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Abstract: In response to the dangerous behavior of pedestrians roaming freely on unsupervised train
tracks, the real-time detection of pedestrians is urgently required to ensure the safety of trains and peo-
ple. Aiming to improve the low accuracy of railway pedestrian detection, the high missed-detection
rate of target pedestrians, and the poor retention of non-redundant boxes, YOLOv5 is adopted as
the baseline to improve the effectiveness of pedestrian detection. First of all, L1 regularization is
deployed before the BN layer, and the layers with smaller influence factors are removed through
sparse training to achieve the effect of model pruning. In the next moment, the context extraction
module is applied to the feature extraction network, and the input features are fully extracted using
receptive fields of different sizes. In addition, both the context attention module CxAM and the
content attention module CnAM are added to the FPN part to correct the target position deviation in
the process of feature extraction so that the accuracy of detection can be improved. What is more,
DIoU_NMS is employed to replace NMS as the prediction frame screening algorithm to improve the
problem of detection target loss in the case of high target coincidence. Experimental results show that
compared with YOLOv5, the AP of our YOLOv5-AC model for pedestrians is 95.14%, the recall is
94.22%, and the counting frame rate is 63.1 FPS. Among them, AP and recall increased by 3.78% and
3.92%, respectively, while the detection speed increased by 57.8%. The experimental results verify
that our YOLOv5-AC is an effective and accurate method for pedestrian detection in railways.

Keywords: pedestrian detection; deep learning; model pruning; context extraction module; attention
module; DIoU_NMS

1. Introduction

As rail transportation plays an increasingly important role in China, the safety of rail
transit operations has also attracted more and more attention. However, in some remote
areas, the train track crosses the highway and pedestrian passage. In particular, pedestrians
still stay on the track when the train is about to arrive, which will bring huge potential
safety hazards, and accidents occur frequently. These pedestrians usually move fast and
irregularly on the railway track, while the target is very small and has a high degree of
coincidence of body positions within the visual range of the machine’s vision. In addition,
complex and uncertain environmental factors such as trees, weeds, and telephone poles
around the railway track have caused huge obstacles to pedestrian detection. It is of great
significance to carry out research on pedestrian detection and abnormal state monitoring at
railway stations to ensure the safety of pedestrians.

Traditional machine learning target detection algorithms, such as the Viola–Jones
Detector, generally use the sliding window method to extract candidate frames. They
first extract and learn low and intermediate features in candidate frames, and then use
classifiers to identify and select objects, which makes it difficult to solve the problems
caused by fast movement, small targets, high randomness of appearance, and the high
degree of coincidence of body positions. In order to better deal with these difficulties, we
propose a detection algorithm based on deep learning, which can help us to obtain a better
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detection effect by learning the higher-level features of the object through Convolutional
Neural Networks (CNNs) [1]. The deep learning target detection algorithm has been in
development since R. Girshick et al. proposed Region-CNN (RCNN) [2] in 2014. Since
then, Fast R-CNN [3], Faster R-CNN [4], Spatial Pyramid Pooling (SPP) [5], two-stage
detectors, You Only Look Once (YOLO) [6–9], Single Shot MultiBox Detector (SSD) [10],
and other single-stage detectors have emerged. The two-stage detector uses a convolutional
neural network to extract the features of the markers, and then uses Region Proposal Net
(RPN) to recommend candidate boxes, which returns the candidate boxes to the predicted
position through a gradient descent at the end. Conversely, the single-stage detector directly
performs the regression of the bounding box after extracting the features by ignoring the
RPN. The two-stage detector uses two different networks to classify and locate objects, so
the detection accuracy is at a high level while the speed is very slow, requiring at least
100 ms to detect an image, such as the Faster RCNN. The single-stage detector uses only one
network to perform classification and positioning at the same time, so detection speed is
guaranteed. The detection speed of YOLOv1 can reach 45–120 fps, which can process video
or camera images in real-time, requiring less equipment and achieving better performance
in field deployment.

With the development of transportation, pedestrian detection has gradually become a
hot spot in the field of target table detection, where many experts and scholars have put
forward their views and opinions. Jin, Xianjian et al. proposed a pedestrian detection
algorithm based on YOLOv5 in an autonomous driving environment [11]; Gai Y et al.
proposed a method of pedestrian detection + tracking + counting based on YOLOv5 with
Deepsort [12]; Sukar et al. proposed an improved YOLOv5 algorithm for real-time pedes-
trian detection [13]. Zhi Xu et al. proposed a method of CAP-YOLO based on channel
attention for Coal Mine Real-Time Intelligent Monitoring [14]. Masoomeh Shireen Ansarnia
et al. proposed a deep learning algorithm for contextual detection in orthophotography [15].
Kamil Roszyk et al. adopted a method for low-latency multispectral pedestrian detection in
autonomous driving by YOLOv4 [16]. Luying Que et al. proposed a lightweight pedestrian
detection engine of a two-stage low-complexity detection network and adaptive region
focusing technique [17]. Yang Liu et al. used a thermal infrared vehicle and pedestrian
detection method in complex scenes [18]. Jingwei Cao et al. proposed a pedestrian de-
tection algorithm for intelligent vehicles in complex scenarios [19]. Isamu Kamoto et al.
used a deep learning method to predict crowd behavior based on LSTM [20]. Gopal, D.G.
et al. proposed a method of selfish node detection based on evidence by trust authority
and selfish replica allocation in DANET [21]. Jerlin, M.A. et al. created a smart parking
system based on IoT [22]. Nagarajan, S.M. et al. applied an intelligent anomaly detection
framework to cyber physical systems [23]. Selvaraj, A. et al. put forward a swarm intelli-
gence approach of optimal virtual machine selection for anomaly detection [24]. Nagarajan,
S.M. et al. put forward an effective task scheduling algorithm with deep learning for IoHT
in sustainable smart cities [25]. The above algorithms have put forward corresponding
practical innovations in pedestrian detection and processing, but few achievements have
been made in railway pedestrian detection, which is one of the most high-risk scenarios.
This paper aims to carry on the corresponding research and experiments for this scene.

Aimed at the problem of the low detection accuracy caused by the rapid movement of
the target or the prediction frame completely deviating from the target, as well as the missed
detection of the target caused by the high coincidence of body positions, an improved
target detection algorithm based on YOLOv5s is proposed.

(1) L1 [26] regularization is added to constrain the scaling factor of the BN [27] layer to
make the activation coefficients sparse. Next, the modified model is sparsely trained to
cut out the sparse layers. We end up with a very compact model with repeated cutting.

(2) In Backbone, the CEM module is introduced to fully extract the features of different
scales. The CxAM module is introduced to extract context semantic information to
improve recognition accuracy. The CnAM module is introduced to correct the position
of F5 layer features and improve the accuracy of target box regression.
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(3) DIoU_NMS is used instead of NMS to filter prediction boxes to avoid eliminating
different target prediction boxes with high consistency.

(4) We collected a certain number of datasets along with a certain number of relevant
public datasets to provide data support for the verification of the actual effect of the
improved model.

(5) According to the direction of improvement, a number of related ablation experiments
were designed to verify the validity of each contribution.

2. Related Works
2.1. YOLOv5 Network Structure

The YOLO series of algorithms, from YOLOv1 to YOLOv5 [28], has been the hottest
algorithm in the field of target detection due to its fast and efficient performance. The
latest generation of YOLOv5’s weight files is only 28 MB, which is ideal as an initial model.
Therefore, YOLOv5 is selected as the experimental object for algorithm improvement in
this experiment.

The network structure of YOLOv5 generally follows the previous series. The feature
extraction network of the backbone adopts CSPDarknet [29]. The input newly adds the
focus structure, slices the input image, reduces the size, and increases the depth, which can
improve the speed of feature extraction. At the same time, the CSP2 structure is deployed
to the neck part to enhance the ability of network feature fusion. The optimization function
adopts Adam [30] and SGD [31]. Focus and conv are the structures that mainly contain the
convolution kernel and residual components. As a consequence, the network depth can be
changed by controlling the number of residual components in Conv, while the network
width can be adjusted by gaining command of the number of convolution kernels in Focus
and Conv. Therefore, YOLOv5 has launched four models ranging from small to large by
regulating the parameters: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5
network structure is shown in Figure 1.
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2.1.1. Input

The input layer uses conventional enhancement methods such as rotation, flipping,
and blurring, as well as advanced enhancement methods such as Mosaic, and added
settings such as adaptive anchor and adaptive image scaling. The dataset images used
in the experiment have different lengths, widths, and proportions. They are scaled to the
same size of 640 × 640 to reduce training parameters and speed up training and inference.

2.1.2. Backbone

YOLOv5 uses CSPDarknet as the Backbone for feature extraction, which includes
structures such as Focus, CSP, and SPP. Focus is a slicing operation on the Feature map,
integrating the information of width w and height h into the c dimension. Specifically,
it splices and stacks units 2 pixels apart on a channel, reducing the width and height by
2 times and increasing the number of channels by 4 times, which can reduce Floating Point
Operations Per Second (FLOPS) and improve the inference speed. Its structure is shown in
Figure 2.
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Figure 2. Focus structure diagram.

CSP contains two structures, including residual (blue) and excluding residual (yellow).
CSPNet solves the problem of network optimization for gradient information repetitions
in other large-scale convolutional neural network framework Backbones and integrates
gradient changes into feature maps from stem to stern so that the parameter quantity and
FLOPS value of the model are decreased, which not only ensures the inference speed and
accuracy, but also reduces the model size. Spatial Pyramid Pooling (SPP) is used to pool
feature maps at various scales, and concatenate the different results obtained in the channel
dimension to increase the receptive field and improve the alignment of Anchor and Feature
maps. The structures of CSP and SPP are shown in Figure 3.
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2.1.3. Neck

The Neck of YOLOv5 adopts the Feature Pyramid Networks (FPN) [32] structure,
performs continuous downsampling to extract features from bottom to top, which can
obtain a feature map with decreasing size and pixel value to form a feature pyramid,
performs continuous upsampling from top to bottom to restore the feature map size, and
fuses with the feature map of the same size on the left to output a multi-scale feature
map. FPN has the ability to perform multi-scale result prediction, which can enhance the
recognition ability of the model, as well as perform better detection of the same object of
different sizes.

2.1.4. Output

YOLOv5 uses NMS as the screening criteria for predicting box regression and takes
the overlap area between the predicted box and the real box, the aspect ratio, and the center
point distance as the judgment basis. The NMS algorithm is used as the prediction box
filtering algorithm to remove the redundant boxes of the same detection target. The final
output is 80 × 80, 40 × 40, and 20 × 20 detection results.

3. Method
3.1. Data Augmentation

The most important part of the data augmentation used by YOLOv5 is the mosaic,
which is improved from cutmix. Cutmix is used to scale and crop two pictures and stitch
them together according to the pixel ratio.

Mosaic can greatly improve the problem of inaccurate small-target detection by stitching
four pictures using the methods of random scaling, random cropping, and random arrangement.

3.2. Adaptive Image Scaling

The length and width of the input images are different when performing target
detection, which will affect the efficiency of network computing. Therefore, they are
usually scaled to the same standard size and then sent to the detection network. The
commonly used input sizes of the YOLO algorithm are 416 × 416 and 608 × 608. Image
transformation with a size of 800 × 600 is shown in Figure 4.
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Figure 4. Conventional scaling and filling method. (a) Original image: 800 × 600; (b) scaled image:
416 × 416.

In actual projects, many images have different aspect ratios. The black borders at both
ends are padded in different sizes after scaling and filling, where there will be information
redundancy if there is too much padding, which will affect the inference speed. In YOLOv5, the
author proposes a nice trick to help with training by modifying the letterbox function to add
minimal black borders to the original image, which can be divided into the following steps:

(1) Calculate the scaling ratio.
(2) Calculate the scaled size.
(3) Calculate the black border fill value.

The scaling process is shown in Figure 5.
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3.3. Loss Function

The loss function is an important indicator for evaluating regression and classification
problems. The loss function of YOLOv5 includes Classification Loss, Localization Loss,
and Confidence Loss. Classification loss and confidence loss use the binary cross entropy
function, its expression is seen in Formula (1):

loss = − 1
N

N

∑
i=1

yi · log(p(yi) + (1− yi) · log(1− p(yi))) (1)

where yi is the binary label 0 or 1 and p(yi) is the probability of the label. The binary
cross entropy function is used to judge the quality of the prediction results of the binary
classification model. If the predicted label probability is close to 1, then the loss function is
close to 0. The target box regression loss uses the CIoU_Loss [33] (Complete Intersection
over Union) function as the evaluation index, and its expression is seen in Formula (2),

lCIoU = 1− IoU + RCIoU (2)
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where IoU is the area intersection ratio of Ground True box A and Bounding box B, and RCIoU
is the penalty factor, which acts as a block of variables that distinguishes different regression
loss functions. With different IoU_Loss, the form of the penalty function appears different,

IoU =
A ∩ B
A ∪ B

(3)

RCIoU is defined as

RCIoU =
ρ2(b, bgt)

C2 + αv (4)

where b and bgt denote the central points of B and Bgt, ρ is the Euclidean distance, and C is
the diagonal length of the smallest enclosing box covering the two boxes. α is the trade-off
parameter and v is the relationship factor between the width and height of the prediction
frame and the coordinates of the center point

α =
v

(1− IoU) + v
(5)

Then, the relationship factor v is defined as

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(6)

where w is the width of the prediction box, h is the height of the prediction box, wgt is the
width of the ground truth box, and hgt is the height of the ground truth box.

3.4. Sparse Training and Model Pruning

YOLOv5 is already a cracking lightweight detection network where the trained weight
model generally does not exceed 30 MB, which is still too large for some embedded devices.
If we simply choose to reduce the size of the network input, such as 640 to 320, as the
size of the model is reduced accordingly the detection effect will also have a greater loss
at the same time. Therefore, according to a method of network slimming proposed by
Zhuang Liu et al. [34], we add L1 regularization parameters to the model to constrain the
scaling factor of the BN layer, which can cause the coefficients close to 0 to become smaller.
These pairs of parameter layers with little influence on forward propagation are eliminated
through sparse training. We can obtain a very compact and efficient network model by
repeating the above operations.

The loss function expression with L1 regularization is seen in Formula (7)

L = ∑
(x,y)

l( f (x, W), y) + λ∑
γ

g(γ) (7)

Among them, the former term is the usual network loss function and the latter term
is the regularization of the scale factor where x, y denote the train input and target, W
denotes the trainable weights, g is a sparsity-induced penalty on the scaling factors, γ is the
scale factor, and λ is the penalty sparse parameter that determines the size of the penalty
term. The L1 regular expression is seen in Formula (8)

g(s) = |s| (8)

BN layer parameters are calculated as follows:

x̂ =
zin − µB√

σ2
B + ε

(9)

zout = γẑ + β (10)
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where µB and σB are the mean and variance of the activations, while γ and β are the
trainable affine transformation parameters. zin and zout are the input and output of a BN
layer. We choose to use the BN layer γ as the scale factor for sparsity clipping directly.

The principle of YOLOv5 network channel clipping is shown in the Figure 6.
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Above all, we append L1 regularization to the model to perform corresponding sparse
training. Then, channel pruning is performed on the trained model. Ultimately, the training
hyperparameters are fine-tuned to ensure the model inference results are optimal. The
algorithm implementation process is shown in Figure 7.
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3.5. Improved AC_FPN

The higher the resolution of the input image in the training network, the more feature
information needs to be extracted, and the more requirements are put forward for the
receptive field of the convolution layer. The general convolutional neural network uses
multiple convolution and pooling operations. In order to improve the receptive field, the
size of the feature map should be reduced. However, when up-sampling the feature map
to restore its original size, a great deal of feature information is lost, which causes bias in
the final classification result and prediction regression. In order to avoid this situation, this
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paper improves the Feature Pyramid Networks (FPN) structure and sends the feature map
of the highest F5 layer of the feature pyramid to the Context Extraction Module (CEM)
for multi-scale hole convolution so the features of different scales will be fully extracted.
Then, the extracted feature information is sent to Context Attention Modules (CxAM) for
contextual semantic information extraction to determine the target more accurately. At the
same time, it is sent to Content Attention Modules (CnAM) to compare the features of the
F and F5 layers, correcting the position shift that occurs in the feature extraction process,
performing more accurate frame selection on the target. Finally, the processed feature map
and the feature map of the deconvolution layer are multi-scale fusion, which outputs the
prediction result after the algorithm process. FPN is composed of an upward convolution
pyramid and a downward deconvolution pyramid. The feature maps of the same size are
fused at multiple scales through horizontal connections in the middle. FPN can enhance
the effect of feature extraction compared with traditional convolutional networks.

3.5.1. CEM

The CEM module is a feature pyramid structure composed of separable convolutional
layers with different void rates. The void rate gradually increases from 3→ 6→ 12→ 24
where the layers are connected by a multi-path, and the different receptive fields of each
layer are used to fully extract the features so as to realize the diversity of features in scale.
The structure of the CEM is shown in Figure 8.
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3.5.2. CxAM

Since there is no screening mechanism, many useless features will be sent to the end
of the network for prediction after features are fully extracted by CEM, which will affect
the accuracy of the output results. Therefore, the attention module (AM) is set to eliminate
useless features. AM contains two submodules, CxAM and CnAM.

CxAM: Contextual Attention Module, which inputs the same feature of different scales
extracted by CEM, extracts the semantic relationship between different feature sub-regions,
and uses the feature map to generate the attention matrix. As a result, the output feature
map will contain clear semantic information. The structure of the CxAM is shown in
Figure 9.
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3.5.3. CnAM

CnAM: Content Attention Module, which uses the F-layer feature map to calibrate
the position offset that occurs in the feature extraction process to obtain more accurate box
selection positioning when it is used for target detection. The structure of the CnAM is
shown in Figure 10.
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3.5.4. AC_FPN Structure

The output is sent to the deconvolution layer of the FPN network for feature fusion af-
ter the feature maps are processed by the above three modules. The improved AC_FPN [35]
structure is shown in Figure 11.
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3.6. Improved NMS

Non-Maximum Suppression (NMS) needs to be performed for the screening of many
target boxes in the post-processing process of target detection. YOLOv5 adopts the traditional
NMS [36] method. The occluded target selection box is usually removed when facing two
different targets with a high degree of coincidence by using this method. For an environment
with a large number of targets, where there will be many targets with a high degree of
coincidence, the occlusion target candidate boxes that are obscured will be removed as
redundant information by NMS, which is not suitable for models that want to detect accurately.
In this paper, DIoU_NMS is used to replace the NMS. DIoU_NMS introduces the parameter β
of the center point distance between the two boxes. When β→ ∞, DIoU_NMS degenerates
into traditional NMS. Otherwise, as long as the center points of the two frames do not coincide
perfectly when β→ 0, they will be retained by DIoU_NMS. As a consequence, the value of β
can be adjusted to 0→ ∞ according to the actual situation to achieve the best effect to restrain
redundant boxes. Its classification score update formula is defined as Formula (11):

si =

{
si, IoU − RDIoU(M, Bi) < ε
0, IoU − RDIoU(M, Bi) ≥ ε

, (11)

where si is the classification score and ε is the NMS threshold, RDIoU(M, Bi) is the penalty
item, M is the predicted box with the highest score, and Bi is the other box.

Among them is the highest-class score of the prediction box, which is the threshold of
the distance between the center points of the two prediction boxes. DIoU_NMS suggests
that the two boxes with farther center points may be located on different objects, thus it
should not be deleted, which is the biggest difference between DIoU_NMS and NMS.
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3.7. Improved YOLOv5-AC Network Structure

The features are further extracted by adding a context extraction model (CEM) in
Backbone. CxAM is added to extract the context semantics. CnAM is applied to correct the
feature positions of the F and F5 layers. Post-processing uses DIoU_NMS to replace NMS.
The improved YOLOv5-AC structure is shown in Figure 12.
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4. Experiment
4.1. Datasets

The training data use the collected images and videos of a certain abandoned railroad
track near Chengdu Shenxianshu subway station and surrounding pedestrians, combined
with screenshots, frame extraction, and other methods to select 5000 of them as the bench-
mark dataset.

4.2. Data Annotations

We used the labelme tool to annotate the image, which converts the resulting json
annotation file to a txt file. The information contained in the txt file includes the type and
number of the labeling target, the normalized width and height of the labeling frame, and
the coordinates of the center point. The effect of labeling is shown in Figure 13.

The part of the self-made pedestrian dataset marked with the labelme tool is shown in
Figure 14.

The public dataset is labeled as shown in Figure 15.
At the end of the labeling, the corresponding labeling data are obtained, which include

the normalized width, normalized height, and normalized center point coordinates x and y
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of the frame selection target. The information of the self-made data marked in self-made
dataset is shown in Table 1 (Note: Classification 0 is a person).
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Figure 14. Self-made dataset annotation example. (a) self-made dataset 1; (b) self-made dataset 2;
(c) self-made dataset 3; (d) self-made dataset 4; (e) self-made dataset 5; (f) self-made dataset 6;
linebreak (g) self-made dataset 7; (h) self-made dataset 8.
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Table 1. Information of annotated data.

Picture Number Classification Width Height Center Point x Center Point y

(a) 0 0.2202 0.5341 0.1023 0.2346
(b) 0 0.4468 0.6052 0.2012 0.1436
(c) 0 0.4256 0.6214 0.0956 0.1878
(d) 0 0.3218 0.7014 0.1956 0.3125
(e) 0 0.3746 0.8021 0.4126 0.5012
(f) 0 0.3013 0.6589 0.2012 0.6396
(g) 0 0.2017 0.6478 0.6712 0.3125
(h) 0 0.1218 0.2014 0.2313 0.2410

Figure 15. Public dataset annotation example. (a) public dataset 1; (b) public dataset 2; (c) public
dataset 3; (d) public dataset 4; (e) public dataset 5; (f) public dataset 6; (g) public dataset 7; (h) public
dataset 8.

4.3. Training Process

This experiment will proceed as shown in Table 2.

Table 2. Procedure of the experiment.

Procedure of the Experiment

Step1: Carrying out pruning experiments to select the L1 parameter that makes the pruning rate,
P and R optimal.
Step2: Training YOLOv5s to get training metrics.
Step3: Training YOLOv5-AC to get training metrics.
Step4: Contrasting the results of step2 and step3.
Step5: Comprehensive comparison of mainstream models such as YOLOv5-AC and Faster
R-CNN, YOLOv4, Efficientdet-B3 [37].
Step6: A series of ablation trial are designed to verify the validity of every contribution.
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This experiment uses a UBUNUTU20.04 system computer, the graphics card RTX3090
(video memory: 24 GB), and the CUDA11.4 computing framework. The specific configura-
tion parameters of the experiment are shown in Table 3.

Table 3. Training parameters.

Training Parameters Value (Category)

Epoch 600
Batch size 18
Image size 640 × 640

Selected model YOLOv5s, YOLOv5-AC
Model scaling factor depth: 0.33 width: 0.50

Total number of parameters 7,063,542
The total number of layers in the model 283

4.4. Training Metrics

Accuracy and Recall are selected as metrics to compare the quality of the original model
and the improved model of the test results. The calculation formulas of Accuracy and Recall
are as follows:

Recall =
TP

TP + TN
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

TP is the number of people on the track that were correctly detected. FP is the number
of people on the track that were incorrectly detected as people. TN is the number of people
on the track that were not detected. FN represents no one on the track and no one detected
at the same time. The relationship can be intuitively understood through the following
confusion matrix Table 4.

Table 4. Confusion matrix.

Real Situation Somebody Real Situation Nobody

Predicted somebody TP FP
Predicted nobody TN FN

5. Results
5.1. Comparative Experimental Results

We observe the parameter distribution of the BN layer by modifying the sparse parameter
of the L1 regularity λ from 0→ 0.0008, of which the interval of each change is 0.0001. When
λ = 0 for normal training, the distribution curve is roughly the standard state distribution, as
shown in Figure 16a below, and there are only a few values near 0 so it is difficult to prune.
After adding the penalty term with coefficients, the parameters of the BN layer gradually tend
to be near 0 from the normal distribution as the training goes on. At this point, we can select
the model to prune. When λ changed from 0→ 0.0008, we conducted training experiments
for 100 epochs for each group, and the BN layer parameters change as shown in Figure 16.

λ and the maximum pruning ratio, as well as the corresponding pruned models’
parameters, are shown in Table 5.

Table 5. The maximum pruning ratio and network parameters when λ changes from 0 to 0.0009.

λ Max Pruning Ratio (%) FLOPS(G) Parameters/106 Model Size (M)

0 10.1 13.2 6.40 24.7
0.0002 24.3 11.6 4.75 18.3
0.0003 33.2 10.6 3.90 15.1
0.0005 37.2 10.1 3.53 13.7
0.0006 39.0 9.7 3.36 13.0
0.0008 36.0 10.0 3.64 13.2



Sensors 2022, 22, 5903 16 of 25

Sensors 2022, 22, x FOR PEER REVIEW 16 of 25 
 

 

0.0008 36.0 10.0 3.64 13.2 

 
Figure 16. The data distribution of the BN layer when λ changes from 0 to 0.0008. 

From Table 5, we can see that when 𝜆𝜆 is 0.6 or 0.7, the model can obtain the maxi-
mum cropping ratio, in which time the cropped model FLOPS, model size, and other pa-
rameters can achieve the best. Therefore, this experiment selects 𝜆𝜆 = 0.6 as the penalty 
coefficient of L1 regularity. 

Figure 16. The data distribution of the BN layer when λ changes from 0 to 0.0008.

From Table 5, we can see that when λ is 0.6 or 0.7, the model can obtain the maximum
cropping ratio, in which time the cropped model FLOPS, model size, and other parameters
can achieve the best. Therefore, this experiment selects λ = 0.6 as the penalty coefficient of
L1 regularity.

After 40% scaling, the total number of network parameters is reduced from 7,063,542
to 3,374,814, while the weight file is reduced from 27.2 MB to 13.1 MB. The details of the
network parameters are shown in Table 6.
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Table 6. Pruned network parameters.

Layers From Parameters Module Arguments

0 −1 3520 Focus [3, 32, 3]
1 −1 18,560 Conv [32, 64, 3, 2]
2 −1 18,420 C3 [64, 64, 1]
3 −1 43,492 Conv [64, 128, 3, 2]
4 −1 142,297 C3 [128, 128, 3]
5 −1 48,506 Conv [128, 256, 3, 2]
6 −1 559,377 C3 [256, 256, 3]
7 −1 722,356 Conv [256, 512, 3, 2]
8 −1 162,771 SPP [512, 512, [5, 9, 13]]
9 −1 641,368 C3 [512, 512, 1, False]
10 −1 44,394 Conv [512, 256, 1, 1]
11 −1 0 Upsample [None, 2, ‘nearest’]
12 [−1, 6] 0 Concat [1]
13 −1 77,472 C3 [512, 256, 1, False]
14 −1 5760 Conv [256, 128, 1, 1]
15 −1 0 Upsample [None, 2, ‘nearest’]
16 [−1, 4] 0 Concat [1]
17 −1 16,037 C3 [256, 128, 1, False]
18 −1 52,546 Conv [128, 128, 3, 2]
19 [−1, 14] 0 Concat [1]
20 −1 75,473 C3 [256, 256, 1, False]
21 −1 302,680 Conv [256, 256, 3, 2]
22 [−1, 10] 0 Concat [1]
23 −1 426,357 C3 [512, 512, 1, False]

This experiment uses YOLOv5s as the baseline algorithm, and uses Faster R-CNN,
YOLOv4, and other algorithms as comparisons with our improved YOLOv5-AC at the
same time. The AP and recall change curves are shown in Figure 16.

From Figure 17, it can be seen that the improved YOLOv5-AC algorithm in this
experiment is better than the mainstream detection algorithms such as YOLOv5s and Faster
R-CNN in terms of AP and Recall.
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The simulation results of pedestrian detection for each algorithm used in the experi-
ment are shown in Figures 18 and 19.
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Figure 18. Comparison of training results of YOLOv5-AC and YOLOv4 and YOLOv5.

The specific experimental index data are shown in Table 7. As can be seen from Table 7,
the AP of improved YOLOv5-AC is 3.78% higher than that of YOLOv5s, and the Recall is
3.82% higher than that of YOLOv5s. At the same time, compared with other mainstream
algorithms, such as YOLOv4, Efficientdet, etc., the advantages in parameters, such as the
number of parameters, floating-point calculation amount, and FPS, are even more obvious.

Table 7. Comparison of YOLOv5-AC and other models’ performances.

Model AP (%) Recall (%) Parameters/106 FLOPS (G) FPS (f/s) Model Size/M

Faster R-CNN 71.56 68.40 10.12 20.03 7.1 340 MB
YOLOv4 88.02 86.48 64.45 40.57 39.2 246 MB
YOLOv5s 91.36 90.30 7.06 16.4 40.0 27.2 MB

YOLOv5-AC 95.14 94.22 3.37 9.7 63.1 13.1 MB
Efficientdet-B3 90.48 89.37 13.12 22.3 60.2 68 MB
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From all the above experimental results, the performance of the YOLOv5-AC algorithm
is significantly improved compared with the mainstream detection algorithms, including
YOLOv5, after pruning the model, improving the attention mechanism, and the non-
maximum suppression algorithm.

5.2. Ablation Study

This paper uses the channel pruning of the BN layer, AC_FPN module, and DIoU_NMS
algorithm to improve the YOLOv5s model. Next, we will verify the effectiveness of each
contribution through three groups of ablation studies.

5.2.1. Ablation Study on Network Pruning

In this paper, channel pruning is performed on the YOLOv5-AC model to compress
the model size, reduce the total number of parameters, and improve the model inference
speed to enhance the actual deployment capability. The following is an ablation experiment
on channel pruning to verify the effectiveness. The results are shown in Table 8 (

√
means

channel pruning, ×means no).

Table 8. Ablation study of YOLOv5-AC with and without channel pruning.

Channel Pruning P (%) R (%) AP (%) FPS (f/s) FLOPS (G) Parameters/106 Model Size (M)
√

97.30 94.87 94.93 63.1 9.8 3.37 13.1
× 97.15 95.07 94.72 40 16.3 7.07 27.6

We can see the comparison of FPS, FLOPS, and other indicators of the model more
intuitively with and without channel clipping in Figure 20.
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Figure 20. Performance comparison of the model with and without channel pruning.

It can be seen from the above table that there is little difference in performance
indicators such as P and R with or without pruning of the model. However, after pruning,
the FPS of the network is increased by 23.1%, and the FLOPS, Parameters, and Model size
are reduced approximately once. The experimental results verify the effectiveness of the
channel pruning.

5.2.2. Ablation Study on AC_FPN Model

Table 9 shows the experimental results of the AC_FPN module ablation, where
√

indicates that the AC_FPN module is used and × indicates that the original FPN module is
used without changing other modules. The use of AC_FPN aims to improve the precision of
model detection by adding an attention mechanism. As can be seen from Table 9, AC_FPN
is 3.89%, 4.09%, and 3.93% higher than FPN in P, AP, and F1_score. The experimental
results verify the effectiveness of the AC_FPN module.

Table 9. Ablation study of YOLOv5-AC with and without AC_FPN.

AC_FPN P (%) R (%) AP (%) F1 (%) FLOPS (G) Parameters/106
√

98.14 94.22 95.12 94.08 9.7 3.37
× 94.25 94.01 91.03 90.15 9.7 3.36

5.2.3. Ablation Study on DIoU_NMS Algorithm

Table 10 shows the results of the DIoU_NMS ablation experiment, where
√

indicates
that DIoU_NMS is used and× indicates that NMS is used without changing other modules.
The addition of DIoU_NMS is used to improve the problem of non-redundant boxes of
detection targets with high coincidence being deleted and improve the recall rate. It can
be seen from Table 10 that we can improve R and F1_score by 4.17% and 3.55% by using
DIoU_NMS. The experimental results verify the effectiveness of the DIoU_NMS algorithm.
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Table 10. Ablation study of YOLOv5-AC with and without DIoU_NMS.

DIoU_NMS P (%) R (%) AP (%) F1 (%) FLOPS (G) Parameters/106
√

97.88 94.14 95.03 93.79 9.7 3.37
× 98.01 89.97 95.12 90.24 9.7 3.35

5.3. Visualization of Heatmaps

The learning and reasoning process of the neural network is considered to be black-box
computing. How the network learns parameters, the respective concerns of each layer of
the network, and the interpretability of the deep learning process have always been hot
topics in the industry. We will conduct corresponding visualization research on the learning
process of the YOLOv5 target detection framework according to the research content of
this article in response to this hot topic. Figure 21 is the visualization result of the feature
map extracted by the backbone network.
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As can be seen from Figure 21, with the advancement of the network learning process,
the extraction progress of the feature map gradually deepens, the useless features are
continuously screened and excluded, and the required main features are obtained in the
end. Figure 22 uses the Gradient-weighted Class Activation Mapping (Grad_CAM) [38]
heatmap to visualize the response of the feature map to a learning class during the training
process, as well as the output decision-making process. Unlike Class Activation Mapping
(CAM) [39], which only performs average pooling on the feature map of the last layer,
Grad-CAM performs weighted average pooling on all channels. The mapping result of
each convolutional layer to the feature map is obtained after relu activation.
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In Figure 22, we use heatmaps of four network layers to show the learning decision
process of the network. It can be seen that the first few layers of the network feature
learning represented by (a) and (b) are loose. However, the heat map gradually becomes
closer to the target after adjusting the attention mechanism of (c) AC_FPN, and the heat
point obtained by the output layer is almost completely aligned with the target, so the final
detection results (e) are accurate.
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Figure 22. Visualization of heatmaps. (a) stage1_C3 heatmaps; (b) stage6_C3 heatmaps; (c) AC_FPN
heatmaps; (d) output heatmaps; (e) detection results.

6. Discussion

Compared with YOLOv5s, the improved YOLOv5-AC model has been greatly im-
proved in terms of precision, recall, model size, and FPS. Moreover, the missed detection
rate of overlapping targets has been greatly improved, which is a greatly effective algorithm
improvement. However, during the experiment, we also found that the algorithm’s ability
to recognize small overlapping targets at long distances still needs to be improved. In the
future, we will further improve our YOLOv5-AC based on this problem, which is mainly
divided into the following two points: First, there are fewer small-target feature areas,
so we will perform further data enhancement to improve the sample quality; second, we
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will use the idea of a sliding window, where the image is divided into n small areas to be
detected separately, and the normal image size is concatenated in the end.

Furthermore, we will use the intelligent robot based on jetson nano as the research
object. In the meantime, cooperating with the SLAM algorithm and the path planning
algorithm to realize pedestrian detection in the process of automatic driving of the robot,
we will test the actual effect of our YOLOv5-AC algorithm to help the development and
application of pedestrian detection methods in railway traffic.

7. Conclusions and Future Works

In view of the accuracy and recall rate of pedestrian detection on train tracks, the
corresponding train track datasets were collected, and Labelme was used for manual
annotation. We have made improvements to the YOLOv5s deep learning framework.
Above all, the L1 regularization function is added to the BN layer, which can remove the
network layer with a small impact factor, reducing the size of the model to improve the
inference speed. Then, a CEM module is applied to the FPN layer to extract as many
features as possible. At the same time, CxAM and CnAM, which are two attention modules,
are deployed to filter out the useless features, which can correct the position shift that
occurs in the process of feature restoration and improve the detection accuracy. In the end,
the DIoU_NMS algorithm is used as the prediction box screening algorithm to reduce the
loss rate of non-redundant boxes and improve the recall rate. The final experimental results
show that the AP can reach 95.14% and the recall rate can reach 94.22% for the improved
YOLOv5-AC algorithm. In addition, the trained weight file is 13.1 MB, and the FPS is
63.1 f/s. YOLOv5-AC shows great improvement in each detection performance compared
with YOLOv5s, and the model size and inference speed are better, which facilitate the
deployment of actual projects. Our YOLOv5-AC can be used in practical projects related to
pedestrian detection on train tracks to improve detection accuracy, reduce missed detection
rates, reduce accidents caused by pedestrians randomly crossing the track, and ensure the
safety of life and property.
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