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Abstract: Crew fatigue from standing posture motion, caused by ship motion, can lead to marine
accidents. Therefore, the mechanism of fatigue in crew members ought to be elucidated. The standing
posture of humans is maintained by postural state detection through the visual, vestibular, and
somatosensory systems. Humans can adjust their posture through corrective postural reactions (CPR)
generated after anticipatory postural adjustments (APAs) by using information from these sensory
systems. APAs refer to skills acquired by learning from past motions and perturbations and are
prepared by the central nervous system based on visual information before the actual perturbation
occurs. We hypothesized that APAs would decrease fatigue in crew members by stabilizing their
standing posture motions. We aimed to clarify the human standing posture control influenced by
APAs based on visual information. To this end, we presented wave images with different wave
directions to the participants using a visual simulator and analyzed their standing posture motion. We
found that the participants stabilized their standing posture based on the projected wave directions.
This showed that the participants predicted ship motion from the wave images and controlled their
center of pressure (COP) through APAs. Individual differences in standing postural motion may
indicate the subjective variation of APAs based on individual experiences. This study was limited to
males aged 20-23 years. To generalize this study, randomized controlled trials should be performed
with participants of multiple age groups, including men and women.

Keywords: fatigue; visual simulator; human standing posture; center of pressure; anticipatory
postural adjustments

1. Introduction

In 2019, the total annual trade volume of imports and exports of Japan exceeded
900 million tons, of which 99.6% constituted maritime trade. In 2020, 1954 marine accidents
occurred, demonstrating the criticality of preventing them. Human error accounted for
74% of these accidents [1]. The fatigue of crew members is the primary cause of accidents.
Therefore, the mechanism of crew member fatigue ought to be elucidated.

Crew members constantly control their posture to maintain their standing posture
against ship motion, which causes physical fatigue [2]. On measuring the physical fatigue
of crew members in terms of energy expenditure, pitch-and-roll motion, generated in a ship
motion simulator, was identified as increasing fatigue [3]. The pitch-and-heeling motion of
the ship was also found to affect the crew’s energy expenditure [4]. Our previous studies
focused on fatigue based on the postural control of crew members and analyzed their
energy expenditure and standing posture motion [5-9]. The international standard 1ISO6954
evaluates the habitability of ships based on ship motion; however, it ignores physiological
indicators [10].

The standing posture of humans is stabilized by corrective postural reactions (CPR),
generated after anticipatory postural adjustments (APAs), using information from the
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visual, vestibular, and somatosensory systems [11]. Specifically, the visual system detects
postures based on visual information; the vestibular system senses the orientation of the
head with respect to gravity, depending on the balance between the vestibule and the
semicircular canal of the inner ear; the somatosensory system detects postural movements
based on muscle and joint movements [11,12]. APAs refer to skills acquired by learning
from past motions and perturbations and are prepared by the central nervous system
based on visual information before the actual perturbation occurs [11]. CPR generates an
adjustment after an actual perturbation [11]. Standing posture motion caused by APAs and
CPR is observed as a change in the center of pressure (COP) [11].

The control system for the human standing posture depends strongly on visual infor-
mation [11]. Thus, analyzing the effects of standing posture motion triggered by visual
information on the crew members is crucial. In previous studies, we analyzed the energy
expenditure of the participants and their standing posture motion triggered by the wave
images presented using a ship-handling simulator. No significant differences were de-
tected between the energy expenditure of participants exposed to images with and without
waves [13-15]. The standing posture motion may have been caused by the APAs of the
participants based on the visual information.

We hypothesized that APAs would decrease fatigue in crew members by stabilizing
their standing posture. The current study aimed to clarify the human standing posture
control resulting from APAs based on visual information. Thus, we presented wave images
with different wave directions to the participants using a visual simulator and analyzed
their standing posture motions.

2. Methods
2.1. Participants

For the present study, the inclusion criteria were an age between 20 and 23 years and
male sex. Table 1 presents the details of the seven participants involved in the experiment.
The procedures were explained to the participants before initiating the experiment, and
they provided written informed consent. To prevent the effects of eating, exercising, and
sleeping on energy expenditure, the participants were instructed to get sufficient sleep the
previous night. They were also instructed to abstain from eating, drinking anything except
water, and engaging in intense exercise within 4 h before the start of the experiment.

Table 1. Participants involved in the experiment.

Participant Age Height (cm) Weight (kg) Sex
A* 23 165 66 male

B* 22 177 76 male

C 21 180 65 male

D* 22 185 92 male

E 20 178 78 male

F 20 161 48 male

G* 20 180 77 male

Asterisk (*) indicates that the participant has a marine license.

2.2. Design

This case study analyzed the relationship between the wave direction projected by a
visual simulator and the direction of human standing posture motion. The intervention
for the participants was based on visual information. Figure 1 shows a schematic of the
study. Wave images were presented to seven participants using a visual simulator, and the
COP was monitored to determine the human posture motion. Each participant balanced
themselves on a Wii Balance Board (RVL-021; Nintendo, Kyoto, Japan).
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Figure 1. Schematic of the study.

Four image patterns were presented to seven participants using a visual simulator:
an image without waves (Pattern 1), an image with 180° waves moving from front to rear
(Pattern 2), an image with 135° waves moving from front left to rear right (Pattern 3), and
an image with 90° waves moving from left to right (Pattern 4). One set of experiments
consisted of a 15 min break in the sitting posture with the image of Pattern 1 and a 15 min
intervention in the standing posture with one of the four image patterns. In the first, second,
third, and fourth sets of experiments, the images of Patterns 1, 3, 2, and 4 were presented to
the participants during the intervention phase, respectively. We instructed the participants
to stand naturally by placing their feet shoulder-width apart during the intervention phase.

2.3. Data Collection and Processing

The standing posture motion caused by the APAs was observed as a change in the COP.
In this study, COP was measured using a Wii Balance Board. The specifications of the Wii
Balance Board are listed in Table 2. The Wii Balance Board has four strain-gauge-based load
sensors capable of obtaining movement data in the COP and communicating wirelessly
with a computer via Bluetooth. A systematic review indicated that the Wii Balance Board
can provide data that are concurrently valid with typical commercial force platforms. In
addition, the board has reliability characteristics similar to those of force platforms for static
standing [16]. The intraclass correlation coefficient (ICC) is a statistical test of reliability.
Four studies reported the excellent reliability of the Wii Balance Board (ICC = 0.76 to
0.94) [17-20].

Table 2. Specifications of the Wii Balance Board.

Description Specification
Manufacturer Nintendo
Product family Wii
Type name RVL-021
Communications standard Bluetooth ver.1.2
Wireless frequency 2.4 GHz
Sampling interval 0.01s
Weight limit 136 kg
0-67 kg +800 g
Measured precision 68-99 kg +12kg
100-136 kg +2.0kg
Product weight 3.6 kg
Width 511 mm
Outside dimension Height 316 mm
Depth 53.2 mm

The COP was measured at a sampling rate of 100 Hz. A low-pass filter with a cut-off
frequency of 1 Hz was applied to the COP signals to eliminate noise. The characteristics of
the COP signals were evaluated in terms of the total length of the COP, AP/ML, which is
the ratio of the AP length to the ML length of the COP, and the relationship between the ML
and AP lengths of the COP, using scatter diagrams and regression lines. The sample size
for the total length of the COG and AP /ML was set to seventeen, respectively, to design
an effect size of at least 1.0, and the level of statistical power was at least 0.8. The effect
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size indicates Cohen’s d. The statistical power was calculated using the significance level,
sample size, and effect size.

2.4. Experimental Environment
2.4.1. Visual Simulator

A ship-handling simulator was used as a visual simulator. A ship-handling simulator
reproduces a vessel-maneuvering environment as close as possible to an actual wheelhouse
by combining navigation equipment and computer graphics technology. Figure 2 shows
the ship-handling simulator used in this study at the National Institute of Technology, Toba
College, Mie, Japan. The simulator was based on the International Convention on Standards
of Training, Certification, and Watchkeeping for Seafarers (STCW). The horizontal and
vertical viewing angles, centered on a gyrocompass installed at the center of the wheelhouse,
located 3 m from the screen, were 225° and 30°, respectively.

(b)

Figure 2. Ship handling simulator: (a) wheelhouse; (b) setting room of the simulating condition.

2.4.2. Specifications of the Simulated Ship and Wave Images

A high-speed boat (length: 39.8 m, breadth: 9.00 m) was used for the entire pattern.
The course and speed were 0° and 15 kn, respectively. The sea wind speed was set to
zero. Table 3 lists the four wave image patterns in different directions. Pattern 1 was
defined as an image without waves. For Patterns 2, 3, and 4, the wave directions were
set to 180°, 135°, and 90°, respectively. The wave height and wave period were set to
3 m and 8 s, respectively; the condition was confirmed to occur in the posture motion in
previous research using the visual simulator [13]. Figure 3 illustrates the wave directions
with respect to the participant’s position. The participants were positioned behind the
steering wheel at a distance of 2.2 m from the gyrocompass located at the center of the
screen and instructed to look at the screen (bowside). Figure 4 depicts the experimental
setup. The cables connecting the participant to the measurement instruments were fixed
to a belt on the waist of the participant to avoid limiting their standing posture motion.
Figure 5 shows the simulated wave images used for each experimental condition.

Table 3. Wave image patterns.

Pattern 1 Pattern 2 Pattern 3 Pattern 4
Direction 0° 180° 135° 90°
Height Om 3m 3m 3m

Period Os 8s 8s 8s
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Figure 4. Experimental setup.

Table 4 lists the motion of the simulated high-speed boat. The pitch motion (rotational
motion about the x-axis) was the largest in Pattern 2. The roll motion (rotational motion
about the y-axis) was the largest in Pattern 4.

Table 4. Motion of the simulated high-speed boat.

Pattern 1 Pattern 2 Pattern 3 Pattern 4
Roll 0.00° —1.56°-1.55° —9.47°-9.09° —13.20°-12.69°
Pitch 0.00° —10.78°-10.26° —8.77°-7.50° —5.93°-5.87°

Yaw 0.00° —0.02°-0.02° —0.11°-0.11° —0.13°-0.13°
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(d)

Figure 5. Simulated wave images: (a) Pattern 1 (images without waves); (b) Pattern 2 (wave direction:
180°); (c) Pattern 3 (wave direction: 135°); (d) Pattern 4 (wave direction: 90°).

2.5. Evaluation Indicators

Figure 6 presents a conceptual diagram of the COP length.

y
4 e Center of pressure
C
Ym "
L
C. - Lym
m—1
Ym-1
Lxm
» X
Xm-1 Xm

Figure 6. Conceptual diagram of the center of pressure (COP) length.

The coordinate value Cy; (x;;,y1) indicates the mth COP sample, and C,;,—1(Xp—1,Ym—1)
represents the (m — 1)th COP sample. L, denotes the distance from C,,_1 to Cy,. The total
length of the COP is denoted by Lj; and is calculated as follows:

M
Ly = Zle Ly = Zl \/(xm —xm1)> + Ym — Y1) 1)

Ly denotes the distance from x,,_1 to x;;,. The ML lengths of the COP are denoted by
Lyp, which is calculated as

M M
Lypm = Z Lym = Zm:1|xm - xm—l‘ . (2

m=1
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Lym denotes the distance from y,,,_1 to y». The AP length of the COP is denoted by
Lym, which is calculated as

M M
Lym = Zm:1 Lym = Zm:1|3/m — Ym—1]| - (©)]

AP /ML is the ratio of the AP length to the ML length of the COP. The ratio was
calculated as follows:

L
AP/ML = LyM. @)

xM

M was set to 3200. Data for more than 30 s were necessary to investigate the standing
posture [21]. This period included four periodic wave images.

Seventeen data points were calculated for each wave pattern for Ly; and AP/ML,
which were common to all participants. Ly or AP/ML, corresponding to the participants
changing the position of their feet on the Wii Balance Board or shifting the position of
their COP to one foot, was removed from the dataset of the 17 data points for each wave
pattern. Statistical outliers were removed from the dataset of the 17 data points for each
wave pattern.

The characteristics of the standing posture motion of each participant were analyzed
by calculating the mean values and standard deviations of the 17 Lj; or AP/ ML data points
for each wave pattern. Additionally, the characteristics of the standing posture motion of
all participants were analyzed by calculating the mean values and standard deviations of
Ly or AP/ ML collected from all participants for each wave pattern and by using scatter
diagrams and regression lines of Lyys and Ly Tukey’s method [22], which is a parametric
multiple comparison method, was employed to examine significant differences in the
total length of the COP (L) and ratio (AP /ML) between each wave image pattern. The
significance level was set at p < 0.05.

3. Results

Figure 7 shows an example of the COP locus. The sampled data represented by the
red lines indicate that the participant changed the position of their feet on the Wii Balance
Board (Figure 7). Ly; and AP/ ML included in the sampled data, shown by red lines, were
removed from the dataset of the 17 Ly; or AP/ ML data points for each wave pattern. The
AP and ML motions of the COP differed from those presented in Figure 7b—d depending
on the difference in the wave direction.

Figure 8a—g illustrate the mean values and standard deviations of L for each partici-
pant. Figure 8h shows the mean values and standard deviations of L, for all participants.
N represents the number of valid Ly that were removed from the data of the participants
changing or shifting their foot positions on the Wii Balance Board or the actual data of
statistical outliers from the dataset of the 17 data points for each wave pattern. Moreover,
significant differences were detected in the total COP length between Pattern 1 and the
other patterns (p < 0.05) (Figure 8h). Significant differences were detected in the total length
of the COP length of participants, as shown in Figure 8a,c,d—f, as well as between the
same pairs of wave patterns, as shown in Figure 8h (p < 0.05). As shown in Figure 8b, no
significant differences were detected in the total COP between all the pairs of wave patterns.
The levels of the effect size of the multiple comparison method, which show significant
differences, were 1.03 to 4.60. The levels of the statistical power of the multiple comparison
method, which show significant differences, were 0.82 to 1.00.
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Figure 7. Example of the center of pressure (COP) locus (participant D): (a) Pattern 1; (b) Pattern 2
(wave direction: 180°); (c) Pattern 3 (wave direction: 135°); (d) Pattern 4 (wave direction: 90°).

Figure 9a—g present the mean values and standard deviations of AP/ML for each
participant. Figure 9h shows the mean values and standard deviations of AP/ ML for all
participants. N denotes the number of valid AP/ML that were removed from the data of
the participants changing or shifting their feet position on the Wii Balance Board or the
actual data of statistical outliers from the dataset of 17 data points for each wave pattern.
Significant differences were detected in the ratios between Patterns 1 and 3, Patterns 1
and 4, Patterns 2 and 3, and Patterns 2 and 4 (p < 0.05) (Figure 9h). Significant differences
were detected in the ratio of the AP to ML length of the COP of participants, as shown
in Figure 9a,d,e, as well as between the same pairs of patterns, as shown in Figure Sh
(p < 0.05). As shown in Figure 9b,g, no significant differences were detected in the ratio
between all pairs of wave patterns. The levels of the effect size of the multiple comparison
method, which show significant differences, were 1.08 to 5.82. The level of the statistical
power of the multiple comparison method, which shows significant differences, was 1.00.
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Figure 8. Total length of the center of pressure (COP) (Lp): (a) participant A; (b) partici-
pant B; (¢) participant C; (d) participant D; (e) participant E; (f) participant F; (g) participant G;
(h) all participants. N is the number of valid Lys. The asterisk (*) indicates a significant difference
(* p <0.05).
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Figure 9. Ratio of the anteroposterior (AP) length to the mediolateral (ML) length of the center of
pressure (COP) (AP/ML): (a) participant A; (b) participant B; (c) participant C; (d) participant D;
(e) participant E; (f) participant F; (g) participant G; (h) all participants. N is the number of valid R.
The asterisk (*) indicates a significant difference (* p < 0.05).
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Figure 10 shows the scatter diagrams and regression lines of the ML (Lyps) and AP
(Lym) lengths of the ratio presented in Figure 9h for each wave pattern. The slope of the
regression line under Patterns 1 and 2 was larger than 1.0; therefore, the AP COP motion
was dominant compared with the ML COP motion. In contrast, the slope of the regression
line under Patterns 3 and 4 was smaller than 1.0; therefore, the ML COP motion was
dominant compared with the AP COP motion. Figure 10b—d show that the slope of the
regression line decreased as the wave direction changed from 180° to 90°.
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Figure 10. Scatter diagram and regression lines of the mediolateral (ML) and anteroposterior (AP)
lengths of the ratio shown in Figure Sh: (a) Pattern 1; (b) Pattern 2 (wave direction: 180°); (c) Pattern
3 (wave direction: 135°); (d) Pattern 4 (wave direction: 90°).

4. Discussion

The effects of unidirectional visual information on human standing posture motion
have been previously studied [23-25]. These studies focused on the relationship between a
unidirectional moving screen or moving object and the human standing posture motion
while participants watched a moving object [13-15,23-25].

In the current research, only sea-waves were shown to the participants using a vi-
sual simulator, and the experimental results reflected the effect of visual information on
human standing posture. Figure 8h shows that the total length of the COP motion in the
participants watching the wave motion (Patterns 2—4) was larger than that in those not
watching the wave motion (Pattern 1). Figure 9h shows that a significant difference in
the COP motion was observed depending on whether the sea-waves were incident on
the images on the screen from the lateral direction, primarily because the COP motion
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under Patterns 1 and 2 could be distinguished from that under Patterns 3 and 4. Figure 10
illustrates that the ML motion of the COP increased with the wave directions changing to
180°, 135°, and 90°. Most participants exhibited standing posture motion. The sense of the
participants’ posture motions was not an illusion of body movement but real body posture
motions based on visual sensation. For sea-waves approaching head-on, the participants
maintained their posture by moving back and forth, whereas they stood firmly on the
deck for waves approaching laterally. In the quiet standing posture, the COG in the AP
direction is controlled by the ankle dorsiflexors and plantar flexors, whereas the COG in
the ML direction is controlled by the hip abductors and adductors [26-29]. Thus, humans
maintain their posture based on visual information through AP and ML motions, owing to
the structure of their lower limbs. In the current study, we found that the standing postures
of the participants stabilized themselves according to the wave directions projected by a
visual simulator. This showed that the participants predicted ship motion from the wave
images and controlled their COP through the APAs.

In the experimental results (Figures 8 and 9), individual differences were observed
in the standing postural motions based on visual information. These differences may
indicate the APA ability of each participant. Figure 8b shows negligible differences in the
participants’ standing postural motion irrespective of the waves. Figure 9b,g also show no
significant difference in the participants’ standing postural motion between the directions
of the waves. APAs are categorized as natural APAs and learned APAs [30]. When a
participant experiences a situation in which they can control their standing posture using
only CPR against a ship’s motion, APAs may not occur for similar ship motions. The
analysis of human standing postural motion based on the differences between the wave
directions projected by a visual simulator using COP can be used to evaluate the physical
aptitude of crews. Further experiments are required to confirm this hypothesis.

The assumed role of APAs is to minimize perturbations in standing posture, and
APAs are prepared by the central nervous system before CPR occurs. Therefore, visual
information is potentially effective for the predictive control of the standing posture. Most
crew members, except navigators, cannot see ocean waves or the tilt of a ship, as they work
in confined spaces. Consequently, they control their posture against ship motion by using
vestibular and proprioceptive information, without relying on vision, which may increase
fatigue. By setting a screen to project the sea-waves inboard, the crew members can develop
visual APAs for standing posture adjustments, which may reduce fatigue. The evaluation
approach of human standing posture motion using the multi-directional visual information
presented in this study is a new method for evaluating APAs. Patients with Parkinson’s
disease have been shown to exhibit abnormalities in programming APAs, which contribute
to their postural instability [31,32]. Thus, evaluating the APAs of patients with postural
accommodation disorder using the evaluation method of this study may assist physical
therapists in performing effective rehabilitation.

The limitation of this study is that the results cannot be applied to female populations
and to age groups other than 20-23 years. To generalize this method, randomized controlled
trials ought to be performed with participants of multiple age groups, including men
and women.

5. Conclusions

The direction of the standing postural motion of the participants depended on the
direction of sea-waves, which was projected by a visual simulator and was not an illusion
of body movement. Individual differences in standing postural motion may indicate the
ability of APAs for each participant based on their experience.

We would like to develop a method for evaluating the adaptability of crew members
by conducting additional experiments to test this hypothesis. This method can be applied
to the realization of a system for evaluating adaptability to crew training. The fatigue
of crew members inboard may be reduced by APAs through the development of a wave
motion presentation system.
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