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Abstract: In the sintering process, it is difficult to obtain the key quality variables in real time, so
there is lack of real-time information to guide the production process. Furthermore, these labeled
data are too few, resulting in poor performance of conventional soft sensor models. Therefore, a novel
semi-supervised dynamic feature extraction framework (SS-DTFEE) based on sequence pre-training
and fine-tuning is proposed in this paper. Firstly, based on the DTFEE model, the time features of the
sequences are extended and extracted. Secondly, a novel weighted bidirectional LSTM unit (BiLSTM)
is designed to extract the latent variables of original sequence data. Based on improved BiLSTM, an
encoder-decoder model is designed as a pre-training model with unsupervised learning to obtain
the hidden information in the process. Next, through model migration and fine-tuning strategy, the
prediction performance of labeled datasets is improved. The proposed method is applied in the
actual sintering process to estimate the FeO content, which shows a significant improvement of the
prediction accuracy, compared to traditional methods.

Keywords: LSTM; semi-supervised learning; FeO content; soft sensor; encoder-decoder, dynamic
feature extraction

1. Introduction

The iron and steel industry is the basic industry of the country, and it is also an energy-
intensive process. The energy consumption and emissions of the steel industry account for
a high proportion of a country’s industry. However, the current iron and steel industry is
still at a low level of automation and informatization, and there are still many problems.
For example, in the production process, it is difficult to obtain key information, establish
process control models, and rely on manual experience. Therefore, for example, the product
quality is unstable and the working condition is unstable.

The sintering process is the first key production process in the iron and steel industry. It
provides raw materials for subsequent blast furnace ironmaking and determines the quality
basis of subsequent processes. If the quality of iron ore sinter is poor and fluctuates greatly,
the smelting process of blast furnace will be greatly affected, such as unstable working
conditions and poor molten iron quality. Moreover, the sintering process is one of the most
energy-intensive links in the iron-making process. The whole sintering process mainly
depends on coal and coke as fuel, which produce a large amount of carbon emissions. To
achieve the goals of improving quality, improving production efficiency, saving energy,
protecting the environment, and sustainable development, the intelligent sintering process
will become a research hotspot in academic and industrial circles in the future. Therefore, it
is necessary to study the quality prediction of the sintering process. A prediction model of
FeO is established to predict the quality in time, provide effective guidance information for
operators, and control the production process timely and accurately. An accurate prediction
model is helpful to improve the production quality and efficiency of the sintering process.
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Generally speaking, industrial process modeling is divided into the mechanism model
and data model [1]. The mechanism of some industrial processes based on physical pro-
cesses is relatively simple, and the mechanism model is relatively easy to establish. When
complex physical and chemical reactions are involved, the reaction mechanism is complex,
and the reaction conditions are variable, so it is often difficult to establish an accurate
mechanism model. With the requirements of different downstream product quality and the
changes in load and raw materials, many industrial processes work under various conditions.

However, in the sintering process, due to the complex composition of reaction raw
materials, difficult to monitor the composition in real time, and few controllable combustion
conditions, there is no accurate mechanism model yet.

Fortunately, due to the large-scale application of Programmable logic controllers (PLC)
and distributed control system (DCS) systems, it is easy to obtain the process parameters of
the sintering process. Through numerous sensors, process parameters such as temperature,
pressure and flow can be collected. Therefore, a data soft sensor model can be established
with numerous data to predict key parameters that are difficult to be measured in real
time, such as the FeO composition of the sinter. At first, linear regression models were
widely used to study time series data, such as the autoregressive moving average model
(ARMA), autoregressive comprehensive moving average model (ARIMA), etc. [2]. These
models generally require strict assumptions. However, in the face of such a nonlinear and
multi-coupling process as the industrial process, it is difficult to obtain accurate estimation
using linear analysis, and the effect is subject to many restrictions. Therefore, in these
nonlinear cases, the performance of traditional linear soft sensing methods, such as prin-
cipal component analysis (PCA), partial least squares (PLS) and independent component
analysis (ICA), is not enough [3].

According to the nonlinear characteristics, some scholars have proposed some Gaus-
sian mixture models and Bayesian models to solve these problems. Some studies have
focused on the Bayesian model [4]. Gaussian mixture model and Bayesian method need
to determine the super parameter or model structure according to expert knowledge and
structure learning. The accuracy of these parameter structures will affect the prediction
performance. The support vector machine (SVM) is applied to the prediction model [5].
However, the support vector machine method has a large amount of computation for
numerous data, and the effect of the model depends on the selection of key parameters and
kernel functions.

In recent years, with the emergence of deep learning, breakthroughs have been made
in many fields, such as image recognition, speech recognition and so on. General deep
models include auto-encoder, Recurrent Neural Network(RNN), Convolutional Neural
Networks(CNN), etc. The deep learning method developed from the artificial neural
network fits complex nonlinear systems through multi-layer nonlinear mapping and relies
on big data for training. The model result is better than the traditional model. However,
in the common field of deep learning, the number of data is more than that of industrial
processes, and there are also many labeled data sets, which is convenient for training deep
models and model transfer learning.

Auto-encoder (AE) is a group of artificial neural networks. Its output is to recon-
struct the data from the input layer. By minimizing the reconstruction error of the data,
the characteristics of the data can be learned. AE and its extensions have been used in
process monitoring, diagnosis and quality prediction fields [6]. For example, Yuan et al.
proposed a variable weighted SAE (Stacked Auto-Encoder) for soft sensor applications to
strengthen the relationship between input and output data to be predicted during layered
pre-training [7]. All these efforts further help the AE-based approach meet the requirements
of different tasks.

For process industry problems, the typical characteristic of data is time dependence.
Process industry production is a continuous process. The output of current time is closely
related to the input of previous moments. However, the common artificial neural network
does not consider time dependence, and the network input is the sampling at the same time.
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Recently, recurrent neural networks (RNNs) have become very popular for the problem of
sequential data learning. RNNs also have many variants, mainly Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) units [8]. Yuan et al. proposed a spatiotemporal
attention-based LSTM network for soft sensor modeling [9]. These improved structures can
solve the problem of gradient vanishing and the explosion of long time series. However,
the RNN network in industry also has the problem of scarce label data. Unlike some
internet scenarios, labeled data is relatively easy to obtain. In industry, the labeled data are
often obtained by manual test, and the labeling cost is expensive, resulting in the scarcity
of labeled data. There are many unmarked data samples. Therefore, in the data-based
industrial soft sensing, the quality prediction performance is often troubled by the lack of
labeled data samples, and the attention to the unlabeled data is insufficient.

Therefore, in view of the above problems, how to use less labeled samples and more
unlabeled samples at the same time has become a hot issue in recent years [10]. We hope to
introduce unsupervised learning and semi-supervised learning in industrial processes.

The typical semi-supervised method is to manually label the unlabeled samples by
learning the labeled data, and evaluate the improvement of the results of these pseudo
labels through strategies [11]. This method is often used in semi-supervised classification
problems [12]. Recently, there are some basic semi-supervised modeling methods, usually
based on the existing model, using the division of the data set, introducing unlabeled data,
and expanding the labeled data set through division [13]. Yao et al. used a corresponding
semi-supervised data sequence division scheme to make full use of the information in both
labeled and unlabeled data [14]. Sun et al. proposed a new integrated semi-supervised
gated stacked auto-encoder for key performance index prediction [15]. Yuan et al. added
the prediction error term of the labeled data to the original loss function in the pre-training
procedure [16]. However, these methods only play a role in the pre-training process,
ignoring the more important fine-tuning phase. In addition, most artificial neural network
methods only use the last hidden layer for final output or prediction [17]. For example,
Shao et al. proposed a semi-supervised probabilistic hybrid algorithm for extreme learning
machines based on variational Bayes expectation maximization algorithm [18].

Most of the above semi-supervised methods use pseudo label method or unsupervised
feature extraction method of unlabeled data and do not use the fine-tuning strategy for
condition adaptation training. At the same time, the pre-training under the big data of the
sintering process has not been reported. In order to solve the above problems, we propose
an improved semi-supervised model based on pre-training and fine-tuning strategy. On
the basis of the DTFEE framework considering the dynamic time characteristics of the
original process, a semi-supervised encoder-decoder with weighted BiLSTM is integrated.
The encoder-decoder of stacked weighted BiLSTM makes use of the two-way propagation
process of information flow in the forward layer and the backward layer to better solve the
long-term dependence, and fully obtain the hidden information of the unlabeled data set
in the pre-training and reconstruct it. In this way, the information of unlabeled datasets
can be fully mined through pre-training, which greatly improves the performance of the
fine-tuning model after migrating to the labeled datasets.

The main contributions of this paper are as follows:

1. To build the encoder-decoder model based on improved weighted BiLSTM and
improve the DTFEE framework.

2. Through the pre-training and fine-tuning strategy, the information of unlabeled
datasets can be fully extracted and used to improve the effect of labeled datasets, to
achieve better semi-supervised learning.

3. The improved performance is verified in the actual sintering process, which has
reference value for practical workers. The proposed model combines the process
characteristics and makes corresponding adjustments, which are applied and demon-
strated in a real iron ore sinter process for FeO prediction with good effect.

The remainder of this paper is organized as follows. In Section 2, the characteristics of
the sintering process and quality variables are analyzed. The method and model proposed
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in this paper are introduced in Section 3. Then, the proposed method is verified by the
actual production process data in Section 4. Section 5 summarizes the full text and puts
forward new prospects and future work directions.

2. Description of the Sintering Process

The sintering process is mixing the iron ore powder of the raw material with limestone,
coke powder and pulverized coal after a certain proportion of proportioning, and then
producing a series of physical and chemical changes through the sintering machine to form
the sinter that meets the requirements of the raw material for blast furnace iron making.
The main chemical change is the oxidation-reduction reaction of iron ore. The chemical
reaction equation of the sinter is as follows:

3 FeS2 + 8 O2−−Fe3O4 + 6 SO2

Fe3O4 + CO−−3 FeO + CO2

2 Fe3O4 + 3 SiO2−−3 (2 FeO · SiO2) + O2

The sintering process is shown in Figure 1. The whole sintering process can be divided
into the following parts:

1. Proportioning: Raw materials such as iron ore, quicklime, coke powder and pulver-
ized coal are proportioned according to the pre-calculated proportioning ratio and
transported to the conveyor belt.

2. Mixing: After the first mixing and second mixing, appropriate moisture is added to
make the raw materials mix evenly.

3. Ignition and sintering: The raw materials are laid on the sintering trolley and ignited.
With the movement of the trolley, the ignited raw materials are sintered through the
lower bellows.

4. Crushing, screening and cooling: After sintering, the sinter is crushed and screened
according to the particle size. If the conditions are met, it passes through the annular
cooler and enters the silo, ready to be sent to the blast furnace iron-making process.

Sinter bed

First mixingSecond mixing

Sinters

Iron ore Quick lime Coke powder Coal powder

Proportioning

Annular

cooler

Crushing

and screening

Exhaust blower

Bellows

…

Sintering machine
1 2 3 2

2

23 24

Feeder

Others

Ignition

Figure 1. Brief flowchart of sintering process.

2.1. Description of the Sinter Quality

The sinter produced by the complex process cannot be directly sent to the blast furnace
as raw material for iron making. As the main raw material of blast furnace iron making,
sinter needs strict quality control. Sinter quality can be divided into physical index and
chemical index. The physical indexes are mainly the sinter particle size and drum strength,
while the chemical indexes are mainly the mass percentage of main components, such as
FeO, total iron content, Cao, SiO2, etc., as shown in Table 1. The higher the content of FeO is,
the worse the reducibility of the sinter will be. The FeO content will affect the iron-making
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process of the blast furnace. If the content of FeO is too low, the strength of the sinter will
be reduced. Therefore, it is necessary to maintain a suitable and stable FeO content.

Table 1. Table of some sinter quality variables.

No. Quality Variables Descriptions

1 FeO Mass percentage of FeO in sinter
2 TFe Mass percentage of total iron content of sinter
3 CaO Mass percentage of CaO in sinter
4 MgO Mass percentage of MgO in sinter
5 Tumbler index Tumbler strength of Sinter
6 Screening index Screening index of Sinter

2.2. Characteristic Analysis

1. Nonlinearity

Complex physical and chemical changes take place in the sintering process. It is
difficult to establish the mechanism or empirical model of sinter quality. At present, there
are some qualitative studies. Through the research, the linear correlation between sinter
quality variables and operating parameters is very low. Therefore, it is difficult to use a
simple linear model for fitting predictions.

2. Multiple time delays

Not only the sintering process, but also almost all process industries have this time
delay characteristic. For a batch of raw materials, a period of time will elapse from the
beginning of the process to the end of the process. Therefore, different sampling variables
correspond to different times. If the process end time is taken as the benchmark, the
previously sampled variables need to be corrected for a period of time delay. Moreover,
because the working conditions are changing in real time, the time delay of different
variables may also be changing. Therefore, it is difficult to modify the time delay in practice,
and we use the integrated time series model to learn automatically. The sintering process
will last about one hour, so the sampling variables at the same time do not correspond to
the same batch of materials, and the variables have the characteristics of time distribution,
as shown in Figure 2. For the variables V = {v1, v2, v3}, they have multiple time delays:

lagv1 = t4 − t1, lagv2 = t4 − t2, lagv3 = t4 − t3

V1 V2 V3 … Q

v11

v12 v21

v13 v22 v31

v14 v23 v32 q1

v15 v24 v33 q2

v25 v34 q3

v35 q4

t1

t2

t3

t4

t5

t6

t7

Lag1

Lag3

Lag2

V1 V2 V3 … Q

v11 v21 v31 q1

v12 v22 v32 q2

v13 v23 v33 q3

v14 v24 v34 q4

Time delay

Figure 2. Multiple time delays.

3. Lack of labels

The sinter quality label is obtained by a laboratory test, which is difficult and expensive
to obtain. Since it takes a long time for the laboratory to sample and produce the test results,
the cost of labeling samples is very high, and it is not possible to label samples intensively.
Therefore, the quality label of the sinter is very scarce, which is the key problem of sinter
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quality prediction. We consider the use of existing tags and numerous unlabeled process
data for semi-supervised training.

3. Methodology

This section develops the SS-DTFEE framework for FeO forecasting. The encoder-
decoder framework is constructed by wBiLSTM cells. According to the characteristics of
less industrial data labels, adding pre-training and fine-tuning mechanisms to the model
can fully extract process information and improve the ability of potential variables to
express process information. In the prediction task, the decoding network is reconstructed,
and the potential variables obtained by pre-training are used to fine-tune with a few labeled
samples to obtain FeO prediction output. The specific contents of this method are as follows.

3.1. Improved LSTM Structure

The recurrent neural network (RNN) is a kind of neural network for processing
sequence data. The difference between RNN and an ordinary fully connected neural
network is that the input of RNN is a group of sequences Xt = (x1, x2, . . . , xn), and the
time correlation of sequence data is learned through repeated RNN cells. However, due
to its simple structure and repetition, RNN will lose long-term memory for a long input
sequence, making it unable to remember the input information of x1. When the input time
interval is too long, it is difficult to transmit the early input information to the last time step
in the cycle calculation because the gradient disappears.

Therefore, on the basis of RNN, a Long Short-Term Memory neural network (LSTM)
is proposed to solve the long-term dependence. LSTM consists of cell state Ct, input
gate it, forgetting gate ft and output gate ot, as shown in Figure 3. By selectively allowing
information to flow through the gate structure, we can achieve better long-term dependence
than RNN. The calculation formulas of LSTM are as follows [8]:

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3)

Ct = ft × Ct−1 + it × C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot × tanh Ct (6)

The weighted BiLSTM cell is a weighted bidirectional LSTM structure. Although
LSTM uses gate units to control the forward information flow, the effect of long sequence
learning still has room for improvement. BiLSTM uses a two-way structure. The forward
layer uses forward propagation X f = (x1, x2, x3, . . . , xn). The input of the backward layer
is the reverse order of the input of the forward layer Xb = (xn, xn−1, xn−2, . . . , x1). The
BiLSTM simply concatenates the forward layer and the backward layer together. In this
way, the proportion of information saved in two directions cannot be adjusted, and it is
easy to make the network tend in one direction. We design a weighted unit to adjust the
proportion of bidirectional information fusion through the parameter ω. The state vector
of weighted BiLSTM is calculated by this formula. ht = h f + ωhb This makes the model
have the more flexible learning ability of two-way timing information. The weighted unit
can obtain the information at the beginning of the sequence better. The output information
of the two layers is weighted and spliced to obtain the output of weighted BiLSTM ht, as
shown in Figure 4.
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Figure 3. Graph of the LSTM cell [8].
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Figure 4. Graph of the weighted BiLSTM.

3.2. Encoder-Decoder Model

The encoder-decoder framework was usually applied in the field of machine transla-
tion. The problem of machine translation is to convert a language sequence into another
language sequence. In this paper, the technology is extended to other fields, such as the
industrial field. The input sequence can be industrial timing data, image, audio, etc., and
the output sequence is also industrial timing data, image, audio, etc., which can solve the
problems of different data types. This large class of problems can also be called sequence
to sequence problems. The framework used in this paper takes the input as industrial
time series data and the output as industrial time series data. The input sequence of the
encoder part is industrial time series data. Due to the time correlation, the most widely
used encoder is the recurrent neural network. RNN is a basic model. When training, we
encounter the problem of gradient explosion or gradient vanishing, resulting in the inability
to train. Therefore, we use the improved LSTM to represent the input sequence X ∈ X . The
input sequence is encoded into a hidden state vector h ∈ F by the encoder. In the decoder
part, hidden state vectors generated by the encoder are used as inputs to decode the target
industrial time series data. Like encoder, this framework adopts LSTM to build the decoder
model, and the model output X̂ ∈ X is used to reconstruct the input sequence X.

The encoder-decoder model wants the reconstruction error of X to be as small as
possible, that is, the decoded X̂ should be as close to X as possible. The loss function is the
mean square deviation of X and X̂. The optimization objective is to find f : X → F and
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g : F → X of encoder and decoder under the condition of minimizing loss function. The
model structure is shown in Figure 5.

x̂i = g( f (xi)) (7)

L(x, g( f (x)) = ‖x− g( f (x))‖2 (8)

f , g = arg min
f ,g

L(x, g( f (x))) (9)

x1 x2 xn

… …

…

Encoder 

ො𝑥1

… … …

…

Decoder 

g

…

…… Latent vector

Sequence inputs

Sequence outputs

ො𝑥2
ො𝑥n

f 

Figure 5. Graph of the encoder-decoder model.

3.3. Pre-Training and Fine-Tuning

The pre-training method is to pre-train the network with dataset Da and task A, learn
the network parameters on dataset A, and then save the network structure and parameters
for future use. When facing new data Db and task B, the same network structure is adopted.
When initializing the network parameters, the parameters learned by data Da can be
loaded, and the other parameters are initialized randomly. Then, the network is trained
with the training data Db of task B. Facing different task goals, we can choose the strategy
of parameter learning. It is called frozen when the loaded parameters remain unchanged.
When the loaded parameters change continuously with the training of task B, it is called
fine-tuning, that is, adjusting the parameters to make them more suitable for the current
task B. In the process of modifying the model through fine-tuning, we usually use a smaller
learning rate than the general training model.

Methods for fine-tuning the model:

1. Feature extraction. Under this strategy, the whole pre-training model is used as a
feature extractor. The output layer of the pre-training model is removed, and the
structure and parameters of the remaining part are retained. It is used as a fixed
feature extractor without training its parameters. New data sets are input into it to
obtain the extracted features.

2. Keeping the structure and parameters of the pre-training model. This strategy retains
the structure of the pre-training model, but first randomizes all the weights, and then
trains according to its own data set.

3. Training specific layers and freezing other layers. This strategy uses a pre-training
model and fine-tuning it. Keep the weights of some layers at the top of the model
unchanged, set it as untrainable and retrain the following layers to obtain new weights.
Generally speaking, if the data set is small and similar to the original pre-training set,
the number of frozen layers can be more and the number of retraining layers can be
less. This fine-tuning strategy is adopted in our models.
The formulas of the pre-training model and fine-tuning model are as follows. Nl is
the number of samples of labeled dataset Dl , and Nu is the number of samples of
unlabeled dataset Du.
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Pre-training:

x̂i = g1( f1(xi)) (10)

L(x, x̂) =
1

Nl + Nu

Nl+Nu

∑ ‖x− x̂‖2 (11)

f1, g1 = arg min
f1,g1

L(x, g1( f1(x))) (12)

Fine-tuning:

ŷi = g2( f2(xi)) (13)

L(y, ŷ) =
1
Nl

Nl

∑ ‖y− ŷ‖2 (14)

f2, g2 = arg min
f2,g2

L(y, g2( f2(x))) (15)

3.4. Semi-Supervised Dynamic Time Feature Expanding and Extracting Framework

The dynamic time feature expanding and extracting framework (DTFEE) for the sinter-
ing process includes feature selection, time delay, time difference, and time serialization [19].
In the feature selection part, the correlation coefficient and maximum mutual information
coefficient are used for the reduction of variables dimensions. Lightgbm, XGBoost and
random forest can be used as integrated feature extractors. The difference processing can
eliminate the time lag and nonstationarity.

Because the working conditions are changing, the time delay of different features is
also changing. For this reason, the traditional static time delay processing is not effective.
This paper uses the integrated weighted BiLSTM encoder-decoder model to embed the
learning time delay into the sequence model.

Time serialization generates sequence input and constructs training set through a
sliding window. The composition of the data set is determined by the length of the input
sequence and divided into unlabeled dataset Du and labeled dataset Dl . As shown in
Figure 6. This can effectively extract the sequence characteristics of raw data.

F
ea

tu
re

s

Y y1 y2

X1 x11 … x1n …

X2 x21 … X2n …

… … …

Xn xn1 … xnn …

Labeled dataUnlabeled data

Unlabeled 

inputs sample 0

Unlabeled 

inputs sample 1

… x11 … x1n

x21 … X2n

…

xn1 … xnn

Unlabeled inputs sample 

Figure 6. Expansion and serialization of time series data.

This paper builds an end-to-end model through dynamic temporal feature extraction,
which enables the model to automatically learn and adjust latency. Compared with the
manual calculation of static and dynamic time delay, it has better practicability and is
convenient for online operation.

The self-supervised encoder is constructed by our weighted BiLSTM unit, and the
decoder is constructed by LSTM. The semi-supervised encoder is constructed by our
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weighted BiLSTM unit, and the decoder is constructed by LSTM and the full connection
layer. The encoder-decoder model, which adds the pre-training and fine-tuning mechanism,
makes full use of the unlabeled process information for self-learning. The model uses the
learned process of hidden information to improve the prediction effect of labeled data, and
constructs a semi-supervised learning framework, as shown in Figure 7.

BiLSTM

Unlabeled inputs

Hidden

LSTM

Outputs

Label inputs

BiLSTM

Hidden

LSTM

FC

Copy structures 

and  parameters

Label outputsUnlabeled outputs

Encoder

Decoder

Pre-training Fine-tuning

Figure 7. Brief flowchart of semi-supervised encoder-decoder model with pre-training and fine-
tuning methods.

The flowchart of semi-supervised dynamic time features expanding and extraction
prediction framework (SS-DTFEE) is shown in Figure 8.
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Figure 8. Brief flowchart of semi-supervised dynamic time features expanding and extraction
prediction framework (SS-DTFEE).

4. Illustration and Discussion
4.1. Dataset Introduction

The dataset used in this experiment was collected in a sintering plant of an iron and
steel enterprise. The plant has a 360 m2 belt sintering machine, which is 90 m long and
4 m wide. The data is collected from the distributed control system (DCS) of the sintering
plant, as shown in Figure 9. Programmable logic controllers (PLC) with different functions
collect data from the sensors of the sintering machine and collect them into the DCS in the
central control room. PLC can realize some basic automation functions, such as material
batching control, ignition control, machine speed control, etc. The DCS measurement
system collects a set of raw data every second and stores it in the database. The data set
used for the experiment was collected in two months, with about 101,400 records and
432 variables, including 320 groups of labeled data and the rest of unlabeled data. Labeled
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data is obtained by manual sampling and testing four times a day. Due to the high cost and
long test cycle of FeO, the data with labels are relatively rare and precious.

Then, the original data is preprocessed. As described above, FeO as label data has a
long sampling period, resulting in a few records, only about 320. According to Figure 6,
we conduct time expanding on all variables to fully mine the dynamic characteristics of
unlabeled data. Combined with time expansion, time difference, and time serialization,
300 groups of original data are made. Some input variables are shown in Table 2.

Sintering process 

Central Control Room

Distributed Control System

Sensors

PLC

Operation station

Database

Figure 9. Brief flowchart of DCS.

Table 2. Part of the collected original variables.

No. Variables Unit

1 Sinter Thickness mm
2 Ignition Temperature ◦C
3 Bellows Negative Pressure kPa
4 Bellows Temperature ◦C
5 Belt Mass Flow t/h
6 Water addition m3/h
7 FeO %

4.2. Data Preprocess

Before the experiment, the 3−σ criterion is used to remove the outliers from the
original data set.

Then, to train the later neural network, the 0–1 min-max normalization preprocessing
is performed and scaled to the [0,1] interval.

The initial features of the original data have 431 dimensions, including many redun-
dant and invalid features. To train the model accurately and quickly, we need to select
features. The feature selection method has a correlation coefficient and maximum mutual
information coefficient. Lightgbm, xgboost and random forest can be used as integrated
feature extractors [20]. FeO correlation is shown in Figure 10. A total of 36 variables with
an FeO correlation coefficient greater than 0.1 were selected, and the input dimension of
the training set X was 36. The box diagram of the selected variables is shown in Figure 11.



Sensors 2022, 22, 5861 12 of 18

Features

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

Figure 10. Spearman correlation coefficient between raw variables and FeO.
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Figure 11. The box diagram of the selected variables.

Next, time delay and difference processing are performed, the sequence input is
generated by sequencing, and the training set is constructed. This can effectively extract
the dynamic time characteristics of data.

4.3. Experimental Settings

After data preprocessing, unlabeled data is used as the pre-training input Du and the
pre-training target, and the pre-training input and the output sequence length is 20.

Labeled data is used as the fine-tuning training set Dl , the input sequence length
is 20, and the output sequence length is 1. The data set is divided into training set 80%,
verification set 10% and test set 10%.

In our experiment, all the comparison models were implemented using the TensorFlow
GPU framework (Google Brain, Mountain View, CA, USA) in Python. The test platform is
a computer with i9-10900 CPU, 32 g RAM and RTX3060 GPU.

In this experiment, the accuracy of the prediction model is evaluated by the Mean
Square Error (MSE), the Mean Absolute Error (MAE) and Hit Rate(HR), where yi,ŷi are the
real value and prediction, respectively, and n is the testing samples number.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (17)

Hi =

{
1, |yi − ŷi|/yi <= 3%
0, |yi − ŷi|/yi > 3%

(18)
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HR =
1
n

n

∑
i=1

Hi (19)

As the benchmark experiment for comparison, the dataset is the labeled dataset Dl
without unlabeled data. LSTM neural network and weighted BiLSTM neural network are
used for training and prediction.

Recently, the popular method for processing time series data is the LSTM model, which
is the improved RNN model. To be fair, all methods use the same parameter settings. LSTM
neural network consists of 100 cells. After LSTM neural network, the output is connected
to the full connection layer for prediction. BiLSTM neural network is set to 50 cells and 2
layers. After bidirectional LSTM, the output is connected to the full connection layer for
training. The optimizer selects Adam optimizer, and the learning rate is 0.0001. Epoch is
100, and batch size is 8.

In contrast, the improved SS-DTFEE model with a pre-training fine-tuning structure is
proposed in this paper. Based on different pre-training structures, it is divided into two
types: encoder and decoder with single-layer LSTM structure, an encoder with weighted
BiLSTM structure and decoder with LSTM structure. Based on the pre-training and fine-
tuning policy, the connected decoder is the LSTM connected with a full connection layer.
As a comparison experiment, the first strategy is not to fine-tune. The pre-training weights
are only used as the network initialization parameters, and the weights are updated during
the network training. The second strategy is to fine-tune and freeze the weights of the
encoder part. Only the parameters of the decoder are updated during training.

PF abbreviation indicates that the unit uses a pre-training and fine-tuning strategy.
There are four types of encoder-decoder structures proposed above, namely:

• Encoder-decoder-LSTM+LSTM
• Encoder-decoder-BiLSTM+LSTM
• Encoder-decoder-LSTM+LSTM-PF
• Encoder-decoder-BiLSTM+LSTM-PF(SS-DTFEE)

4.4. Results Comparison and Analysis

As well as LSTM and BiLSTM, a total of six models were tested. Each model is trained
10 times, and the average value of the evaluation index is taken as the record, as shown in
Table 3. We draw the HR of ten experiments of six models into a box diagram, as shown in
Figure 12.

LSTM BiLSTM En-LSTM En-BiLSTM En-LSTM-PF En-BiLSTM-PF
Methods

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Va
lu

es

Figure 12. Boxplots of hit rate metrics for each method.
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Table 3. Evaluation of method predictions effect.

Methods MSE MAE HR 1

LSTM 0.063 0.207 0.695
BiLSTM 0.061 0.209 0.691

Encoder-decoder-LSTM+LSTM 0.061 0.201 0.669
Encoder-decoder-BiLSTM+LSTM 0.071 0.211 0.593

Encoder-decoder-LSTM+LSTM-PF 0.059 0.203 0.739
Encoder-decoder-BiLSTM+LSTM-PF(Ours) 0.048 0.182 0.813

1 Hit rate 3%.

By comparison, the SS-DTFEE model proposed by us has achieved good results. The
basic LSTM model and BiLSTM model only use the label data set Dl . Because the data set
is small, it is difficult for the model to learn enough information, so the prediction accuracy
of the model is insufficient.

As the encoder-decoder model for comparison, the two groups only use the pretrained
strategy, and the pre-training data set is unlabeled data Du. Through the self-learning
of unlabeled data, the hidden information of the process is obtained from numerous
unlabeled data, and the information is transferred to the prediction network with label data.
The length of the decoder output sequence is 20, that is, the length of the reconstructed
time sequence is 20. The length of the last five-time step sequence is shown in Figure 13.
Figure 13 illustrates that the output of the encoder-decoder model in this experiment
reconstructs the input sequence with a good effect. Then, the latent vector of the encoder-
decoder model extracts the characteristics of the sintering process data, which can be
used for the pre-training and fine-tuning model. However, for models that do not use
the fine-tuning strategy, more parameters need to be trained as the model architecture
becomes more complex. Furthermore, the number of labeled datasets is too small to train
all parameters. Therefore, the output effect of the model is poor, and the output stability is
worse than that of LSTM and BiLSTM without an encoder-decoder structure.
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Figure 13. Five-time-step reconstruction of each feature in the pre-training phase.

By contrast, the two groups of models using the fine-tuning strategy have achieved
obvious improvement. The prediction of hit rate increased from 0.669 to 0.739 and 0.593 to
0.813, respectively. The unlabeled datasets are trained by using the pre-training strategy,
and the hidden information of the process is obtained. By migrating the encoder model
and freezing the weights, the amount of parameters to be trained is greatly reduced, and
then training with labeled data can achieve better results. Moreover, because the BiLSTM
model is more complex and has more parameters than the LSTM model, the prediction
accuracy of the BiLSTM model is improved more significantly. Additionally, the fine-tuned
BiLSTM model proposed by us exerts a good bidirectional learning ability of sequences
and achieves the best results. The demerits of our method are that we need to train
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two models, which takes more time than a single model and the fine-tuning model data
needs to be similar to the pre-training model data. If the working condition changes
greatly, the training effect of the model will be affected. Ten repeated experiments were
carried out for each method, and the average of the evaluation indexes was taken as the
result and listed in Table 3. Among the ten repeated experiments of each method, one
experiment result is selected, as shown in Figure 14. The Figure 14 from top to bottom
are method LSTM, method BiLSTM, method Encoder-decoder-LSTM+LSTM, method
Encoder-decoder-BiLSTM+LSTM, method Encoder-decoder-LSTM+LSTM-PF and method
Encoder-decoder-BiLSTM+LSTM-PF(Ours), respectively, as shown in Table 3.

Figure 14. Single experiment results of each method.

5. Conclusions

In this paper, a novel encoder-decoder framework based on semi-supervised dynamic
time features expanding and extraction is proposed to predict FeO and other parameters
in the iron ore sintering process. The framework can effectively use numerous unlabeled
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data to obtain industrial process information. The encoder-decoder model is built by our
proposed weighted BiLSTM, which can better learn the bidirectional time series hidden
information. The unlabeled data is based on the pre-training strategy to obtain the network
structures and weights, which contains the process hidden layer information. Under the
fine-tuning strategy, the hidden layer information obtained from the pre-training is trained
together with the labeled data to obtain a better prediction effect than supervised learning.
The proposed method is applied in the actual sintering process to estimate the FeO content,
which shows a significant improvement in the prediction accuracy and stability, compared
to traditional supervised methods. In the future, the framework of the model can be
further improved in accuracy, and it can be applied to other process industries, not only
sintering processes.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Auto-Enconder
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average model
ARMA Autoregressive Moving Average
BiLSTM Bidirectional Long Short-Term Memory
CC Correlation coefficient
CNN Convolutional Neural Network
DCS Distributed Control System
DTFEE Dynamic Time Features Expanding and Extraction framework
GRU Gated Recurrent Unit
HR Hit Rate
ICA Independent Component Analysis
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MSE Mean Square Error
PCA Principal Component Analysis
PF Pre-training and Fine-tuning
PLC Programmable logic controller
PLS Partial Least Squares
RNN Recurrent Neural Network
SAE Stacked Auto-Encoder
SS Semi-supervised
SS-DTFEE Dynamic Time Features Expanding and Extraction framework
SVM Support Vector Machine



Sensors 2022, 22, 5861 17 of 18

Nomenclature

V Process variables
Q Quality variables
lag Time lag of the variable
Ct Cell state of LSTM
it Input gate of LSTM
ft Forgetting gate of LSTM
ot Output gate of LSTM
yi Real output
ŷi Predicted output
n The test samples number
Du Unlabeled dataset
Dl Labeled dataset
Nu Number of samples of unlabeled dataset
Nl Number of samples of labeled dataset
X Input sequence
X̂ Output sequence
X The set of sequence
h Hidden state vector
F The set of hidden state
f Encoder function
g Decoder function
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