
Citation: Liu, Y.; Han, G.; Liu, X.

Lightweight Compound Scaling

Network for Nasopharyngeal

Carcinoma Segmentation from MR

Images. Sensors 2021, 22, 5875.

https://doi.org/10.3390/s22155875

Academic Editor: Loris Nanni

Received: 30 May 2022

Accepted: 30 July 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Lightweight Compound Scaling Network for Nasopharyngeal
Carcinoma Segmentation from MR Images
Yi Liu 1,2,† , Guanghui Han 1,2,3,† and Xiujian Liu 1,2,*

1 School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
2 Sun Yat-sen University, Guangzhou 510275, China
3 School of Information Engineering, North China University of Water Resources and Electric Power,

Zhengzhou 450046, China
* Correspondence: liuxj86@mail.sysu.edu.cn
† These authors contributed equally to this work.

Abstract: Nasopharyngeal carcinoma (NPC) is a category of tumours with a high incidence in head-
and-neck. To treat nasopharyngeal cancer, doctors invariably need to perform focal segmentation.
However, manual segmentation is time consuming and laborious for doctors and the existing au-
tomatic segmentation methods require large computing resources, which makes some small and
medium-sized hospitals unaffordable. To enable small and medium-sized hospitals with limited
computational resources to run the model smoothly and improve the accuracy of structure, we
propose a new LW-UNet network. The network utilises lightweight modules to form the Compound
Scaling Encoder and combines the benefits of UNet to make the model both lightweight and accurate.
Our model achieves a high accuracy with a Dice coefficient value of 0.813 with 3.55 M parameters
and 7.51 G of FLOPs within 0.1 s (testing time in GPU), which is the best result compared with four
other state-of-the-art models.

Keywords: lightweight; nasopharyngeal carcinoma; deep learning; medical image segmentation

1. Introduction

Among cancers of the head and neck [1], nasopharyngeal carcinoma is one of the
most common types [2]. Nasopharyngeal carcinoma (NPC) is a highly invasive neoplasia
that spreads early to regional lymph nodes. NPC is common in southern China, the
Middle East, and North Africa. It has significant geographical variation and gender
differences [3]. NPC has the highest incidence in Southeast Asia in up to 6.4/100,000 males
and 2.4/100,000 females in these regions [4]. In 2012, the mortality of nasopharyngeal
carcinoma (NPC) reached 58.6%, and in 2018 there were about 130,000 incidents in the
world, including more than 73,000 people dying from nasopharyngeal carcinoma [5].

Nasopharyngeal carcinoma is mainly treated with radiotherapy. Currently, the delin-
eation of the tumour area in radiotherapy is generally performed by manual segmentation.
Doctors segment the MR images of nasopharyngeal carcinoma to match the target area
and tumour extent as accurately as possible, so that radiotherapy can obtain better effects.
However, manual segmentation costs a lot of time and energy for doctors [6], and the accu-
racy of manual segmentation is also affected by the experience of doctors. Although some
automatic segmentation models have emerged to assist physicians in nasopharyngeal carci-
noma segmentation, the existing models have a large number of parameters and consume
many computing resources. Small and medium-sized hospitals cannot afford the large
resource consumption and therefore still use manual segmentation for nasopharyngeal
carcinoma treatment. To solve the above problems caused by manual segmentation, we
proposed a lightweight automatic segmentation method for nasopharyngeal carcinoma.

With the advancement of convolutional neural networks, the research on medical
image processing based on semantic segmentation has developed rapidly. Semantic seg-
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mentation is divided into two categories. Traditional image segmentation uses grayscale,
color, texture, shape, and other features to divide the image into regions so that there are
obvious differences and similarities between regions. Tatanun et al. [7] and Huang et al. [8]
used the threshold method, region growth method, statistical theory, and other traditional
image segmentation methods to segment nasopharyngeal carcinoma tumours. In addition,
machine learning methods such as SVM [9–11] and SOM [12] are also used to segment
nasopharyngeal carcinoma tumours. However, the traditional methods mentioned above
usually require manual intervention processes such as feature extraction and dimension
reduction; this has disadvantages such as poor model robustness and noise sensitivity.

The emergence of deep learning-based methods has led to significant changes in the
approach to the field of computer vision [13–21]. Deep learning is used in a wide variety
of tasks in computer vision and medicine [22–26], where neural networks consisting of
an encoder-decoder framework have become one of the dominant models in deep learn-
ing. Ji et al. [27] reviewed a CNN-based encoder-decoder framework for a significant
object detection neural network in recent years, showing its achievements and great po-
tential in the field of salient object detection. Chen et al. [28] built PAD-Net by using an
encoder-decoder framework, which has achieved great success in the field of stereoscopic
image quality measurement (SIQM). In addition, the encoder-decoder framework has also
achieved success in damage detection [29], scene independent evaluation [30], material
capture [31], handwriting recognition [32], etc. The automatic segmentation method of
nasopharyngeal carcinoma is developed based on the second method to achieve the effect
of assisting doctors in treatment and diagnosis.

However, the existing automatic segmentation methods for nasopharyngeal carcinoma
face three challenges: First, nasopharyngeal carcinoma is adjacent to a few normal tissues
and even infiltrates, such as mucosa, and its intensity range is almost the same as that
of nasopharyngeal carcinoma [33]. In addition, the shape and size of lesions vary from
patient to patient and the blurred boundaries of head and neck tumours on MRI are also
a pain point (as shown in Figure 1) [8]. Second, unlike other medical image processing
tasks that have a large number of similar images and have the same image quality, for
the same NPC patient, the complicated shapes and remote location of the tumour may
create more difficulties for segmentation. Third, the different hospitals provide different
operating environment resources for the model. Some hospitals can only provide limited
resources, so it is unavailable for them to run larger models.

Figure 1. MRI slices of head and neck and tumour location of nasopharyngeal carcinoma. The area
delineated by the red line is the result of the doctor’s manual segmentation.

Currently some classical convolutional neural networks are proposed and used
for medical image segmentation of nasopharyngeal carcinoma, such as VGGNet [34],
ResNet [35], FCN [36], SegNet [37]. In 2015, Olaf proposed a U-shaped network framework
named UNet [38], it has greatly influenced the field of semantic segmentation, especially
the field of medical image segmentation. Since UNet [38] can combine low-resolution
information, which is conducive to the recognition of targets, and at the same time com-
bines high-resolution information, it solves the disadvantages of blurred boundaries and
complex gradients in medical images. After that, many UNet-based convolutional neural
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networks were proposed, such as Att-UNet [39], AttR2U-Net [40], Res-UNet [35] and
DA-DSUNet [41] etc.

In addition to the UNet-based method, many other deep learning methods have
been proposed and used for nasopharyngeal carcinoma medical image segmentation tasks.
Li et al. [42] used the full convolution encoding-decoding neural network of 27 patients
with NPC MR image segmentation and adopted it to realize the NPC automatic segment.
Ma et al. [43] used a convolutional neural network to segment the focal regions of T1W
mode MR images of 30 NPC patients, improved the segmentation results with a 3D image
cutting algorithm, and finally achieved a relatively good result. However, the networks of
the above two methods have the disadvantages of a simple structure, fewer experimental
data, and the generality and accuracy of the model need to be improved. Moreover,
the deployment of the network is too troublesome and not light enough for small and
medium-sized hospitals.

In this paper, we propose a lightweight model named LW-UNet to solve the problems
of the resource-constrained situation of small and medium-sized hospitals. We build the
Compound Scaling Encoder inspired by EfficientNet [44]; this encoder improves the accu-
racy and reduces the parameters of nasopharyngeal carcinoma segmentation by compound
scaling depth, width, and resolution. It enables small and medium-sized hospitals to run
smoothly under resource constraints. The decoder is similar to UNet. Compared with other
NPC segmentation models, our model has the following two advantages:

(1) Our model uses a fixed mixing coefficient to uniformly scale depth, width, and
resolution to improve the accuracy and phase rate of the network;

(2) Our model uses lightweight modules to enable it to run under resource constraints.
The rest of the paper is structured as follows. In Section 2, we will introduce our

proposed method. The dataset used in this research and the experimental details are
described in Section 3. The results are discussed in Section 4.

2. Method

LW-UNet is a UNet-like model; the detailed network is shown in Figure 2. Our
model consists of two parts: Compound Scaling Encoder and UNet-like decoder. Inspired
by EfficientNet [44], we propose the Compound Scaling Encoder. It introduces scale
coefficient to scale width, depth and resolution to reduce network parameters and FLOPs
(See Section 2.1). We refer to UNet [38] and propose a decoder with a similar structure
(See Section 2.2). Firstly our model utilizes the Compound Scaling Encoder to capture
image information to obtain the feature maps. Then, the feature maps of the encoder are
upsampled by up-convolution. The output of the 2, 3, 5, 6, 7 blocks of the encoder and
up-convolution are concatenated by a skip connection. Finally, as the decoder continues
to recover image resolution and detail, we obtain the segmentation maps with the same
resolution as the original image.
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Figure 2. Network of LW-UNET: The Compound Scaling Encoder of LW-UNet consists of seven MB-
Conv blocks of different sizes. Decoder is composed of a series of up-convolutions, and through skip
connection and up-convolution can obtain the final segmentation map of nasopharyngeal carcinoma.
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2.1. Compound Scaling Encoder

The development of the convolutional neural network is usually based on a fixed re-
source budget [44]. If more resources are available, the size of the network can be expanded.
A traditional CNN network typically scales the depth and width of the network and the
size of the input images resolution to improve the accuracy, such as ResNet [35], GPipe [45].
However, the traditional method generally scales the width, depth and resolution randomly.
It is difficult to adjust with limited resources.

In 2020, Tan et al. [44] proposed a new model scaling method, which utilizes a
coefficient to uniformly scale the depth, width and resolution, rather than scale the single
dimension of the network as in the traditional method. Tan introduced α, β, γ to measure
the specific weights of depth, width, resolution, and θ as a scaling coefficient. He considers
that if depth is doubled, the amount of calculation is doubled. However, if width or
resolution are doubled, then the amount of calculation increases by four times. In other
words, the amount of calculation is proportional to depth, width, and resolution. By
referring to the method of Tan et al. [44], we utilize a compound scaling coefficient to
uniformly scale the width, depth, and the resolution of the input image of the network.
The compound scaling coefficients are utilized as in Equation (1):

D = ki × d

W = Li ×ω

R = r× γ,

(1)

where D, W, R represent the depth, width and resolution, ki, Li, r represent the i-th block
kernel size, the i-th layer and the input size resolution respectively, and d, ω, γ represent
the scaling coefficient. By changing the scaling coefficient, models with different depth,
width, and resolution are obtained. We refer to the method in EfficientNet [44] and use
NAS (neural architecture search) to search for the best parameters corresponding to depth,
width, and resolution, respectively, and fix them to obtain the baseline model LW-UNet 0.
On this basis, the fixed parameters are scaled uniformly to obtain the scaling coefficients
shown in Table 1. The fixed mixing coefficients determine the number of MBConv modules
per block within the composite scaling encoder (as shown in Figure 2) in the baseline model
(LW-UNet 0). With the scaling coefficients, we vary the number of MBConv modules in
each block to obtain LW-UNet 1–5.

In addition to the compound coefficient for depth, width, and resolution, the Com-
pound Scaling Encoder utilizes the Mobile Inverted Bottleneck Convolution module to
make the model more lightweight. MBConv [46] is a lightweight module designed specifi-
cally for resource-constrained environments. Unlike normal convolution modules, MBConv
utilizes depthwise separable convolution. Standard convolution takes a hi × wi × di input
tensor Li, and applies convolutional kernel K ∈ Rk × k× di × di to produce a hi × wi × dj
output tensor Lj. So the standard convolutional layer has the computational cost of
hi ·wi · di · dj · k · k. Compared with normal convolution, depthwise separable convolutions
have almost the same effect but only cost hi · wi · di(k2 + dj).

MBConv also constructs the Bottleneck Residual Block by using a linear bottleneck
and an inverted residual mechanism. First, in the layer with a small number of channels,
the linear bottleneck replaces the ReLU activation layer with the linear transform, which
reduces the large information spoilage caused by ReLU. Second, the inverted residuals ex-
tend the low-dimensional input to higher dimensions by pointwise, and then subsequently
proceed to depthwise. It can enhance the transfer of information and gradients without
increasing the computational cost excessively. Our model utilizes MBConv modules of
different sizes to constitute the encoder. The encoder composed of MBConv can reduce the
computational resources efficiently.
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Table 1. The scaling coefficient of LW-UNet 0–3.

Models Depth Scaling Coefficient Width Scaling Coefficient Resolution Scaling Coefficient

LW-UNet 0 1.0 1.0 1.0
LW-UNet 1 1.4 1.2 1.3
LW-UNet 2 2.2 1.6 2.0
LW-UNet 3 3.1 2.0 2.7
LW-UNet 4 3.6 2.2 3.0
LW-UNet 5 4.1 2.4 3.4

2.2. UNet-like Decoder

UNet is proposed to solve the problem of medical image segmentation [38]. It is fre-
quently used in the baseline of the medical image segmentation task because of its excellent
performance. UNet consists of two parts: encoder and decoder. In the conventional UNet,
the decoder is nearly symmetric to the encoder. However, unlike UNet, our network is
asymmetric and the encoder is deeper than the decoder. The detailed network is revealed
in Figure 2. In our work, we utilize the feature map of the last block of the encoder to
upsample, then we concatenate with the same spatial resolution feature map from encoder.
Through up-convolution and concatenation with a corresponding feature map from the
encoder, the decoder can combine the spatial information. Before upsampling again, the
image has to go through 3×3 convolutional layers first. This process is repeated until the
segmentation map is the same size as the original input image.

2.3. Evaluation Method
2.3.1. Accuracy Evaluation

In the training process, we utilize binary cross-entropy loss to evaluate the performance
of the model, as shown in Equation (2).

Loss = − 1
N
(yn × log(zn) + (1− yn)× log(1− zn)), (2)

where N represents the total number of pixels, Zn represents the probability of predicting
the n-th sample as a positive example, and Yn represents the label of the n-th sample.

In the test process, we utilise the Dice coefficient as the metric to evaluate the accuracy
of the model [47]. The Dice coefficient measures the consistency between the two regions,
which is defined as Equation (3).

DSC =
2TP

2TP + FP + FN
, (3)

where TP, FP, FN represent the number of true positive, false positive and false negative
pixels respectively.

We also use IoU, Jaccard similarity [48], precision, specificity and sensitivity to evaluate
the segmentation effect. We will discuss our model performance in Section 5.

2.3.2. Parameters Evaluation

Deep neural networks are widely used in machine vision tasks such as image classifica-
tion and object detection with great success. However, due to the limitation of memory and
computing power, deploying a neural network on embedded devices is still an enormous
challenge. In order to evaluate the lightweight degree of the model, we use Pytorch-
OpCounter to calculate the parameters and flops of the model compared with four other
state-of-the-art models.
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3. Experiments
3.1. Dataset Description

Our model uses the NPC dataset from a total of 92 patients diagnosed with nasopha-
ryngeal carcinoma, which contain 735 MR images. All images are MR T1W+C images of
head and neck scanned by the Siemens Aera MRI system (approximately 100 slices per
patient). The resulting MR images are stored in Digital Imaging and Communications
in Medicine (DICOM) file format. To utilize the raw data for 2D image segmentation,
we cropped each image to the region of interest (ROI) to reduce unnecessary computing
workload. The cropped image includes the nasopharyngeal carcinoma area and the rest
of the head region. Given the low number of nasopharyngeal carcinoma data obtained,
we applied data augmentation to the dataset. We used HorizontalFlip, ShiftScaleRotate
and other methods to transform the original nasopharyngeal carcinoma data. Finally
we obtained 3678 images. Eighty percent of the images were used for training, 10% for
validation, and 10% for testing.

3.2. Data Preprocessing

Considering the difference in image quality of MR images captured by different
imaging equipment, we normalized the data inputted to the model. The specific formula is
as in Equation (4).

Xoutput =
Xi − Xmin

Xmax − Xmin
, (4)

where Xoutput is the normalised data, Xi is the original data, Xmax and Xmin are the maxi-
mum and minimum values of the original data set respectively.

Several previous studies have shown that data normalisation can make the data
distribution more uniform and make the model converge faster, resulting in an improved
model performance [49,50]. Images after processing have a mean of 0 and a variance of
1, conforming to the standard normal distribution. It effectively solves the problem of
different picture quality. After the data were normalised, we scaled our input images to
256 × 256 and randomly assigned them to the training, validation and test sets. Finally our
model was trained with a hyperparameter value of 1 for batch_size.

3.3. Implementation Details

In the training process of LW-UNet, we used the Adam optimizer to implement the
gradient descent method [51]. We also used LRfinder to find the best learning rate and
used ReduceLROnPlateau provided by PyTorch to adjust the learning rate properly [52].
In order to solve the overfitting problem to some extent, we used dropout and other
mechanisms. We trained the model with the shuffled nasopharyngeal carcinoma images
with segmentation labels [53]. We promptly tested the model on the validation set at the
end of each training epoch to adjust the hyper-parameter.

4. Result
4.1. Ablation Study

To verify the effectiveness of our model, we perform the ablation study by comparing
four variants of our model and the baseline UNet. The results in Table 2 demonstrate
the efficiency and accuracy of our model. It proves that our structure is effective for
nasopharyngeal carcinoma segmentation. The test results of our model are as follows: The
average Dice coefficient value obtained from the test is 0.813, the average Jaccard similarity
is 0.695, the average IoU is 0.696, the average specificity is 0.998 , the average precision is
0.787 and the average sensitivity is 0.824. We select four models LW-UNet 0, LW-UNet 1,
LW-UNet 2 and LW-UNet 3 for comparison with UNet [38]. The results show that with the
increasing width, depth and resolution of the model, the accuracy of the model increases
continuously. Compared with LW-UNet 4, the DSC, JC, and IoU values of LW-UNet 3 are
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0.02, 0.04, and 0.02 lower than those of LW-UNet 4, respectively, and the SE values are
0.1 higher than those of LW-UNet 4. Compared with LW-UNet 5, the DSC, JC, IoU, and SE
values of LW-UNet 3 are respectively higher by 0.09, 0.06, 0.08, and 0.04. The LW-UNet 3
we use is superior to the LW-UNet 0, 1, 2 and 5 in terms of accuracy. The values of LW-UNet
4 are essentially the same as LW-UNet 3 at DSC, and some of the metrics are lower than
LW-UNet 3. From the point of view of lightweight and accuracy, we finally chose LW-UNet
3 as our segmentation model. Starting from LW-UNet 1, our model has exceeded UNet
with a higher accuracy. Compared with UNet, the LW-UNet-3 model increases DSC by 5%,
IoU, JC and PC by 12%, 9% and 10% respectively.

Table 2. The ablation analysis validates the effectiveness of our model configuration.

Models DSC IoU JC SE PC SP

UNet 0.769 ± 0.063 0.618 ±0.058 0.632 ±0.076 0.858 ± 0.076 0.713 ± 0.089 0.996 ± 0.002
LW-UNet-0 0.696 ± 0.035 0.516 ± 0.043 0.542 ± 0.044 0.674 ± 0.035 0.623 ± 0.067 0.986 ± 0.001
LW-UNet-1 0.771 ± 0.041 0.621 ± 0.058 0.634 ± 0.058 0.801 ± 0.058 0.765 ± 0.059 0.997 ± 0.001
LW-UNet-2 0.796 ± 0.060 0.685 ±0.035 0.685 ±0.052 0.815 ± 0.048 0.767 ±0.053 0.998 ± 0.001

LW-UNet-3 (Our) 0.813 ± 0.039 0.696± 0.055 0.695 ± 0.055 0.824 ± 0.044 0.787± 0.043 0.998 ± 0.001
LW-UNet-4 0.815 ± 0.075 0.698 ± 0.043 0.699 ± 0.043 0.814 ± 0.011 0.787± 0.056 0.998 ± 0.001
LW-UNet-5 0.806 ± 0.054 0.688 ± 0.027 0.689 ± 0.076 0.820 ± 0.058 0.774± 0.084 0.998 ± 0.001

Additional to this, we add experiments with the model to the original dataset. We
processed MR images obtained from 92 patients diagnosed with nasopharyngeal carcinoma
in the same way as the dataset obtained by data augmentation. We conducted the same
experiments on both datasets using LW-UNet 0, 1, 2 and 3. By comparing the results with
the experiments under data augmentation, we demonstrated the effectiveness of the data
obtained by data augmentation in the case of fewer nasopharyngeal carcinoma data. The
detailed experimental results are shown in Table 3. Compared to the values of the model in
the original dataset, the DSC increased by 0.064, 0.073, 0.078 and 0.078 for LW-UNet 0, 1, 2
and 3, respectively, and the JC values increased by 0.06, 0.081, 0.124 and 0.112. In addition,
for IoU, the values of LW-UNet 0, 1, 2 and 3 increased by 16%, 21% , 22% and 21%. 21%,
22%, 21%, for SE, the values of LW-UNet 0, 1, 2 and 3 increased by 20%, 19%, 10% and
6%, respectively.

Table 3. The ablation analysis validates the effectiveness of our data augmentation.

Models DSC IoU JC SE PC SP

LW-UNet-0 0.632 ± 0.081 0.443 ± 0.028 0.482 ± 0.056 0.561 ± 0.048 0.545 ± 0.059 0.976 ± 0.001
LW-UNet-0

(with dataset augmentation) 0.696 ± 0.035 0.516 ± 0.043 0.542 ± 0.044 0.674 ± 0.035 0.623 ± 0.067 0.986 ± 0.001

LW-UNet-1 0.698 ± 0.071 0.513 ± 0.098 0.553 ± 0.078 0.668 ± 0.038 0.626 ± 0.079 0.984 ± 0.002
LW-UNet-1

(with dataset augmentation) 0.771 ± 0.041 0.621 ± 0.058 0.634 ± 0.058 0.801 ± 0.058 0.765 ± 0.059 0.997 ± 0.001

LW-UNet-2 0.718 ± 0.053 0.561 ± 0.076 0.561 ±0.055 0.736 ± 0.088 0.647 ±0.043 0.988 ± 0.001
LW-UNet-2

(with dataset augmentation) 0.796 ± 0.060 0.685 ±0.035 0.685 ±0.052 0.815 ± 0.048 0.767 ±0.053 0.998 ± 0.001

LW-UNet-3 0.735 ± 0.053 0.574 ± 0.068 0.583 ±0.096 0.775 ± 0.064 0.686 ± 0.085 0.995 ± 0.003
LW-UNet-3

(with dataset augmentation) 0.813 ± 0.039 0.696± 0.055 0.695 ± 0.055 0.824 ± 0.044 0.787± 0.043 0.998 ± 0.001

4.2. Comparison with State-of-the-Art Models
4.2.1. Comparison of Accuracy

We compare the accuracy of our model with four state-of-the-art models and carried
out the Kruskal–Wallis test. Five of them are conventional medical image segmentation
models (Att-UNet [39], FCN [36], DeeplabV3 [54], TransNet [55], FastTransNet [56]), and
the other is a nasopharyngeal cancer image segmentation model (RendUNet [57]). Figure 3
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shows the segmentation results for each model. Figure 4 shows the performance of each
model on the DSC and JC metrics and Kruskal–Wallis test result. We achieved the highest
DSC and JC value in the nasopharyngeal carcinoma segmentation test.

In DSC and JC metrics, our model outperforms the above four comparison models
for nasopharyngeal carcinoma segmentation. For DeepLabV3, the average DSC value
is 0.788 ± 0.045; we are 3.17% higher than it, and the average Jaccard similarity value
is 0.654 ± 0.059; we are 6.26% higher than it. For Att-UNet, the average DSC value
is 0.787 ± 0.047; we are 3.30% higher than it, the average Jaccard similarity value is
0.661 ± 0.061, we are 4.23% higher than it. For FCN, the average DSC value is 0.735± 0.072,
we are 10.61% higher than it; the average Jaccard similarity value is 0.586 ± 0.087, we are
17.60% higher than it. For RendUNet, the average DSC value is 0.789 ± 0.054, we are 3.04%
higher than it; the average Jaccard similarity value is 0.643 ± 0.058, 8.08% lower than ours.
For TransNet, the average DSC value is 0.807 ± 0.036, ours 0.7% higher than it, the average
Jaccard similarity value is 0.689 ± 0.051, ours 0.87% higher than ours. For FastTransNet,
the average DSC value is 0.810 ± 0.033, ours 0.37% higher. The average Jaccard similarity
value is 0.698 ± 0.045.

GT

Our

DeeplabV3

FCN32

AttUNet

RendUNet

Original
  image

TransNet

FastTransNet

Figure 3. Examples of NPC segmentation results: We select four typical MRI images of nasopharyngeal
carcinoma and present the segmentation results of our model and six models used for comparison.
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Figure 4. Box plots of the DSC and JC values obtained from the tests on the test set and its Kruskal–
Wallis results. The results show that our model achieves the highest DSC and JC values in the test of
nasopharyngeal carcinoma segmentation and is significantly different from other models.

We also compare other accuracy indicators of our model with four state-of-the-art
models. Figure 5 shows the performance of each model on IoU and SE metrics. As
we can see in Figure 5, we achieve the highest value in the nasopharyngeal carcinoma
segmentation test.
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Figure 5. Box plots of the SE and IoU values obtained from the tests on the test set and its Kruskal–
Wallis results. The results show that our model achieves the highest SE and IoU values in the test of
nasopharyngeal carcinoma segmentation and is significantly different from other models.

As for other accuracy metrics, our model outperforms the above four comparison
models for nasopharyngeal carcinoma segmentation. For DeepLabV3, the average IoU
value is 0.653 ± 0.060, we are 6.58% higher than that, and the average sensitivity value is
0.787 ± 0.053, 4.70% lower than ours. For Att-UNet, the average IoU value is 0.671 ± 0.050,
we are 2.68% higher; the average sensitivity value is 0.789 ± 0.046, we are 4.43% higher. For
FCN, the average IoU value is 0.586 ± 0.088, we are 18.77% higher; the average sensitivity
value is 0.735 ± 0.071, we are 12.10% higher. For RendUNet, the average IoU value is
0.643 ± 0.057, we are 8.24% higher; the average sensitivity value is 0.792 ± 0.045, we are
4.04% higher. For TransNet, the average IoU value is 0.691 ± 0.039, ours 0.71% higher;
the average sensitivity value is 0.826 ± 0.074. For FastTransNet, the average IoU value is
0.692 ± 0.031, ours 0.57% higher than it, the average sensitivity value is 0.810 ± 0.033, ours
1.69% higher than it.
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4.2.2. Comparison of Parameters and FLOPs

As mentioned in Section 2.1 above, the LW-UNet model uses the MBConv module
that enables the model to run under resource constraints. We compare the parameters
and the FLOPs between our model and some advanced models, as shown in Table 4.
For UNet [38], the parameters of our model are reduced by 872.67% and the FLOPs are
reduced by 771.77%. For DeepLabV3 [54], the parameters of our model are reduced by
330.34% and the FLOPs are reduced by 114.91%. For Att-UNet [39], the parameters of our
model are reduced by 882.53% and the FLOPs are reduced by 786.41%. For FCN [36], our
model’s parameters are reduced by 314.64% and the FLOPs are reduced by 167.24%. For
RendUNet [57], the parameters of our model are reduced by 1190.14% and the FLOPs are
reduced by 533.55%. For TransNet, the parameters of our model are reduced by 2865.33%
and the FLOPs are reduced by 228.09%. For FastTransNet, the parameters of our model are
reduced by 740.84% and the FLOPs are reduced by 172.97%. Compared with the above
advanced models, it can be seen that our proposed model achieves the best performance.
Under the circumstance of limited hospital resources and environment, our model can still
run efficiently and provide doctors with a more accurate delineation of target areas.

Table 4. Comparison Parameters and FLOPs with Other Models.

Category Models Parameters (M) FLOPs (G)

Ablation Study Models

LW-UNet 5 7.36 9.01
LW-UNet 4 5.32 8.38
LW-UNet 3 (Our) 3.55 7.51
LW-UNet 2 2.22 4.75
LW-UNet 1 1.27 2.99
LW-UNet 0 0.85 1.85
UNet 34.53 65.47

State-of-the-art Models

DeepLabV3 15.31 16.14
Att-UNet 34.88 66.57
FCN32 14.72 20.07
RendUNet 45.80 47.58
FastTransNet 29.85 20.50
TransNet 105.28 24.64

5. Discussion

Deep learning has achieved success on a variety of computer vision tasks [58–63]. LW-
UNet is a lightweight automatic segmentation algorithm for nasopharyngeal carcinoma
(NPC) based on deep learning. The lightweight network is applied in two main applications.
First, it is applied to batch prediction tasks that require a high speed response [64], such as
tumour segmentation tasks for nasopharyngeal cancer, lung cancer etc. This task requires a
high segmentation speed of the model, and the LW-UNet has small parameters, consumes
less computational power and can provide a low latency model to meet the needs of the
hospital task. Secondly, the lightweight network is also applied to complete real-time
low-latency segmentation tasks with limited computational storage resources or even on
the mobile side [65]. Especially for small and medium-sized hospitals, it is able to complete
real-time segmentation tasks at high speed with low equipment configuration, reducing
the resource consumption of hospitals. LW-UNet has a low dependence on computational
resources through a uniform scaling network of width, depth and resolution to improve
the accessibility of the algorithm to small and medium-sized hospitals.

In previous research on medical imaging [66–71], deep learning technology is generally
applied to simple organs such as the pancreas [72], liver [73] and lung [74]. However, the
segmentation of nasopharyngeal carcinoma is more complex. Nasopharyngeal carcinoma
tumour cells are generally located in the nasopharynx. The surrounding tissue structure
is relatively complex, so the high segmentation accuracy is imperative. Because slightly
inaccurate segmentation may cause damage to the patient’s brain.
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In Figure 3, in the case of some simple nasopharyngeal carcinoma tumour, the results
of the automatic segmentation of LW-UNet are the most similar to manual segmentation.
However, LW-UNet is slightly limited in some complex cases because of unusual tumour
shape and remote tumour location. In comparison with four other advanced models (in-
cluding RendUNet [57], which specializes in nasopharyngeal carcinoma segmentation), our
model achieved the best segmentation performance. In addition, our models are more effec-
tive with the lower parameters and FLOPs; this enables our model to operate in some small
and medium-sized hospitals with limited resources. Considering the accuracy requirement
of the segmentation, our model is temporarily unable to complete the segmentation task
independently, so doctors need to check and modify it.

6. Conclusions

LW-UNet is an automatic segmentation model of nasopharyngeal carcinoma (NPC)
proposed to solve the problems and difficulties of the problems of high computing re-
source requirements and low accuracy. By unifying the width, depth, and resolution of
the scaling network, the model reduces the parameters and flops to improve the preci-
sion and efficiency of segmentation. Compared with other advanced models, our model
achieve the best performance. It is expected to play a role in the future of nasopharyngeal
carcinoma treatment.
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