that can be used in the validation process.

Figure 14 shows an overview of the IRT analyzer tools. The use of the high precision
IRT tool greatly increases the sensitivity and quality of the data received by the thermal
camera, as well as the ability to analyze the experimental measurements.

The results displayed in Figure 14 are obtained using the generation of the library inte-
grated under the IRT tool and the measurements that are performed via the thermal camera.

Figure 14. Temperature measurement of the FPGA board by thermal camera.

Figure 14 shows the areas where the highest temperature was observed (74.80 ◦C)
on the DE1 map. The realization of a temperature measurement system by infrared
thermography allowed us to extract the thermal experimental values with an emissivity
equal to 1.
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To validate the proposed method, we proceed to a comparison between thermal camera
and FPGA measurement where the following Table 4 summarizes the obtained results.

Table 4. Comparison between thermal camera and FPGA measurement results.

Measurements by Thermal Camera by GDS Error Rates (◦C)

Temperature (◦C) 74.80 74.50 0.3

This table clearly shows that the temperature values are almost the same for both
results. The maximum error is about 0.3 ◦C, which indicates a good result for the validation
of our method. Table 5 summarizes the GDS method on integrated circuits compared to
similar works.

Table 5. Comparison of the performance of the GDS method on integrated circuits compared to
similar works.

References Proposed [17] [18] [19] [20] [21]

Method GDS (a) STS (b) FEM (c) DTM (d) TSERO (e) DTS ( f )

Temperature (◦C) 110 (∗) 75 80 100 120 125

Error (◦C) 0.3 0.8 3.7 2.8 2.9 0.6

Real-time Monitoring Yes No No No No No
(a) Gradient Direction Sensor (GDS); (b) Smart Temperature Sensor (STS); (c) Finite Element Method (FEM);
(d) Dynamic Thermal Management (DTM); (e) Temperature Sensor Employs two Ring Oscillators (TSERO); (f)
Digital Temperature Sensor (DTS). (∗) Maximum measured temperature.

The performance of the proposed method based on ROs is reported in Table 5. Our
results are compared to those of other methods’ solutions presented in [17–21] (see Table 5).
We can deduce that our work has significant potential, especially in terms of error and
real-time data processing, which is not presented anywhere else. This performance includes
the speed of obtaining the information that will allow us to intervene in real-time, especially
since the majority of high-throughput SoCs so far do not have effective ways to predict
thermal peaks and assess temperature in real-time.

4. Conclusions

This paper proposes a new thermal monitoring method that exploits in-situ tempera-
ture measurements derived from ring oscillator (RO) frequency measurements for thermal
peak detection. A thermal peak detection unit was designed. Frequencies are converted
to temperatures using the proposed models. In order to verify the presented method, we
implemented three RO sensors for each cell on an FPGA board and temperature measure-
ments were validated with a thermal infrared camera. A maximum error of 0.3 ◦C was
observed between measured and validated temperatures.

The objective of this research is to obtain information about thermal peaks in real-time,
which helps designers to react timely to possible hazards caused by thermal hot spots.
The paper also provides other benefits such as helping to characterize and locate thermal
peaks. Through simulations and experiments, it was shown that ring oscillators (ROs) are
capable of providing in-situ temperature measurements.

This work offers a solution that allows for identifying thermal induced stress and local
overheating of integrated systems that are major concerns for integrated circuits’ designers.

A limitation of our proposal is that the integrated sensors are designed in CMOS
technology, which is limited by the maximum operation temperature (around 120 ◦C).
In addition, the sensitivity of the integrated sensors must be improved by improving the
circuitry of ring oscillators. Our future work will focus on improving the sensitivity of
integrated sensors and optimizing the accuracy of the proposed technique.
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