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Abstract: Joint detection and embedding (JDE) methods usually fuse the target motion information
and appearance information as the data association matrix, which could fail when the target is briefly
lost or blocked in multi-object tracking (MOT). In this paper, we aim to solve this problem by propos-
ing a novel association matrix, the Embedding and GioU (EG) matrix, which combines the embedding
cosine distance and GioU distance of objects. To improve the performance of data association, we
develop a simple, effective, bottom-up fusion tracker for re-identity features, named SimpleTrack,
and propose a new tracking strategy which can mitigate the loss of detection targets. To show the
effectiveness of the proposed method, experiments are carried out using five different state-of-the-art
JDE-based methods. The results show that by simply replacing the original association matrix with
our EG matrix, we can achieve significant improvements in IDF1, HOTA and IDsw metrics, and
increase the tracking speed of these methods by around 20%. In addition, our SimpleTrack has the
best data association capability among the JDE-based methods, e.g., 61.6 HOTA and 76.3 IDF1, on the
test set of MOT17 with 23 FPS running speed on a single GTX2080Ti GPU.

Keywords: multiple object tracking; association matrix; joint detection and embedding; decoupling
representation

1. Introduction

Multi-object tracking (MOT), aiming to estimate the locations and identity of multiple
targets in a video sequence, is a fundamentally challenging task in computer vision [1].
Recently, the Intersection over Union (IoU) and Hungarian method have been commonly
used in the tracking phase, among many tracking-by-detection paradigms [2–10]. However,
when the target is occluded or lost for a period of time, it is difficult to retrieve the correct
identity only using the IoU distance. As a result, the identity switching of targets occurs
from time to time. To alleviate this problem, many methods have started to introduce the
re-identity feature of targets. Among them, the JDE-based methods [11–17] have become
popular due to their simplicity and efficiency.

In part of the data association, the accuracy of similarity measurement determines
the tracking performance. Most detection-based methods use the IoU distance as the simi-
larity matrix in the cascade matching strategy, while JDE-based methods fuse the motion
information and appearance information as the similarity matrix for the linear assignment
in the first matching and use the IoU distance in the next matching. However, none of
these existing methods provides the best expression of the similarity matrix according to
our experiments.

When objects are occluded due to interlacing, it will produce confusing sets, which
are difficult to allocate correctly, e.g., the set {det4, det7, track4, track10} in Figure 1a,b,
and the set {det4, det7, track4, track9} in Figure 1c. When assigning these confusing sets,
the inaccurate similarity distance leads to tracking failure. Based on the Hungarian method,
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the IoU distance matrix tends to match det4 with track4 and det7 with track10, and the EM
distance matrix tends to match det4 with track4 and det7 with track9. Both of them lead to
target identity switching. The principal reason for these matching failures is the inaccurate
prediction from the Kalman filter as the time of target loss becomes longer. Clearly, this
results in an inaccurate IoU distance and motion information distance, which leads to the
problem of linear allocation errors.

1 . 5 4 2 0 . 0 9 7 1 . 5 3 3 1 . 5 1 1 . 9 6 2 1 . 6 3 9 1 . 5 5 1 1 . 6 4 8 1 . 7 0 9
0 . 8 1 7 1 . 4 8 2 0 . 1 3 3 0 . 9 8 6 1 . 9 4 3 1 . 5 1 9 0 . 9 6 9 1 . 9 8 7 1 . 7 9 9
0 . 1 4 7 1 . 4 6 2 0 . 9 1 1 . 0 8 8 1 . 8 0 1 1 . 5 5 7 1 . 3 5 9 1 . 7 6 9 1 . 7 3 4
1 . 1 3 2 1 . 4 3 5 0 . 8 9 5 0 . 3 2 1 . 9 2 7 1 . 5 2 3 0 . 3 7 1 . 8 7 4 1 . 7 2 5
1 . 2 7 4 1 . 4 9 1 . 3 9 1 1 . 5 7 5 1 . 5 9 1 0 . 2 4 3 1 . 5 5 2 1 . 9 4 2 0 . 6 7 3
1 . 5 3 6 1 . 9 3 7 1 . 8 3 2 1 . 8 2 2 0 . 1 6 3 1 . 5 1 6 1 . 7 8 9 1 . 7 4 6 1 . 5 9 1
1 . 7 0 8 1 . 7 0 2 1 . 9 9 1 1 . 8 2 7 1 . 7 0 3 1 . 8 4 5 1 . 8 0 9 0 . 1 5 4 1 . 7 6 4
1 . 3 9 6 1 . 7 4 2 1 . 8 7 3 1 . 6 7 7 1 . 4 0 3 0 . 7 1 . 8 6 6 1 . 7 8 9 0 . 5 8 3
1 . 6 3 4 1 . 8 2 9 1 . 2 3 5 0 . 9 2 9 1 . 9 7 3 1 . 5 2 0 . 5 5 8 1 . 8 2 8 1 . 5 4 8
1 . 1 2 6 1 . 5 5 0 . 9 0 4 0 . 3 9 6 1 . 8 6 1 . 5 1 6 0 . 5 4 8 1 . 9 3 7 1 . 7 4 1

1 0 . 0 8 9 1 1 1 1 1 0 . 9 6 1 1
0 . 7 5 9 1 0 . 0 6 7 0 . 9 4 8 1 1 0 . 9 1 2 1 1
0 . 0 9 4 1 0 . 8 1 5 1 1 1 1 1 1

1 1 0 . 8 5 9 0 . 2 2 9 1 1 0 . 2 5 6 1 1
1 1 1 1 1 0 . 0 8 7 1 1 0 . 3 0 6
1 1 1 1 0 . 1 8 5 1 1 1 1
1 0 . 9 5 8 1 1 1 1 1 0 . 1 9 3 1
1 1 1 1 1 0 . 4 1 1 1 0 . 2 4 3
1 1 0 . 8 8 5 0 . 7 5 2 1 1 0 . 6 1 6 1 1
1 1 0 . 8 2 0 . 4 3 2 1 1 0 . 2 9 8 1 1

i n f 0 . 0 5 2 i n f i n f i n f i n f i n f i n f i n f
0 . 4 2 6 i n f 0 . 0 9 9 i n f i n f i n f i n f i n f i n f
0 . 1 i n f 0 . 4 8 5 i n f i n f i n f i n f i n f i n f
i n f i n f i n f 0 . 2 0 4 i n f i n f 0 . 2 4 2 i n f i n f
i n f i n f i n f i n f i n f 0 . 1 9 9 i n f i n f 0 . 5 1 8
i n f i n f i n f i n f 0 . 0 6 9 i n f i n f i n f i n f
i n f i n f i n f i n f i n f i n f i n f 0 . 1 0 5 i n f
i n f i n f 0 . 7 7 8 0 . 5 4 6 i n f i n f 0 . 2 9 3 i n f i n f
i n f i n f i n f 0 . 5 7 i n f i n f 0 . 2 7 1 i n f i n f
i n f i n f i n f i n f i n f 0 . 5 5 7 i n f i n f 0 . 5 2

det
1

det
2

det
3

det
5

det
6

det
8

det
9

det
4

det
7

t r a c k 1
t r a c k 2
t r a c k 3

t r a c k 5
t r a c k 6
t r a c k 7
t r a c k 8
t r a c k 9

t r a c k 4

t r a c k 1 0

tra
ck 

obj
ect

d e t e c t i o n  o b j e c t
0 . 0 9 5 0 0

0 . 4 7 5 0

0 . 8 5 5 0

1 . 2 3 5

1 . 6 1 5

1 . 9 9 5
d i s t a n c e

( a )  E G  D i s t a n c e  M a t r i x

det
1

det
2

det
3

det
5

det
6

det
8

det
9

det
4

det
7

t r a c k 1
t r a c k 2
t r a c k 3

t r a c k 5
t r a c k 6
t r a c k 7
t r a c k 8
t r a c k 9

t r a c k 4

t r a c k 1 0

tra
ck 

obj
ect

d e t e c t i o n  o b j e c t
0 . 0 6 5 0 0

0 . 2 5 2 0

0 . 4 3 9 0

0 . 6 2 6 0

0 . 8 1 3 0

1 . 0 0 0
d i s t a n c e

( b )  I o U  D i s t a n c e  M a t r i x

det
1

det
2

det
3

det
5

det
6

det
8

det
9

det
4

det
7

t r a c k 1
t r a c k 2
t r a c k 3

t r a c k 5
t r a c k 6
t r a c k 7
t r a c k 8

t r a c k 1 0

t r a c k 4

t r a c k 9

tra
ck 

obj
ect

d e t e c t i o n  o b j e c t
0 . 0 5 0 0 0

0 . 1 9 5 6

0 . 3 4 1 2

0 . 4 8 6 8

0 . 6 3 2 4

0 . 7 7 8 0
d i s t a n c e

( c )  E M  D i s t a n c e  M a t r i x
Figure 1. Example of heatmaps for different association matrices in frame 560 of MOT17 sequence
11. (a) shows our EG matrix, which combines the embedding cosine distance and the GioU distance.
(b) shows the IoU distance matrix, i.e., the detection-based methods. (c) shows the EM matrix, which
usually combines the motion distance and the embedding cosine distance, i.e., the JDE-based methods.
In these heatmaps, the red cells indicates that the similarity distance between detection targets and
tracking targets is farther, and the blue cells show that the similarity distance is closer.

To solve this problem, we propose the EG matrix, which utilizes the embedding
cosine distance for the long-range tracking of targets and the GioU distance for limiting the
matching range of embedding. To illustrate the robustness of the EG matrix, we apply it to
five different JDE-based methods. As can be seen in Section 4.3, our implementations obtain
improvements in MOT metrics, including tracking speed, HOTA, IDF1 and IDsw metrics.

To further explore the good properties of the EG matrix, we propose a simple tracking
framework named SimpleTrack. In this framework, we design a bottom-up branch to
represent Re-ID features. Different from the fusion method of detection features, it pays
more attention to the high-level semantic layers. For the tracking part of SimpleTrack, we
propose a novel tracking retrieval mechanism and design a new tracking strategy based on
our EG matrix. The experimental results show that our tracking strategy can surpass the
JDE-based methods in most metrics, including tracking speed. Compared with the current
SOTA method BYTE, our tracking strategy can also improve the performance in terms of
HOTA, IDF1 and IDsw metrics.

Our main contributions are as follows:
1. We adopt different feature fusion structures for feature detection and feature re-

identification, respectively, to decouple them.
2. We propose a novel association matrix named the embedding and GioU matrix,

which can directly replace the original association matrix in JDE-based methods. It can not
only reduce time costs, but also improves the tracking metrics of the model.

3. We design a new tracking strategy that can alleviate the problem of tracking target
loss.

4. The code and model are available at https://github.com/1vpmaster/SimpleTrack
(accessed on 3 July 2022).

The remainder of the paper is arranged as follows. Section 2 summarizes the related
work, including JDE-based methods, similarity matrices and tracking strategies. Section 3
describes the method of SimpleTrack, including the decoupling module, embedding and
Giou matrix and a novel tracking strategy. In Section 4, experimental results are provided to
verify the performance of the proposed SimpleTrack. Section 5 discusses the performance

https://github.com/1vpmaster/SimpleTrack
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and speed of the EG matrix and association methods. Section 6 briefly summarizes the
work and considers the future work.

2. Related Work
2.1. Joint Detection and Embedding

JDE-based methods typically employ a single network to directly predict detection and
appearance features [11–19]. In general, these methods employ a single backbone to predict
both object bounding boxes and appearance features. For example, FasterVideo [18] and
Online Tracker [19] adopt Faster R-CNN [20] and Yolov5 for feature detection and feature re-
identification, respectively. Although their pipelines are relatively simple, the competitive
relationship between detection and identification harms the optimization procedure in the
multi-task learning of object detection and appearance feature extraction.

Recently, to tackle this problem, CSTrack [13] was proposed, which first uses a de-
coupling module to enhance the learned representation for both object detection and
appearance identification. RelationTrack [21] uses a channel attention mechanism to de-
couple detection and re-identity. However, the two methods do not take into account
the essential differences between detection features and re-identity features. Different
from CSTrack and RelationTrack, the decoupling strategy adopted in our SimpleTrack
focuses on the essence of the appearance feature. We start decoupling from the feature layer
fusion of the network. In contrast to the detection feature fusion, we adopt a bottom-up
fusion method.

2.2. Similarity Matrices

Location, motion and appearance are the most common cues in multi-object tracking.
They are also combined together for the linear assignment. Detection-based methods [10]
utilize the IoU distance as the similarity matrix and the tracking accuracy mainly depends
on the detector. SORT [2] fuses position and motion cues as the similarity matrix, which
can achieve good results in short-range matching. DeepSORT [7] improves the long-range
tracking ability of trackers by merging appearance and motion cues, which is usually used
in JDE-based methods [11–17].

All these methods use location cues or fuse appearance and motion information as
the similarity matrix, as shown in Figure 2. However, the motion information estimated
by linear motion models is not accurate in some scenes containing complex motion behav-
iors. In addition, it is time-consuming to integrate motion information and appearance
information according to Section 5.2.2. Different from all the aforementioned methods, we
design the similarity matrix combined with appearance and location information and use
the GioU distance matrix as the location cue instead of the common IoU matrix.

Embedding matrix

IoU matrix

Motion matrix

IoU matrix

IoU matrix

Embedding matrix

GioU matrix

Embedding matrix

GioU matrix

Detection based 

methods

JDE based 

methods
Our method

First association

Second association

Figure 2. Association matrices used in cascade matching of different tracking methods.
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2.3. Tracking Strategy

The assignment problem of target tracking and detection can be solved by the Hun-
garian algorithm [22] based on different similarity matrices. SORT associates the detection
objects with the tracking objects by one-time matching. DeepSORT adopts a cascade match-
ing method that reduces unmatched tracking targets. MOTDT [23] first uses the appearance
similarity matrix and the IoU distance matrix as the similarity matrix for cascade matching,
respectively. All of these methods assume that the detection targets are equally important
and match them uniformly with the similarity matrix.

Recently, BYTETrack [10] proposed to use low-confidence detection results for sec-
ondary matching, which reduces the problem of target detection failure due to occlusion.
Thereby, the occurrence of long-range tracking could be reduced, making the linear assign-
ment based on the IoU distance matrix more effective. MAA [24] adopts different strategies
for the blurred detection of targets and tracking targets in the similarity matrix. The method
can alleviate the inaccuracy of the similarity distance caused by the ambiguous targets.
Both of the two methods aim to make up for the shortcomings of the similarity matrix
and do not pay attention to how to retrieve the lost detection targets. Based on the idea
of BYTE [10], we redesign the similarity matrix for the JDE-based method and construct a
new matching strategy.

3. SimpleTrack

In this section, we present the technical details of SimpleTrack, as illustrated in Figure 3.
It is composed of feature decoupling, a similarity matrix as well as a tracking strategy.

F1

F2

F3

F4

F

Up-to-bottom Fuse

Bottom-to-up Fuse

Detection

Re-Identity

Tracklets

Giou matrix

Embedding matrix

F1

F2

F3

F4

F

EG matrix

Feature decoupling Association

Giou distance

Cosine distance

keep resolution

up sample #1

up sample #2

base feature

fused feature

Hungarian 

algotithm

Track 

retrieval

Frame t

Frame t+1

Frame t+1

Frame t

Figure 3. The overall pipeline of SimpleTrack. The input image is first fed to a backbone network to
extract high-resolution feature maps. Then, we use different feature fusion methods for detection
and re-identity separately, and combine the embedding and GioU distance matrix as the similarity
matrix. At the end of the association phase, the tracking retrieval mechanism is used to recover the
undetected targets.

3.1. Feature Decoupling

We adopt DLA-34 as a backbone in order to strike a good balance between accuracy and
speed. For feature decoupling, we employ different feature fusion methods for detection
and Re-ID representation. As illustrated in Figure 3, for the detection branch, the feature
fusion method still adopts the structure of IDA-up in FairMOT [12]. We call it the up-to-
bottom fusion method, based on low-level feature maps and continuously fusing higher-
level feature maps.

However, Re-ID features tend to learn higher-level semantic features to distinguish
different features among homogeneous objects. Therefore, we take a simple bottom-up
approach to fusing feature maps. Denote the input feature maps by F = {Fi}N

i=1, where N
is the number of feature layers of different resolutions extracted by the backbone network.
Then, the process of the bottom-up fusion method can be expressed as
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{F̂i}1
i=N =

{
Fi, if i = N
Fi · σ(Conv1×1(UpSample(F̂i+1))), otherwise

(1)

where UpSample(·) represents an upsampling operation composed of the deformable
convolution and the deconvolution, Conv1×1 denotes a 1× 1 convolution layer for changing
channels of features, σ(·) represents the Sigmoid activation layer.

It could be observed from Equation (1) that the fusion process is from bottom to
top, and the previously fused feature map guides the lower-level feature map until the
final fusion result is obtained. As will be shown by the experimental results in Section 4,
the computational cost required by this fusion method is minimal.

3.2. Embedding and GioU Matrix

The similarity matrix is usually constructed from location, motion and appearance
information. Let L, M, E denote the location distance matrix, the motion distance matrix
and the appearance distance matrix, respectively. We fuse L and E as the similarity matrix,
called the EG matrix. Moreover, L can be represented as

L = 1− (
| A ∩ B |
| A ∪ B | −

| C\(A ∪ (B)) |
| C | ) (2)

where A and B represent the bounding boxes of the tracking objects and the bounding
boxes of the detection objects, respectively, and C is the minimum enclosing rectangle sets
of the above bounding boxes.

E can be represented as

E =
O1

e ·O2
e

‖ O1
e ‖‖ O2

e ‖
(3)

where O1
e and O2

e represent different appearance embedding vectors.
Note that the matrix L in Equation (2) is actually the GioU distance matrix and that

the matrix E in Equation (3) defines the cosine distance matrix. Then, the embedding and
GioU matrix, which is also denoted as EG, can be represented as

EG = λ1E + λ2G (4)

where λ1 = 1.0 and λ2 = 0.5 represent two hyperparameters, G denotes the GioU distance
matrix and G = L.

3.3. Tracking Strategy in SimpleTrack

Inspired by BYTE [10], we develop a tracking strategy based on our EG matrix.
As shown in Algorithm 1, we follow the idea of secondary matching with low-confidence
detection adopted in BYTE, and use the EG matrix to replace the similarity matrix in the
cascade matching. In addition, after the secondary matching, we utilize the cosine distance
to retrieve the unmatched tracklets.



Sensors 2022, 22, 5863 6 of 16

Algorithm 1: Pseudo-code of SimpleTrack
Input: A video sequence V; object detector Det; Kalman filter KF; detection score

threshold τhigh, τlow; tracking score threshold ε; tracking retrieval threshold
εr

Output: Tracks T of the video
1 for frame fk in V do
2 Dk ← Det( fk);
3 Dhigh ← ∅;
4 Dlow ← ∅;
5 for d in Dk do
6 if d.score > τhigh then
7 Dhigh ← Dhigh∪{d};

8 if d.score > τlow then
9 Dlow ← Dlow∪{d};

10 for t in T do
11 t← KF(t);

// first association with EG matrix
12 Associate T and Dhigh using EG matrix;
13 Dremain ←remaining object boxes from Dhigh;
14 Tremain ←remaining tracks from T ;

// second association with EG matrix
15 Associate T and Dlow using EG matrix;
16 Tre−remain ←remaining tracks from T ;
17 Tu = T − Tremain − Tre−remain;

// tracking retrieval
18 for tu in Tu do
19 Find the embedding vector of Eu of tu corresponding to the previous frame;
20 Find surrounding embedding vectors Ed with the center point of tu in the

detection frame;
21 Select the most similar appearance embedding vector Es

d based on the
cosine similarity;

22 Record the coordinates (xE, yE) of the center point corresponding to Es
d;

23 if | Eu − Es
d |< εr then

24 Update the coordinates of the center point in tu with (xE, yE);
25 Treback ← tu;

// delete unmatched tracks
26 T ← T \T∇e−∇ema〉\;

// initialize new tracks
27 for d in Dremain do
28 if d.score > ε then
29 T ← T ∪ {d} ;

30 final ;
31 return T ;

As shown in Figure 4, when the target is blocked and the detector fails, we use a
Kalman filter to predict the center point position of the unmatched tracking targets. In order
to compensate for the drift of the Kalman filter, we use appearance information to modify
the prediction results of the Kalman filter. We select the appearance embedding vectors in
the 3 × 3 range around the prediction center point (Ci, Cj) by the Kalman filter. Denoting
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the embedding vector of the unmatched tracking target by Eu, we follow Equation (5) to
determine whether the unmatched tracking target can be retrieved.

S(tu) =

{
retrieved, if Dismin < εr

unretrieved, otherwise
(5)

where Dismin represents the minimum cosine distance among the 3 × 3 range around
(Ci, Cj), εr denotes the tracking retrieval threshold. By denoting the appearance embedding

vector on pixel (i, j) by E(i,j)
d , Dismin can then be represented by Equation (6).

Dismin = Mini,j({Fcd(E
i,j
d , Eu)}i∈[Ci−1,Ci+1],j∈[Cj−1,Cj+]) (6)

where Fcd(·) indicates the results of the cosine distance between two vectors. After-
ward, if the state of the unmatched tracking target is judged to be retrieved, we obtain
(imin, jmin) according to Dismin. Finally, set (imin, jmin) as the center point of the retrieval
box, and make the width and height of the retrieval box consistent with the tracked target
in the previous frame.

With the tracking retrieval mechanism, we can recover the occluded (failed) detection
boxes by using the predictions of the Kalman filter. At the same time, the embedding
information can be used to correct the predicted position of the Kalman filter, so as to update
the parameters of the Kalman filter and reduce the accumulated error of the Kalman filter.

After n 

frames 

detection 

failure

After n 

frames 

detection 

failure

Cosine similarity
Find best matched and 

update center point position

Ours

Unmatched 

ID switch

Matched

Kalman 

result

Detection

result

Retrieval

result

Embedding vector
Embedding vectors

Figure 4. Tracking retrieval process. The five-pointed star indicates the position of the best matching
embedding vector.

4. Experiments
4.1. Datasets and Metrics
4.1.1. Datasets

We evaluate SimpleTrack on private detection tracks of the MOT17 [25] and MOT20 [26]
datasets. The former contains 14 different video sequences for multi-target tracking,
recorded by fixed or moving cameras. The latter consists of 8 video sequences with a
fixed camera focusing on tracking in very crowded scenes, 4 for training and testing each.
For ablation studies, we follow [27–31] and split the train set into two parts for ablative
experiments as the annotations of the test split are not publicly available. We fuse the
CrowdHuman [32] and MOT17, with half as the training dataset for ablation experiments
following [10,30,31,33,34]. We add the ETH [35], CityPerson [36], CalTech [37], CUHK-
SYSU [38] and PRW [39] datasets for training following [11–13] when testing on the test set
of MOT17.
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4.1.2. Evaluation Metrics.

To evaluate the tracking performance, we use TrackEval to evaluate all metrics, includ-
ing MOTA [40], IDF1 [41], false positives (FP), false negatives (FN), identity switches (IDSW)
and the recently proposed HOTA [42]. HOTA can comprehensively evaluate the perfor-
mance of detection and data association. IDF1 focuses more on the association performance
and MOTA evaluates the detector ability and focuses more on detection performance.

4.2. Implementation Details
4.2.1. Tracker

In the tracking phase, the default high detection score threshold τhigh is 0.3, the low
threshold τlow is 0.2, the trajectory initialization score ε is 0.6, and the trajectory retrieval
score εr is 0.1, unless otherwise specified. In the linear assignment step, for the high-
confidence detection, the assignment threshold is 0.8, and for the low-confidence detection,
the assignment threshold is 0.4.

4.2.2. Detector and Embedding

We use SimpleTrack to extract the location features and appearance features of ob-
jects. For SimpleTrack, the backbone is DLA-34, which initializes weights with a COCO-
pretrained model. The training schedule is 30 epochs on the combination of MOT17,
CrowdHuman and other datasets mentioned above. The input image size is 1088 × 608.
Rotation, scaling and color jittering are adopted as data augmentation techniques during
our training phase. The model is trained on 4 NVIDIA TITAN RTX with a batch size of
32. The optimizer is Adam and the initial learning rate is set to 2× 10−4, which decays to
2× 10−5 in the 20th epoch. The total training time is around 25 h. FPS is measured with a
single NVIDIA RTX2080Ti and the batch size is set to 1.

4.3. Ablation Studies
4.3.1. Ablation on SimpleTrack

The innovation of SimpleTrack is mainly composed of bottom-up decoupling, the EG
similarity matrix and tracking retrieval. We conduct ablation experiments on the MOT17
validation set for these three modules. The results are shown in Table 1. It can be observed
that adding bottom-up decoupling to FairMOT increases IDF1 and MOTA. In addition,
after replacing the similarity matrix of JDE-based methods with the EG matrix, the strategy
improves IDF1 from 76.1 to 78.1, MOTA from 71.4 to 72.5 and HOTA from 60.2 to 61.5
and decreases IDs from 451 to 186. After further adding the tracking retrieval mechanism,
the IDF1 metric increases from 78.1 to 78.5 and HOTA from 61.5 to 61.7, and the IDs metric
decreases from 186 to 182. These results prove that the modules proposed in SimpleTrack
are necessary and effective.

Table 1. Ablation experiment on SimpleTrack. X denotes addition of this module to the baseline,
which is FairMOT. BU-D, EG and TR stand for bottom-up decoupling, EG similarity matrix and
tracking retrieval strategy, respectively. The best results are shown in bold.

Model Settings Evaluation Indicators

BU-D EG TR IDF1↑ MOTA↑ HOTA↑ IDs↓ FP↓ FN↓ FPS↑

75.6 71.1 - 327 - - -
X 76.1 71.4 60.2 451 3319 11,655 19.7
X X 78.1 72.5 61.5 186 3260 11,430 24
X X X 78.5 72.5 61.7 182 3212 11,456 23.8
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4.3.2. Analysis of the Hyperparameters of EG Matrix

We test different sets of hyperparameters of Equation (4) in Figure 5. Set the parameter
λ1 of embedding similarity to 1 and increase the parameter λ2 of GioU similarity from 0.1
to 4. It can be observed that the tracking performance of the algorithm is better when λ1 is
set to 1.0 and λ2 is set from 0.5 to 0.9, because the interval of embedding similarity is [0, 1],
and the interval of GioU similarity is [0, 2]. Therefore, in order to balance the weights of
embedding similarity and GioU similarity, EG matrix set λ1 = 1.0 and λ2 = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4
45

50

55

60

65

70

75

80

sc
or
e

2| 1=1.0

 HOTA
 MOTA
 IDF1

Figure 5. Experiments for hyperparameters in EG matrix in MOT17-half val. The blue, red and black
lines represent IDF1, MOTA and HOTA indicators, respectively. The parameters selected in the paper
are shown by the dotted line.

4.3.3. Comparison with Preceding SOTAs

In this part, we compare the performance of SimpleTrack with preceding SOTA meth-
ods on MOT17 and MOT20. The results are reported in Tables 2 and 3, respectively.
As shown in these two tables, SimpleTrack showed the best results in various metrics and
surpassed the contrasted counterparts by large margins, especially on the HOTA, IDF1 and
IDS metrics. Moreover, compared with other MOT tracking methods, SimpleTrack has an
obvious speed advantage.

Table 2. Comparison of the state-of-the-art methods under the “private detector” protocol on the
MOT17 test set. The best results are shown in bold. MOT17 contains rich scenes and half of the
sequences are captured with camera motion. * indicates the addition of linear interpolation and †
indicates JDE-based methods.

Method HOTA↑ IDF1↑ MOTA↑ IDs↓ FP↓ FN↓ FPS↑

TraDes [30] † 52.7 63.9 69.1 3555 20,892 150,060 17.5
MAT[43] 53.8 63.1 69.5 2844 30,660 138,741 9.0
QuasiDense [16] † 53.9 66.3 68.7 3378 26,589 146,643 20.3
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Table 2. Cont.

Method HOTA↑ IDF1↑ MOTA↑ IDs↓ FP↓ FN↓ FPS↑

SOTMOT [44] - 71.9 71.0 5184 39,537 118,983 16.0
TransCenter [45] 54.5 62.2 73.2 4614 23,112 123,738 1.0
GSDT [46] † 55.2 66.5 73.2 3891 26,397 120,666 4.9
PermaTrackPr [47] 55.5 68.9 73.8 3699 28,998 115,104 11.9
TransTrack [33] 54.1 63.5 75.2 3603 50,157 86,442 10.0
FUFET [28] 57.9 68.0 76.2 3237 32,796 98,475 6.8
FairMOT [12] † 59.3 72.3 73.7 3303 27,507 117,477 18.9
CSTrack [13] † 59.3 72.6 74.9 3567 23,847 114,303 15.8
Semi-TCL [48] 59.8 73.2 73.3 2790 22,944 124,980 -
ReMOT [49] 59.7 72.0 77.0 2853 33,204 93,612 1.8
CrowdTrack [50] 60.3 73.6 75.6 2544 25,950 109,101 -
CorrTracker [29] † 60.7 73.6 76.5 3369 29,808 99,510 15.6
RelationTrack [21] † 61.0 74.7 73.8 1374 27,999 118,623 8.5
SimpleTrack(Ours) † 61.0 75.7 74.1 1500 17,379 127,053 22.53
SimpleTrack(Ours) * 61.6 76.3 75.3 1260 22,317 116,010 -

Table 3. Comparison of the state-of-the-art methods under the “private detector” protocol on
the MOT20 test set. The best results are shown in bold. The scenes in MOT20 are much more
crowded than those in MOT17. * indicates the addition of linear interpolation and † indicates
JDE-based methods.

Method HOTA↑ IDF1↑ MOTA↑ IDs↓ FP↓ FN↓ FPS↑

MLT [51] 43.2 54.6 48.9 2187 45,660 216,803 3.7
FairMOT [12] † 54.6 67.3 61.8 5243 103,440 88,901 13.2
TransCenter [45] - 50.4 61.9 4653 45,895 146,347 1.0
TransTrack [33] 48.5 59.4 65.0 3608 27,197 150,197 7.2
Semi-TCL [48] 55.3 70.1 65.2 4139 61,209 114,709 -
CorrTracker [29] † - 69.1 65.2 5183 79,429 95,855 8.5
CSTrack [13] † 54.0 68.6 66.6 3196 25,404 144,358 4.5
GSDT [46] † 53.6 67.5 67.1 3131 31,913 135,409 0.9
SiamMOT [17] † - 67.8 70.7 - 22,689 125,039 6.7
RelationTrack [21] † 56.5 70.5 67.2 4243 61,134 104,597 2.7
SOTMOT [44] - 71.4 68.6 4209 57,064 101,154 8.5
SimpleTrack(Ours) † 56.6 69.6 70.6 2434 18,400 131,209 7.0
SimpleTrack(Ours) * 57.6 70.2 72.6 1785 25,515 114,463 -

4.3.4. Visualization Results

We show some scenarios that are prone to identity switching in Figure 6, which
contains three sequences from the half validation set of MOT17. We use different tracking
strategies to generate the visualization results. It can be observed that SimpleTrack can
effectively deal with the identity switching problem caused by the occlusion of the tracking
targets. In addition, some tracking examples on the MOT17 test datasets are shown in
Figure 7.
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Figure 6. Robustness of our tracking strategy compared to BYTE and JDE-based methods. Boxes
with the same color indicate that the tracking targets have the same identity; IDs indicates that the
tracking targets have switched their identities. The check mark indicates that the identity of the target
has not changed. The #number indicates that the frame number in mot17 video sequence.
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Figure 7. Tracking results of SimpleTrack on the MOT17 test dataset. The #number indicates that the
frame number in mot17 video sequence.
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5. Discussion

This section mainly discusses the similarity matrix and the tracking association method.
Section 5.1 analyzes and compares the performance of our proposed EG matrix with other
existing similarity metrics, and applies the EG matrix to other JDE-based methods to
analyze the universality of the EG matrix. Section 5.2 compares the speed and accuracy of
our proposed tracking strategy with other existing tracking methods.

5.1. Analysis of the Similarity Matrix
5.1.1. Performance Compared with Other Similarity Metrics

We employ different distance matrices as the similarity measure and evaluate their
data association ability on the half validation set of MOT17. It can be obtained from Table 4
that only using the GioU or embedding matrix for data association does not result in
good performance. Moreover, the table shows that the combination of the embedding
matrix and IoU matrix can improve the association effect but reduces the result of MOTA.
Compared with the IoU matrix used in detection-based methods, our EG matrix improves
the IDF1 from 75.7 to 78.5 and HOTA from 60.4 to 61.7 and decreases IDs from 285 to 182.
Compared with the embedding and motion matrix used in JDE-based methods, our EG
matrix improves both the MOT metrics and tracking speed.

Table 4. Data association comparison of different similarity matrices. The best results are shown
in bold.

Similarity Matrix IDF1↑ MOTA↑ HOTA↑ IDs↓ FP↓ FN↓ FPS↑

IoU 75.7 72.5 60.4 285 3510 11,048 25
GioU 66.4 70.4 54.8 378 4631 10,956 23.6
Embedding 64.1 65.0 53.4 749 6120 12,012 24.2
Embedding and Motion 76.1 71.4 60.2 451 3319 11,655 19.7
Embedding and IoU 77.2 72.3 61.4 263 2560 12,144 24
Embedding and GioU 78.5 72.5 61.7 182 3212 11,456 23.8

5.1.2. Applications in Other JDE-Based Trackers

We apply our EG matrix to five different JDE-based trackers, including JDE [11],
FairMOT [12], CSTrack [13], TraDes [30] and QuasiDense [16]. Among these trackers,
JDE, FairMOT, CSTrack, TraDes merge the motion and Re-ID similarity and the first three
methods follow the same fusion strategy. QuasiDense uses Re-ID similarity alone. It can be
observed from Table 5 that using the EG matrix instead of the EM matrix can enhance the
tracking performance and improve the tracking speed. Taking the JDE [11] method as an
example, only using the EG matrix to replace the EM matrix can improve the HOTA from
50.1 to 50.9, IDF1 from 63 to 64.4, MOTA from 59.3 to 59.5 and FPS from 16.64 to 21.29 and
decreases the IDs from 621 to 558. Combined with the BYTE strategy, our EG matrix still
improves the HOTA from 50.4 to 50.9, IDF1 from 64.1 to 64.4 and FPS from 18.52 to 25.48
and decreases the IDs from 437 to 388.

5.2. Analysis of the Association Methods
5.2.1. Accuracy Compared with Other Association Methods

We compare SimpleTrack with other association methods, including the recent SOTA
algorithm BYTE and the tracking algorithm used in JDE-based methods [11–13,17]. As shown
in Table 6, SimpleTrack improves the IDF1 metric of JDE from 76.1 to 78.5, MOTA from
71.4 to 72.5 and HOTA from 60.2 to 61.7 and decreases IDs from 451 to 182. Compared
with BYTE, we can see that SimpleTrack improves the IDF1 from 75.7 to 78.5 and HOTA
from 60.4 to 61.7, and decreases IDs from 285 to 182. These demonstrate that our tracking
method is more effective than the JDE strategy, and it can improve the accuracy of data
association compared to the BYTE strategy.
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Table 5. Results of applying SimpleTrack to five different JDE-based trackers on the MOT17 validation
set. Blue represents the tracking method using only the EG matrix, and red represents the tracking
method combining the EG matrix and BYTE.

Method Similarity w/BYTE HOTA↑ IDF1↑ MOTA↑ IDs↓ FPS↑

JDE [11] EM - 50.1 63.0 59.3 621 16.64
EG - 50.9 64.4 59.5 558 21.29
EM X 50.4 64.1 60.2 437 18.52
EG X 50.9 64.8 60.1 388 25.48

FairMOT [12] EM - 57.0 72.4 69.1 372 21.01
EG - 57.5 73.3 69.5 236 25.18
EM X - 74.2 70.4 232 -
EG X 58.5 74.5 70.6 188 24.70

CSTrack [13] EM - 58.7 72.0 67.9 423 20.39
EG - 59.3 73.0 68.2 322 24.3
EM X 59.8 73.9 69.2 298 20.72
EG X 60.0 73.8 69.6 249 24.25

TraDes [30] EM - 58.6 71.7 68.3 293 15.8
EM X 58.4 71.2 68.9 263 16.22
EG X 59.0 71.5 68.5 483 16.5

QuasiDense [16] EM - 56.2 67.7 67.1 386 4.10
EM X 58.5 71.9 67.4 295 4.80
EG X 57.9 70.9 67.5 252 4.80

Table 6. Comparison of different association methods on the MOT17 validation set. JDE expresses
the tracking strategy employed by [11–13,17] and BYTE expresses the tracking strategy employed
by [10]. The best results are shown in bold.

Tracking Method IDF1↑ MOTA↑ HOTA↑ IDs↓ FP↓ FN↓ FPS↑

JDE 76.1 71.4 60.2 451 3319 11,655 19.7
BYTE 75.7 72.5 60.4 285 3510 11,048 25
SimpleTrack (Ours) 78.5 72.5 61.7 182 3212 11,456 23.8

5.2.2. Speed Compared with Other Association Methods

From Tables 4 and 6, we can observe that our SimpleTrack algorithm utilizes the
embedding information but is still nearly 20% faster than the JDE-based tracking strategy.
A more detailed comparison of different video sequences can be observed in Figure 8a.
It can be observed that our tracking algorithm is only slightly slower than BYTE, which
does not utilize the embedding information. According to Figure 8b, we can see the time
consumption of the main modules in the tracking phase. It shows that the JDE-based
tracking strategy spends a lot of time in fusing the embedding and motion information,
which is represented by the orange dotted square in Figure 8b. For the EG matrix, we
only need to calculate the GioU distance and add it to the embedding distance. The time
consumption is represented by the orange dotted star in Figure 8b.
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Figure 8. Comparison of different tracking algorithm speeds. (a) shows the tracking speed of different
tracking algorithms. (b) shows the time consumption of several main modules in the tracking phase.

6. Conclusions and Future Work

We propose a simple yet effective data association matrix, the EG matrix, for JDE-
based multi-object tracking methods. The EG matrix can be easily applied to existing
trackers and improves not only the tracking effect but also the speed of JDE-based tracking
methods. In addition, we design a bottom-up feature fusion module for decoupling Re-ID
and detection tasks, and present a novel tracklet retrieval strategy for mitigating the loss of
detection targets. These innovations together form our SimpleTrack, which achieves 61.6
HOTA and 76.3 IDF1 on the test set of MOT17 with 23 FPS, ranking first among all the
JDE-based methods.

SimpleTrack has a strong data association ability due to adopting the EG matrix and
decoupling feature extraction module, which can be applied to multi-target tracking in
some complex scenes. In the future work, we will consider the enhancement of target
features in the time dimension and design an anti-occlusion feature extraction network
based on our SimpleTrack framework. Moreover, we hope that the EG matrix can become
the standard association matrix of JDE-based methods in multi-object tracking.
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