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Abstract: The maritime transport of containers between ports accounts for the bulk of global trade by
weight and value. Transport impedance among ports through transit times and port infrastructures can,
however, impact accessibility, trade performance, and the attractiveness of ports. Assessments of the
transit routes between ports based on performance and attractiveness criteria can provide a topological
liner shipping network that quantifies the performance profile of ports. Here, we constructed a directed
global liner shipping network (GLSN) of the top six liner shipping companies between the ports
of Africa, Asia, North/South America, Europe, and Oceania. Network linkages and community
groupings were quantified through a container port accessibility evaluation model, which quantified
the performance of the port using betweenness centrality, the transport impedance among ports with
the transit time, and the performance of ports using the Port Liner Shipping Connectivity Index. The
in-degree and out-degree of the GLSN conformed to the power-law distribution, respectively, and
their R-square fitting accuracy was greater than 0.96. The community partition illustrated an obvious
consistence with the actual trading flow. The accessibility evaluation result showed that the ports in
Asia and Europe had a higher accessibility than those of other regions. Most of the top 30 ports with
the highest accessibility are Asian (17) and European (10) ports. Singapore, Port Klang, and Rotterdam
have the highest accessibility. Our research may be helpful for further studies such as species invasion
and the planning of ports.

Keywords: global liner shipping network; port accessibility; Space-L; complex network; maritime
transport; shipping community detection

1. Introduction

Over 80% of international trade volume, accounting for 70% of its trade value, is
carried by ships and handled by seaports around the world [1]. Maritime transport is
regarded as the backbone of global trade and the lifeblood of the global economy. The
operational performance of ports and the links between ports together form the maritime
transport network, which has an important influence on global maritime trade [2]. Thus,
research on maritime transport networks as well as port connectivity and accessibility has
received increasing attention in recent years [3,4].

Traditional shipping studies relied upon indicators such as the GDP or freight index
to analyze trade volume and the value between countries [5–7]. In 2004, the United
Nations Conference on Trade and Development (UNCTAD) proposed the Liner Shipping
Connectivity Index (LSCI) for shipping connectivity [8] and later extended the LSCI to
the Port-LSCI (PLSCI) in 2019 to quantify the efficiency of a port for handling ships and
cargo. Many researchers have, therefore, started to use the PLSCI for port competitiveness
assessments. For example, Tovar and Wall [9] used the PLSCI to analyze the relationship
between port connectivity and port productivity, and conducted case studies in 16 Spanish
ports. Their results illustrated a strong positive correlation between the connectivity and
efficiency of ports. In addition to the PLSCI, researchers have developed a variety of port
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performance indicators [10]. However, these indicators tend to focus on the capabilities of
ports themselves with little regard for the global characteristics and the directionality of
shipping networks, which are important to maritime transport.

With the development of network science, the quantitative analysis of the topological
characteristics of liner shipping networks (LSNs), globally or within a specific area, is a
relatively new research topic [11,12]. Space-L and Space-P theories are used to represent
the topology of complex maritime transport networks [13]. In Space-L, a link is created
between consecutive stops in one route; in Space-P, all ports that belong to the same route
are connected. Both methods have been adopted in shipping network research [14,15]. As
routes from/to a port are often different, a directed LSN using Space-L reflects the practical
situation more faithfully [16–19].

The rapid increase in world trade and maritime transportation has increased competi-
tion among ports. The performance of ports has been investigated by many researchers
using competitive network theory [20]. Jiang, et al. [21] defined the variation in the
weighted average shortest path length of the liner shipping network when trans-shipment
is enabled or not as port connectivity, and conducted a case study for major ports in the
Asia–Pacific region. Tovar et al. [22] believed that indicators such as the degree and be-
tweenness from the perspective of the network structure and the freight volume from
the perspective of the port itself may characterize the connectivity and performance of
ports. However, these approaches do not comprehensively characterize the accessibility of
the transport system [23,24] and there is a lack of analysis and a lack of an application to
network directionality.

Accessibility has been a research hotspot in transport geography and other research
areas since its inception in 1959 [25,26]. Shipping accessibility underpins maritime network
development, port planning, and economic benefits to regional and national economies [27,28].

Within a network, the accessibility of a node can be calculated from two aspects: the
transport capability of the node relative to the overall network and the attractiveness of the
node. The transport capability of the overall network depends on the links connected to
the node and transit impedance among the links; in other words, the transport topological
impedance structure of the network. The attractiveness of a node depends on the node
itself; for example, the size/capacity and efficiency of the node in dealing with cargo and
ship operations. Both aspects should be considered in accessibility evaluations for ports in
an LSN; previous studies have rarely addressed them.

In 2020, the COVID-19 epidemic caused global health and economic crises that dis-
rupted shipping and trade patterns and severely affected global growth prospects [29]. The
UNCTAD predicted that the volume of international maritime trade would drop by 4.1%
in 2020 [30]. Researchers found that during the first half of 2020 there were decreases in
maritime traffic of 70.2% in exclusive economic zones [31]. The evaluation of the accessi-
bility of ports from the perspective of the overall LSN and the port itself could be helpful
for a better understanding of the global trade flow and structure in the post-COVID-19
pandemic era.

In the present study, we constructed a directed GLSN using Space-L with the latest
routes (2021) collected from the websites of the top six liner shipping companies. An
accessibility evaluation model using the PLSCI and betweenness of the ports was proposed.
The topological and community characteristics of the GLSN were analyzed and interpreted
to better understand the global liner shipping network and the accessibility of ports in 2021.

The main contributions of this paper are: (1) the liner shipping data collected in
2021 could improve the understanding of the status of global maritime transport; (2) the
topological features and community structure of the GLSN in the post-COVID-19 era were
analyzed; and (3) a comprehensive accessibility model considering network directionality
was proposed and applied to the GLSN.
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2. Materials and Methods
2.1. Data

The data used in this article included the service routes of the liner companies, the
PLSCI, and the basic attributes of the port such as the country code, port latitude, and port
longitude, as shown in Table 1.

Table 1. Attributes merged and used in this study.

Attribute Name Description

Port Name
Port names matched among routes from 6 liner

shipping companies, PLSCI data from the UNCTAD,
and port data from the IHS market

PLSCI Published by the UNCTAD quarterly

2.1.1. Shipping Lines

We collected the service schedules published on the websites of the top six liner
shipping operators (about 71.3% of the global TEUs in 2021, according to Alphaliner.com,
as shown in Table 2) from 13 July to 26 July 2021. The route data included the depar-
ture port, arrival port, and transit time between ports. The basic attributes of the ports
(e.g., the coordinates and country code), bought from IHS Markit, were matched with
the name and location of the ports. The GLSN included 564 unique ports (nodes) and
9474 routes (repeated routes of different companies were merged into 2971 directed links),
as shown in Figure 1.

Table 2. Top 6 liner shipping operators ranked by share of TEU (twenty-foot equivalent unit
of containers).

Rank 1 Operator TEU Share Total Share

1 Maersk 4,221,901 17.1% 17.1%
2 MSC 4,083,743 16.5% 33.6%
3 CMA CGM 2,996,919 12.1% 45.7%
4 COSCO 2,982,192 12.0% 57.7%
5 Hapag-Lloyd 1,782,858 7.2% 64.9%
6 ONE 1,592,173 6.4% 71.3%

1 The ranks are from https://alphaliner.axsmarine.com/PublicTop100/index.php, updated on 18 August 2021.
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2.1.2. PLSCI

The Liner Shipping Connectivity Index (LSCI), published by the UNCTAD annually
since 2004, evaluates the degree of integration for countries connected to the global liner
shipping network. It was further improved by the Port-LSCI (PLSCI), which covers more
than 900 container ports around the world and is updated quarterly. We collected the
PLSCI data from GLSN ports in the second quarter of 2021 from the UNCTAD website.

2.2. Methods

The following methods were applied to determine the network linkages and topology
of the port connections in 2021. The complex network analysis methods used included
the average degree, average clustering coefficient, average shortest path length, and be-
tweenness; these were applied to the GLSN. The Leiden community detection algorithm
was used to discover the trade topology structure of the GLSN and the modularity of the
partition result was calculated. Finally, an accessibility evaluation model was proposed.

2.2.1. Complex Network Analysis Factors

In this section, definitions are provided for the factors used in the GLSN, including the
average degree, average clustering coefficient, average shortest path length,
and betweenness.

Degree and average degree: The degree of a node is the number of links adjacent to
the node. The in-degree and out-degree are considered separately in directed networks.
The average degree 〈k〉 for a directed network is defined as follows:

〈k〉 = 1
N

N

∑
i=1

kin
i +

1
N

N

∑
i=1

kout
i =

L
N

(1)

where N represents the total number of nodes in the network; kin
i represents the number

of links that point into node i; kout
i represents the number of links that point out from

node i to other nodes; and L represents the total number of links (regardless of direction) in
the network.

Average shortest path length: The average shortest path length (ASPL) is defined as
the average number of steps along the shortest paths for all possible pairs of network nodes.
It is a measure of the efficiency of information or mass transport on a network.

Consider a network G with the set of vertices V; dist(v1, v2) denotes the shortest path
between v1 and v2(v1, v2 ∈ V). If dist(v1, v2) = 0, then has_path(v1, v2) = 0 if there is no
path between v1 and v2 or v1 = v2. However, if has_path(v1, v2) = 1 then there is a path
from v1 to v2. The ASPL for network G can then be defined as:

ASPLG =
∑N

i,j dist
(
vi, vj

)
∑N

i,j has_path(v1, v2)
(2)

where, ∑N
i,j dist

(
vi, vj

)
represents the sum of all shortest path lengths and ∑N

i,j has_path(v1, v2)
represents the total number of paths [32].

Average clustering coefficient: The degree of clustering of a whole network is cap-
tured by the average clustering coefficient C, representing the average of cv over all nodes
in the network:

C =
1
N ∑

v∈G
cv (3)

The clustering coefficient for each node in the directed network is calculated as follows,
according to [18]:

cv =
2Tv

ktot
v (ktot

v − 1)− 2k↔v
(4)
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where ktot
v is the sum of the in-degree and out-degree of the node v in the network, Tv is the

number of directed triangles passing through node v, and k↔v is the reciprocal degree of v.
Betweenness centrality: Betweenness centrality is an indicator measuring the influ-

ence of the nodes based on the shortest path. The betweenness centrality of node v is the
sum of the fraction of the shortest paths of all pairs that pass through v:

CB(v) = ∑
s,t∈V

σ(s, t|v)
σ(s, t)

(5)

where σ(s, t) is the number of shortest paths between node s and node t and σ(s, t|v) is the
number of those paths passing through a node v, other than s or t. If s = t, σ(s, t); if v ∈ s, t,
σ(s, t) = 0.

Betweenness centrality can be normalized for directed networks as:

CB(v)norm =
CB(v)

(N − 1)(N − 2)
(6)

Community detection: The Leiden algorithm package for Python [33] was used for
the shipping community detection. The Leiden algorithm [34], which extends the Louvain
algorithm [35], is widely regarded as one of the best algorithms for detecting communities.
The frequency of occurrence for each route can be used as the weight of the route whilst
detecting the communities.

Modularity: Modularity is a measurement for the partitioning of the network into
communities. A higher modularity value indicates a stronger internal connection or
cohesiveness within a community. In practice, a value between 0.3~0.7 is considered to
be a good indicator of a significant cohesive community structure in networks [35–37].
Modularity can be expressed as:

Q =
1

2L ∑
i,j

(
Aij −

kik j

2L

)
σ
(
ci, cj

)
(7)

where A is the adjacency matrix for the network and ki is the total degree of node i.
Specifically, if i and j are in the same community, then σ

(
ci, cj

)
= 1; otherwise, it is 0.

2.2.2. Accessibility Evaluation Model

Combining the PLSCI, betweenness centrality for ports, and transit time between
ports, the accessibility for port liner shipping transportation is defined as:

A f rom_i =
m

∑
j=1

√
BjCjOij

Tij
(8)

Ato_i =
n

∑
j=1

√
BiCiOji

Tji
(9)

where A f rom_i and Ato_i are the accessibility from/to port i, respectively; m and n are the
total number of routes from/to port i, respectively; Tij and Tji are the transit times from
port i/j to port j/i, respectively; Ci and Cj are the PLSCIs of port i/j, respectively; Bi and Bj
are the betweenness centralities of port i/j, respectively; and Oij and Oji are the occurrence
times of link ij/ji, respectively.

3. Results

Based on the collected data, we constructed a directed GLSN, as shown in Figure 2.
The route attributes included the average transit time between nodes and the frequency of
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route appearances. The port attributes included the country that the port belonged to and
the corresponding PLSCI of the port.
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3.1. Topological Characteristics of the GLSN

The average degree of the GLSN was 5.27, the average clustering coefficient was 0.33,
and the average shortest path length was 4.10. The degree distribution of the GLSN, as
shown in Figure 3, demonstrated that most ports had few shipping routes. However,
there were several important ports such as Singapore port that had a considerable number
of routes from/to different ports. A relatively high average degree and a small average
shortest path length indicated that the GLSN conformed to the characteristics of a small-
world network, which was consistent with the findings of previous works [13,38,39].

Previous studies [19,40–42] concluded that the GLSN should be a scale-free network
and that the in-degree and out-degree of a directed network should conform to the power-
law distribution, respectively [43]. We tested the power-law fitting for the in-degree and
out-degree distribution of the GLSN in log-scaled axes (Figure 4a,b); both R-square values
were larger than 0.96. It can be seen from Figure 4c,d that the residuals of the power-
law distribution fitting were higher at the small-degree nodes, but became smaller as
the degree increased. The fitting result showed that the GLSN was a scale-free network
for the in-degree and out-degree. That is to say, a few nodes in the GLSN had a greater
number of links and these nodes were called hubs. Hubs typically had links from the
entire network serving as links between different parts of the network, thus showing a
small-world property. For example, the Singapore port, mentioned above, had the highest
degree (including the out-degree and in-degree, respectively); it is an important hub port
for East Asian and European trade.
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Figure 4. In-degree and out-degree power-law curve fitting. (a,b) illustrated the power-law curve
fitting results for in-degree and out-degree of GLSN respectively. (c,d), illustrated their fitting residuals.

Singapore or other hub ports are transit points for world maritime trade where goods
are distributed. The in-degree and out-degree of most hub ports are similar such as
Singapore (in-degree 78; out-degree 78), Busan (46, 44), and Rotterdam (43, 41). However,
several ports also have large differences in their in-degree and out-degree. As can be seen
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from Table 3, hub ports such as Tanger Med and Algeciras have an obvious difference in
their in-degree and out-degree. The same situation occurs in other ports such as Sydney,
Veracruz, and Tianjin.

Table 3. Variation between the in-degree and out-degree of ports.

Port Total Degree In-Degree Out-Degree Variation

Tanger Med 72 44 28 16
Qingdao 40 28 12 16

New York 34 23 11 12
Sydney 14 11 3 8

Veracruz 16 12 4 8
Tianjin 20 14 6 8

Wellington 18 5 13 −8
Algeciras 73 31 42 −11
Le Havre 40 14 26 −12

Charleston 35 11 24 −13

The ranking for the betweenness of ports in the GLSN is partly shown in Table 4.
Singapore port had the highest betweenness centrality, reaching 0.26 after normalization,
followed by Rotterdam port at 0.13 and Busan port at 0.11. The ports with a high between-
ness centrality belonged to a wide range of countries, but they were mainly distributed
in Asia and Europe. As seen in Figure 5, Asian and European ports had a higher average
betweenness than the other continents. However, the difference of betweenness among
continents was not highly significant.
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Table 4. Top 30 ports with the highest betweenness centrality.

Rank Port Country Continent Betweenness Normalized
Betweenness

1 Singapore Singapore Asia 82,327 0.26
2 Rotterdam Netherlands Europe 42,172 0.13
3 Busan South Korea Asia 35,468 0.11
4 Algeciras Spain Europe 28,962 0.09
5 Tanger Med Morocco Africa 28,557 0.09
6 Piraeus Greece Europe 28,445 0.09
7 Manzanillo (Panama) Panama America (Central) 22,414 0.07
8 Marsaxlokk Malta Europe 21,712 0.07
9 Tanjung Pelepas Malaysia Asia 21,057 0.07
10 Port Klang Malaysia Asia 18,436 0.06
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Table 4. Cont.

Rank Port Country Continent Betweenness Normalized
Betweenness

11 Cartagena (Colombia) Colombia America (South) 18,174 0.06
12 Kingston (Jamaica) Jamaica Caribbean 17,678 0.06
13 Bremerhaven Germany Europe 16,618 0.05
14 Santos Brazil America (South) 15,541 0.05
15 Hamburg Germany Europe 15,521 0.05
16 Jebel Ali United Arab Emirates Asia 13,263 0.04
17 Colombo Sri Lanka Asia 12,323 0.04
18 Jeddah Saudi Arabia Asia 10,782 0.03
19 Le Havre France Europe 10,276 0.03
20 Caucedo Dominican Republic Caribbean 8753 0.03
21 Antwerp Belgium Europe 8362 0.03
22 Valencia Spain Europe 7670 0.02
23 Shanghai People’s Republic of China Asia 7486 0.02
24 Yantian People’s Republic of China Asia 7076 0.02
25 New York United States of America America (North) 7011 0.02
26 Balboa Panama America (Central) 6760 0.02
27 Auckland New Zealand Oceania 6717 0.02
28 Hong Kong Hong Kong, China Asia 6508 0.02
29 Port Newark United States of America America (North) 6379 0.02
30 Salalah Oman Asia 6304 0.02

America (Central), including Mexico, Panama, and Belize, of the ports of 8 countries according to the port data of
IHS Markit.

The Leiden algorithm was used to determine the community division using three
million randomly simulated divisions. Modularity was used to evaluate the result of each
division. The partitioning based on the 3 million divisions divided the 557 ports into
10 communities, as shown in Figure 6. The largest modularity value observed was 0.6433.

Sensors 2022, 22, 5889 9 of 15 
 

 

28 Hong Kong Hong Kong, China Asia 6508  0.02  
29 Port Newark United States of America America (North) 6379  0.02  
30 Salalah Oman Asia 6304  0.02  

America (Central), including Mexico, Panama, and Belize, of the ports of 8 countries according to 
the port data of IHS Markit. 

 
Figure 5. Box plot for betweenness of ports in different continents. Values within the box lie between 
the inter-quartile range of 0.25 to 0.75. The bar within the box represents the median value and the 
bar outside the box represents the extreme outlier range. 

The Leiden algorithm was used to determine the community division using three 
million randomly simulated divisions. Modularity was used to evaluate the result of each 
division. The partitioning based on the 3 million divisions divided the 557 ports into 10 
communities, as shown in Figure 6. The largest modularity value observed was 0.6433. 

 
Figure 6. Communities detected in GLSN. Nodes are represented in their real coordinates (7 out of 
564 ports that were not strongly connected to the major component of the GLSN are excluded). 

Figure 6 shows the global spatial distribution of the ports belonging to each of the 10 
communities described in Table 5 as communities C1 to C10. The number of ports in the 
top 6 communities accounted for 82.45% of the total number of ports. C5 had the highest 
average degree at 6.00, the second highest average clustering coefficient at 0.44, and the 
third shortest path at 2.54; it performed the best in the 3 indicators among the top 6 biggest 
communities. 

  

Figure 6. Communities detected in GLSN. Nodes are represented in their real coordinates (7 out of
564 ports that were not strongly connected to the major component of the GLSN are excluded).

Figure 6 shows the global spatial distribution of the ports belonging to each of the
10 communities described in Table 5 as communities C1 to C10. The number of ports in
the top 6 communities accounted for 82.45% of the total number of ports. C5 had the
highest average degree at 6.00, the second highest average clustering coefficient at 0.44,
and the third shortest path at 2.54; it performed the best in the 3 indicators among the top 6
biggest communities.
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Table 5. Description and indicators of the 10 communities determined from the GLSN analysis.

ID Description Indicators

C1
The largest community was mainly distributed in

Europe and north-west Africa and included
105 ports from 31 countries

Greatest betweenness centrality ports included Rotterdam,
Algeciras, and Tanger Med. The average degree in this

community was 4.24, average clustering coefficient was 0.34,
and average shortest path length was 3.12

C2
The second community was mainly located in

south-east Asia, west Asia, and north-east Africa
and included 88 ports from 33 countries

Greatest betweenness centrality ports included Singapore,
Tanjung Pelepas, and Jebel Ali. The average degree in this

community was 4.32, average clustering coefficient was 0.44,
and average shortest path length was 2.83

C3
The third community was mainly located on the east
coast of North America and Central America and

consisted of 87 ports from 39 countries

Major ports included Manzanillo (Panama), Cartagena
(Colombia), and New York. The average degree in this

community was 3.49, average clustering coefficient was 0.31,
and average shortest path length was 3.44

C4
The fourth community was scattered around the

Mediterranean Sea and consisted of 80 ports from
24 countries

Major ports included Piraeus, Marsaxlokk, and Valencia. The
average degree in this community was 4.94, average clustering
coefficient was 0.31, and average shortest path length was 2.89

C5
Ports of the fifth community were mainly

distributed in east Asia and the west coast of North
America and consisted of 65 ports from 8 countries

Major ports included Busan, Shanghai, Hong Kong,
and Los Angeles. The average degree in this community

was 6.00, average clustering coefficient was 0.44, and
average shortest path length was 2.54

C6
Ports of the sixth community were mainly

scattered around the south coast of Africa and
consisted of 40 ports from 18 countries

Major ports included Durban and Pointe Noire. The average
degree in this community was 3.00, average clustering

coefficient was 0.33, and average shortest path length was 3.68

C7 The seventh community consisted of
30 ports from 12 countries from Oceania

Major ports included Auckland and Brisbane. The average
degree in this community was 2.57, average clustering

coefficient was 0.30, and average shortest path length was 3.73

C8
The eighth community consisted of

27 ports from 11 countries from the west coast of
South America and Central America

Major ports included Balboa and Callao. The average degree in
this community was 4.37, average clustering coefficient

was 0.47, and average shortest path length was 2.34

C9
The ninth community consisted of

22 ports from 3 countries distributed on the
east coast of South America

Major ports included Santos and Paranagua. The average
degree in this community was 3.64, average clustering

coefficient was 0.36, and average shortest path length was 2.30

C10 The tenth community consisted of
13 ports from Norway

Major ports included Haugesund and Aalesund. The average
degree in this community was 1.69, average clustering

coefficient was 0.29, and average shortest path length was 2.88

3.2. Accessibility of Ports in the GLSN

We obtained the PLSCI of global ports and matched the PLSCI in Q2 of 2021 (consistent
with the period of obtaining the route data) with the ports in the GLSN for the accessibility
calculations. Table 6 shows the top 30 ports with the highest PLSCI.

Table 6. Top 30 ports with the highest PLSCI.

Rank Port Country Continent PLSCI

1 Shanghai People’s Republic of China Asia 145.85
2 Singapore Singapore Asia 128.52
3 Ningbo-Zhoushan People’s Republic of China Asia 125.73
4 Busan South Korea Asia 119.15
5 Hong Kong Hong Kong, China Asia 107.16
6 Qingdao People’s Republic of China Asia 97.03
7 Rotterdam Netherlands Europe 95.67
8 Port Klang Malaysia Asia 93.34
9 Antwerp Belgium Europe 93.21

10 Kaohsiung Taiwan, China Asia 88.52
11 Shekou-Chiwan People’s Republic of China Asia 85.66
12 Xiamen People’s Republic of China Asia 85.57
13 Yantian People’s Republic of China Asia 85.13
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Table 6. Cont.

Rank Port Country Continent PLSCI

14 Nansha People’s Republic of China Asia 81.17
15 Hamburg Germany Europe 80.87
16 Jebel Ali United Arab Emirates Asia 78.12
17 Tianjin People’s Republic of China Asia 77.54
18 Colombo Sri Lanka Asia 74.90
19 Valencia Spain Europe 70.70
20 Tanjung Pelepas Malaysia Asia 69.78
21 Algeciras Spain Europe 69.51
22 Le Havre France Europe 67.88
23 Tanger Med Morocco Africa 67.35
24 Laem Chabang Thailand Asia 67.27
25 Bremerhaven Germany Europe 65.51
26 Barcelona Spain Europe 65.05
27 Dalian People’s Republic of China Asia 63.79
28 Gwangyang South Korea Asia 62.32
29 Piraeus Greece Europe 62.28
30 Yokohama Japan Asia 60.52

Almost all of the top 30 ports with the highest PLSCI were European and Asian ports,
and 11 of the ports were in China (including Hong Kong, Macao, and Taiwan). As for the
PLSCI of all ports, Figure 7a shows that the North American ports had the second highest
average as well as the highest median PLSCI. The PLSCI of the Asian ports varied from
1.88 (Ajman port) to 145.85 (Shanghai port). Figure 7b shows that C5, which was mainly
located in east Asia and the west coast of North America, had the highest average and
median PLSCI.

Sensors 2022, 22, 5889 11 of 15 
 

 

13 Yantian People’s Republic of China Asia 85.13 
14 Nansha People’s Republic of China Asia 81.17 
15 Hamburg Germany Europe 80.87 
16 Jebel Ali United Arab Emirates Asia 78.12 
17 Tianjin People’s Republic of China Asia 77.54 
18 Colombo Sri Lanka Asia 74.90 
19 Valencia Spain Europe 70.70 
20 Tanjung Pelepas Malaysia Asia 69.78 
21 Algeciras Spain Europe 69.51 
22 Le Havre France Europe 67.88 
23 Tanger Med Morocco Africa 67.35 
24 Laem Chabang Thailand Asia 67.27 
25 Bremerhaven Germany Europe 65.51 
26 Barcelona Spain Europe 65.05 
27 Dalian People’s Republic of China Asia 63.79 
28 Gwangyang South Korea Asia 62.32 
29 Piraeus Greece Europe 62.28 
30 Yokohama Japan Asia 60.52 

Almost all of the top 30 ports with the highest PLSCI were European and Asian ports, 
and 11 of the ports were in China (including Hong Kong, Macao, and Taiwan). As for the 
PLSCI of all ports, Figure 7a shows that the North American ports had the second highest 
average as well as the highest median PLSCI. The PLSCI of the Asian ports varied from 
1.88 (Ajman port) to 145.85 (Shanghai port). Figure 7b shows that C5, which was mainly 
located in east Asia and the west coast of North America, had the highest average and 
median PLSCI. 

 
(a)  

 
(b)  

Figure 7. Box plots for PLSCI of ports in GLSN. Several ports (20) that were not matched to a PLSCI 
are excluded from this figure. 
Figure 7. Box plots for PLSCI of ports in GLSN. Several ports (20) that were not matched to a PLSCI
are excluded from this figure. (a) Box plot for PLSCI of ports in different continents; (b) Box plot for
PLSCI of ports in different communities.
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The accessibility evaluation model was applied to calculate the inbound and outbound
accessibility of ports in the GLSN; the top 30 ports are shown in Table 7. Singapore port had
the highest inbound, outbound, and total accessibility amongst all ports in the GLSN. This
was followed by Port Klang and Rotterdam. Tanjung Pelepas, Busan, and Shanghai port
ranked 4–6 in total accessibility. In addition, the 30 ports all belonged to the first to fifth
communities; the fifth community, which was mainly located in East Asia, had 11 ports in
the ranking list.

Table 7. Top 30 ports with the highest total accessibility and their community index.

Rank Port Community
Number

Outbound
Accessibility

Inbound
Accessibility Total Accessibility

1 Singapore 2 195.67 194.69 390.36
2 Port Klang 2 82.58 97.30 179.88
3 Rotterdam 1 80.25 86.82 167.07
4 Tanjung Pelepas 2 78.35 57.94 136.29
5 Busan 5 65.98 64.88 130.86
6 Shanghai 5 60.79 61.71 122.50
7 Hong Kong 5 45.52 44.60 90.12
8 Ningbo 5 39.62 47.83 87.45
9 Algeciras 1 41.83 44.87 86.71
10 Hamburg 1 35.36 51.07 86.42
11 Tanger Med 1 45.39 34.01 79.39
12 Antwerp 1 42.96 33.35 76.30
13 Bremerhaven 1 34.97 33.76 68.73
14 Yantian 5 35.15 33.34 68.50
15 Shekou 5 21.91 20.54 42.45
16 Le Havre 1 21.94 20.09 42.03
17 Piraeus 4 19.72 19.90 39.62
18 Kaohsiung 5 18.42 20.05 38.47
19 Colombo 2 17.08 17.57 34.64
20 Nansha 5 16.97 13.56 30.53
21 Cartagena (Colombia) 3 15.85 14.07 29.92
22 London Gateway 1 13.33 14.16 27.49
23 Manzanillo (Panama) 3 13.77 12.81 26.59
24 Qingdao 5 14.03 11.69 25.72
25 Marsaxlokk 4 9.58 15.66 25.24
26 Xiamen 5 11.95 12.81 24.76
27 Valencia 4 10.72 12.65 23.37
28 Jebel Ali 2 10.50 12.74 23.24
29 Jeddah 2 11.44 10.65 22.09
30 Yokohama 5 9.16 7.99 17.15

4. Discussion

We constructed a directed GLSN and found that its in-degree and out-degree con-
formed to a power-law distribution, implying that a small number of hub nodes had a large
number of links. Many studies consider the liner shipping network to be an undirected
network, ignoring the directionality of the transportation flow. As shown in Table 3, Tanger
Med port had a node degree of 72; its in-degree was 16 higher than its out-degree. Qingdao
port had a node degree of 40, but its in-degree was 16 higher than its out-degree. These
ports may be gateway ports that import goods into the hinterland. On the other hand,
ports such as Algeciras and Le Havre, whose out-degrees were higher than their in-degrees,
may be hub ports that export goods to all over the world. In addition, ports with a higher
inbound accessibility have advantages of transit distance (time), port location, and port
attractiveness, but they are at a higher risk of invasive species.

According to the annual review for maritime transport of UNCTAD, all containerized
east–west trade routes among Asia, the Mediterranean, Europe, and North America ac-
count for 52.6% of the total freight volume of the world [44]. The community division result
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showed that the spatial distribution of the main communities conformed to the actual situ-
ation of the major routes of container transportation (the number of ports from community
1–5 mainly distributed in Asia, the Mediterranean, Europe, and North America accounted
for 59.93% of the total ports in the GLSN). In addition, container port throughput in Asia
and Europe accounted for 79.71% of the global throughput, according to the UNCTAD [44];
the same trend emerged in the port accessibility assessment results. Most of the leading 30
ports with the highest accessibility were Asian (17) and European (10) ports.

Regarding port accessibility, although the average PLSCI of the North American ports
ranked second (behind Asia), there was no North American port in the total accessibility
rank. The average betweenness centrality of the North American ports was relatively
low and the transit times of both the trans-pacific routes and the North American–Europe
routes were longer than the other major routes. This could be the reason why the overall
accessibility of the North American ports was not high.

Regarding port management, an assessment of port accessibility can clarify the state
of a port. Hub ports such as Singapore and Hong Kong should maintain their inbound and
outbound accessibility at a similar level. Ports with a higher inbound or outbound accessi-
bility such as Hamburg and Nansha should further develop their strengths and enhance
their connectivity with the shipping network. For shipping companies, the accessibility
of ports could also be useful when designing new routes. For example, a similar level of
outbound and inbound accessibility for all ports in a route may reduce blank sailings and
improve the efficiency of ships.

Although the data obtained were based on only six main liner companies, they were
enough to illustrate the GLSN; the research result could easily be extended to a more
detailed dataset. The transit time of the routes was the average value collected from the
websites of the liner companies rather than the actual transit times, which may have had
a slight impact on the calculation of accessibility. In addition, the data did not contain
information such as the ship tonnage or ship carry capacity; therefore, the trade volume for
routes was not considered in this study. Despite a few limitations, the GLSN developed to
quantitatively analyze the inbound and outbound accessibility of global container ports
could be used for subsequent studies.

5. Conclusions

The topological characteristics of the GLSN using Space-L from liner shipping com-
panies provided a scale-free network, which indicated that few ports accommodated the
majority of links. Community divisions into 10 clusters showed an obvious correspondence
with the actual trade flow. The directed accessibility between the inbound and outbound
trade flows significantly affected the topological structure. The accessibility evaluation
result showed that the Asian ports had the highest total accessibility, with the inbound
accessibility close to that of the outbound. The European ports ranked behind the Asian
ports. The ports in North America had a relatively low accessibility because of the long
transit time and low betweenness. Our research has enhanced the understanding of mar-
itime networks and could provide insights into route optimization as well as other studies
such as species invasion and port planning.

In the future, the research in this paper can be expanded in several ways. First, due
to the availability of data, our analysis focused on the topographic characteristics of the
GLSN. However, other indicators such as port throughput and port efficiency are worth
studying. Second, the liner shipping data collected in 2021 reflected the shipping patterns
in the post-COVID-19 era. However, the outbreak of war between Russia and Ukraine
in 2022 has led to further changes in the patterns of global energy and food trade. It is
possible to construct an updated long-term shipping network to analyze the impact of
major international incidents such as COVID-19 or regional wars on maritime transport.
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