
Citation: Moon, C.B.; Kim, B.M.;

Kim, D.-S. A Circular-Based

Reference Point Extraction Method

for Correcting the Alignment of

Round Parts. Sensors 2022, 22, 5859.

https://doi.org/10.3390/s22155859

Academic Editor: Jiayi Ma

Received: 5 July 2022

Accepted: 2 August 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Circular-Based Reference Point Extraction Method for
Correcting the Alignment of Round Parts
Chang Bae Moon 1, Byeong Man Kim 2,* and Dong-Seong Kim 3,*

1 Department of Smart Electronics, Korea Polytechnic VII (Changwon Campus),
Changwon 51518, Gyeongsangnam-do, Korea

2 Computer Software Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Korea
3 Department of IT Covergence Engineering, Kumoh National Institute of Technology,

Gumi 39177, Gyeongbuk, Korea
* Correspondence: bmkim@kumoh.ac.kr (B.M.K.); dskim@kumoh.ac.kr (D.-S.K.); Tel.: +82-54-478-7544 (B.M.K.)

Abstract: For products such as smartphones, the technology gap between companies is gradually
narrowing with the advancements in technology. Therefore, product design can be a visible strategy
for differentiation. However, it is difficult to apply automated production and defect detection
processes to the various designs that are being developed. This study proposes a high-speed circular
measurement method for correcting the alignment of round parts, which is difficult in an automated
process. For analyzing the performance of the proposed method, its processing speed and accuracy
are compared with those of the existing methods. The results of the analysis indicate that the overall
performance of the proposed method is better than those of the existing methods.

Keywords: round parts; alignment; circular-based reference point extraction method; high-speed

1. Introduction

For products with high consumer demand, such as smartphones, the technology
gap between companies is gradually narrowing with the advances in technology. Hence,
product design appears to be a visible strategy for improving a product’s competitiveness
and differentiating it from the other products. However, the application of automated
production and defect detection to products or parts with various designs is challenging. In
the automated production process, rule-based information such as a standardized location
or machine vision technology is applied for precise control in assembling the manufactured
parts. In rule-based technology, a robot moves to the corresponding position for assembling
parts, based on a three-dimensional coordinate input. Machine vision technology analyzes
the image of a product or part to enable a robot to assemble the parts or to determine
whether a product is defective.

Machine vision technologies can be classified into two categories: those applied before
and after production. The former are applied before production for assembling the parts,
whereas the latter are applied after production for detecting whether a product is defective.
One of the essential techniques in the two categories is alignment correction. In general,
this is a technique for judging the angle and position using an engraved mark or unique
pattern of the product. However, with parts that have a round design or glass parts, such
as in smartphones, there are cases where unique patterns or marks cannot be engraved due
to the structural characteristics.

There are two important factors in machine vision technology: the accuracy and
processing speed. If the accuracy is not ensured, a product with defective parts may be
classified as defective as a whole; if the processing speed is not ensured, production may de-
crease. Thus, accuracy and processing speed are essential in machine vision technology. In
view of the above, this study proposes a prototype-based reference point extraction method
to enhance the accuracy and processing speed for the purpose of aligning round parts.

Sensors 2022, 22, 5859. https://doi.org/10.3390/s22155859 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155859
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22155859
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155859?type=check_update&version=2

Sensors 2022, 22, 5859 2 of 17

The feature extraction methods for alignment correction involve the use of a line [1,2],
integral histograms [3,4], projection-based integral histograms [5], the long axis [6], Hough
Line-based reference feature extraction [7], Harris Corner-based feature extraction [8], and
Moravec Corner-based feature extraction [9]. The method involving the use of a line, which
is a feature included in the part, has the advantage of rapidly correcting the alignment
of products with line components; however, it is difficult to apply to round-shaped parts.
The integral histogram method detects the marks on products through template matching;
however, it is difficult to apply a mark to certain products such as the glass of a smartphone.
The long-axis method is applied when the morpheme of the product is atypical, but the
processing time is considerable even for products with a simple shape, such as the round
parts of smartphones. The Hough Line [7], Harris Corner [8], and Moravec Corner [9]
methods also have the disadvantage of long processing times.

In view of the above, this study proposes a circular-based feature extraction method
that can be applied both before and after production in machine vision technology for
the correcting the alignment of products such as the round parts of smartphones. The
remainder of this article is structured as follows. Chapter 2 indicates the systems to which
the proposed method can be applied, and Chapter 3 describes the proposed circle-based
feature extraction method. Chapter 4 compares the accuracy and processing speed of the
proposed method with those of the existing methods, and finally, Chapter 5 concludes
the study.

2. Structure of the Assembly and Inspection Process System

The method proposed in this study can be applied to two processes: the process of
assembling products in the assembly area when the parts are inputted as shown on the left
of Figure 1, and the process of judging the presence or absence of defects in the inspection
area when products are inputted as shown on the right of Figure 1. This inspection process
determines the presence of defects related to the appearance or assembly state and not the
function of the product [10,11]. The method proposed in this study performs alignment
correction for round-shaped products as well, as shown in Figure 2. It is considered to be a
markerless method because it does not require a unique pattern or marker on the product.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 18

In view of the above, this study proposes a prototype-based reference point extraction
method to enhance the accuracy and processing speed for the purpose of aligning round
parts.

The feature extraction methods for alignment correction involve the use of a line [1,2],
integral histograms [3,4], projection-based integral histograms [5], the long axis [6],
Hough Line-based reference feature extraction [7], Harris Corner-based feature extraction
[8], and Moravec Corner-based feature extraction [9]. The method involving the use of a
line, which is a feature included in the part, has the advantage of rapidly correcting the
alignment of products with line components; however, it is difficult to apply to round-
shaped parts. The integral histogram method detects the marks on products through tem-
plate matching; however, it is difficult to apply a mark to certain products such as the
glass of a smartphone. The long-axis method is applied when the morpheme of the prod-
uct is atypical, but the processing time is considerable even for products with a simple
shape, such as the round parts of smartphones. The Hough Line [7], Harris Corner [8],
and Moravec Corner [9] methods also have the disadvantage of long processing times.

In view of the above, this study proposes a circular-based feature extraction method
that can be applied both before and after production in machine vision technology for the
correcting the alignment of products such as the round parts of smartphones. The remain-
der of this article is structured as follows. Chapter 2 indicates the systems to which the
proposed method can be applied, and Chapter 3 describes the proposed circle-based fea-
ture extraction method. Chapter 4 compares the accuracy and processing speed of the
proposed method with those of the existing methods, and finally, Chapter 5 concludes the
study.

2. Structure of the Assembly and Inspection Process System
The method proposed in this study can be applied to two processes: the process of

assembling products in the assembly area when the parts are inputted as shown on the
left of Figure 1, and the process of judging the presence or absence of defects in the in-
spection area when products are inputted as shown on the right of Figure 1. This inspec-
tion process determines the presence of defects related to the appearance or assembly state
and not the function of the product [10,11]. The method proposed in this study performs
alignment correction for round-shaped products as well, as shown in Figure 2. It is con-
sidered to be a markerless method because it does not require a unique pattern or marker
on the product.

Figure 1. Product assembly process (left) and inspection process (right). Figure 1. Product assembly process (left) and inspection process (right).

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

Figure 2. Example of a round design.

The assembly and inspection process system is mainly composed of an inspection
device or image processing module, a PLC module, a lighting module, and a camera mod-
ule. The functions of each module are as follows:
• Lighting module: This module adjusts the amount of light. When a product is placed

in the shooting area, the module provides the required level of light for shooting and
is controlled by the inspector/image processing module.

• Camera module: When a product is placed in the classifier or image processor in-
spection area, this module captures the product and sends the image to the classifier
or image processor module.

• Classifier or image processing module: This module receives an image for reading
from the camera module and sends the control information to the PLC after calculat-
ing the quality of the product or the alignment correction value using the received
image.

• PLC module: This module receives the image reception and image shooting infor-
mation from the classifier or image processor module and lighting module, and con-
trols the motor on the basis of the information received from the classifier or image
processor module.
In the detailed system structure related to the alignment correction of products

shown on the left of Figure 3, the angle and movement position for alignment correction
are calculated using the first image input, and the calculated angle is used for controlling
the motor. In the detailed system structure related to the inspection process shown on the
right of Figure 3, the ROI is extracted for the first image inputted after alignment correc-
tion, and a machine learning process such as a CNN is applied to determine whether the
product is defective. The process commonly applied to both systems is shown in the center
of Figure 3, where the method proposed in this study corresponds to Step 1.1.1.

Figure 3. Detailed structure of the product assembly process and defect detection system.

Figure 2. Example of a round design.

Sensors 2022, 22, 5859 3 of 17

The assembly and inspection process system is mainly composed of an inspection
device or image processing module, a PLC module, a lighting module, and a camera
module. The functions of each module are as follows:

• Lighting module: This module adjusts the amount of light. When a product is placed
in the shooting area, the module provides the required level of light for shooting and
is controlled by the inspector/image processing module.

• Camera module: When a product is placed in the classifier or image processor inspec-
tion area, this module captures the product and sends the image to the classifier or
image processor module.

• Classifier or image processing module: This module receives an image for reading
from the camera module and sends the control information to the PLC after calculating
the quality of the product or the alignment correction value using the received image.

• PLC module: This module receives the image reception and image shooting infor-
mation from the classifier or image processor module and lighting module, and
controls the motor on the basis of the information received from the classifier or image
processor module.

In the detailed system structure related to the alignment correction of products shown
on the left of Figure 3, the angle and movement position for alignment correction are
calculated using the first image input, and the calculated angle is used for controlling the
motor. In the detailed system structure related to the inspection process shown on the right
of Figure 3, the ROI is extracted for the first image inputted after alignment correction, and
a machine learning process such as a CNN is applied to determine whether the product is
defective. The process commonly applied to both systems is shown in the center of Figure 3,
where the method proposed in this study corresponds to Step 1.1.1.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

Figure 2. Example of a round design.

The assembly and inspection process system is mainly composed of an inspection
device or image processing module, a PLC module, a lighting module, and a camera mod-
ule. The functions of each module are as follows:
• Lighting module: This module adjusts the amount of light. When a product is placed

in the shooting area, the module provides the required level of light for shooting and
is controlled by the inspector/image processing module.

• Camera module: When a product is placed in the classifier or image processor in-
spection area, this module captures the product and sends the image to the classifier
or image processor module.

• Classifier or image processing module: This module receives an image for reading
from the camera module and sends the control information to the PLC after calculat-
ing the quality of the product or the alignment correction value using the received
image.

• PLC module: This module receives the image reception and image shooting infor-
mation from the classifier or image processor module and lighting module, and con-
trols the motor on the basis of the information received from the classifier or image
processor module.
In the detailed system structure related to the alignment correction of products

shown on the left of Figure 3, the angle and movement position for alignment correction
are calculated using the first image input, and the calculated angle is used for controlling
the motor. In the detailed system structure related to the inspection process shown on the
right of Figure 3, the ROI is extracted for the first image inputted after alignment correc-
tion, and a machine learning process such as a CNN is applied to determine whether the
product is defective. The process commonly applied to both systems is shown in the center
of Figure 3, where the method proposed in this study corresponds to Step 1.1.1.

Figure 3. Detailed structure of the product assembly process and defect detection system. Figure 3. Detailed structure of the product assembly process and defect detection system.

3. Circle-Based Reference Point Extraction Method for the Correcting the Alignment of
Round Parts

Reference point extraction involves two processes: preprocessing and searching for a
reference point, as depicted in Figure 4. When the first image is used as input, to find the
reference point, preprocessing is performed in the following order: setting the ROI area,
searching for the starting point to search for the reference point, and generating a circular
coordinate array from the starting point. If the results of checking indicate that the current
position is the reference point in the reference point search process, the reference point (the
central coordinates of the circle) is returned. If the current position is not the reference
point, the pixel is moved (left or right along the axis) to update the circular coordinate array,
followed by the process of rechecking whether the position moved to is the reference point.

Sensors 2022, 22, 5859 4 of 17

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

3. Circle-Based Reference Point Extraction Method for the Correcting the Alignment
of Round Parts

Reference point extraction involves two processes: preprocessing and searching for
a reference point, as depicted in Figure 4. When the first image is used as input, to find
the reference point, preprocessing is performed in the following order: setting the ROI
area, searching for the starting point to search for the reference point, and generating a
circular coordinate array from the starting point. If the results of checking indicate that
the current position is the reference point in the reference point search process, the refer-
ence point (the central coordinates of the circle) is returned. If the current position is not
the reference point, the pixel is moved (left or right along the axis) to update the circular
coordinate array, followed by the process of rechecking whether the position moved to is
the reference point.

Figure 4. Process of extracting the reference point of the product.

3.1. Concept of the Proposed Algorithm
The proposed algorithm extracts circle-based reference points for correcting the

alignment of object designs comprising a mixture of curved components and line compo-
nents as shown in Figure 5a,b, as well as object designs comprising curved components
as shown in Figure 5c. Among the existing methods, line-based reference point extraction
can extract the reference point using the line components in the object (Figure 5b); how-
ever, it has difficulties in extracting the reference point for an object composed of curved
components (Figure 5c). In view of the above, this study proposes a circle-based reference
point extraction method that can be applied to both type of objects (Figure 5b,c).

(a) (b) (c)

Figure 5. Targets for alignment correction: (a) smartphone hole; (b) object with curved and linear
components; (c) object with curved components.

Figure 4. Process of extracting the reference point of the product.

3.1. Concept of the Proposed Algorithm

The proposed algorithm extracts circle-based reference points for correcting the align-
ment of object designs comprising a mixture of curved components and line components
as shown in Figure 5a,b, as well as object designs comprising curved components as shown
in Figure 5c. Among the existing methods, line-based reference point extraction can ex-
tract the reference point using the line components in the object (Figure 5b); however, it
has difficulties in extracting the reference point for an object composed of curved compo-
nents (Figure 5c). In view of the above, this study proposes a circle-based reference point
extraction method that can be applied to both type of objects (Figure 5b,c).

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

3. Circle-Based Reference Point Extraction Method for the Correcting the Alignment
of Round Parts

Reference point extraction involves two processes: preprocessing and searching for
a reference point, as depicted in Figure 4. When the first image is used as input, to find
the reference point, preprocessing is performed in the following order: setting the ROI
area, searching for the starting point to search for the reference point, and generating a
circular coordinate array from the starting point. If the results of checking indicate that
the current position is the reference point in the reference point search process, the refer-
ence point (the central coordinates of the circle) is returned. If the current position is not
the reference point, the pixel is moved (left or right along the axis) to update the circular
coordinate array, followed by the process of rechecking whether the position moved to is
the reference point.

Figure 4. Process of extracting the reference point of the product.

3.1. Concept of the Proposed Algorithm
The proposed algorithm extracts circle-based reference points for correcting the

alignment of object designs comprising a mixture of curved components and line compo-
nents as shown in Figure 5a,b, as well as object designs comprising curved components
as shown in Figure 5c. Among the existing methods, line-based reference point extraction
can extract the reference point using the line components in the object (Figure 5b); how-
ever, it has difficulties in extracting the reference point for an object composed of curved
components (Figure 5c). In view of the above, this study proposes a circle-based reference
point extraction method that can be applied to both type of objects (Figure 5b,c).

(a) (b) (c)

Figure 5. Targets for alignment correction: (a) smartphone hole; (b) object with curved and linear
components; (c) object with curved components.

Figure 5. Targets for alignment correction: (a) smartphone hole; (b) object with curved and linear
components; (c) object with curved components.

The proposed template for extracting the reference point has a circular shape, as
depicted in Figure 6a, consisting of the top, bottom, left, and right areas, and a center point
(Position A, i.e., the center of the circle). Position B in the top area or Position C in the
bottom area is moved (to the left or right) according to the location of the search starting
point and is used for determining the reference point depending on whether the reference
point is to the left or right. For example, in Figure 6b, as the starting point is at the bottom,
the point corresponding to Template C moves along the boundary line (Path A in Figure 6b)
from the start (the start of the search in Figure 6b) to the end (the end of search in Figure 6b),
and the algorithm checks whether the reference point exists. As the reference point is to
the right of the starting point in Figure 6b, the correct reference point is determined using
the coordinates in the right-hand area of the template. For each movement, the coordinate
value corresponding to Position C becomes the boundary line’s coordinate value, and the
coordinate values of the right-hand area also change accordingly.

Sensors 2022, 22, 5859 5 of 17

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

The proposed template for extracting the reference point has a circular shape, as de-
picted in Figure 6a, consisting of the top, bottom, left, and right areas, and a center point
(Position A, i.e., the center of the circle). Position B in the top area or Position C in the
bottom area is moved (to the left or right) according to the location of the search starting
point and is used for determining the reference point depending on whether the reference
point is to the left or right. For example, in Figure 6b, as the starting point is at the bottom,
the point corresponding to Template C moves along the boundary line (Path A in Figure
6b) from the start (the start of the search in Figure 6b) to the end (the end of search in
Figure 6b), and the algorithm checks whether the reference point exists. As the reference
point is to the right of the starting point in Figure 6b, the correct reference point is deter-
mined using the coordinates in the right-hand area of the template. For each movement,
the coordinate value corresponding to Position C becomes the boundary line’s coordinate
value, and the coordinate values of the right-hand area also change accordingly.

(a) (b)

Figure 6. Concept of the circle-based reference point search algorithm. (a) Circle and function for
reference point extraction (ⓐ: center point A, ⓑ: top point B, ⓒ: bottom point C); (b) Object with
curved components (ⓐ: moving path A).

3.2. Preprocessing
The preprocessing process of the proposed method includes the following steps: ROI

area setting, starting point search, and circular coordinate array generation, as shown in
Figure 7. Finally, the circular coordinate array is constructed.

Figure 7. Preprocessing.

(1) ROI Area Setting
In the ROI area setting step, a standard image is provided to the user, as shown in

Figure 8a, in which the ROI area is set. In the figure, the red box indicates the ROI area.

Figure 6. Concept of the circle-based reference point search algorithm. (a) Circle and function for
reference point extraction (a©: center point A, b©: top point B, c©: bottom point C); (b) Object with
curved components (a©: moving path A) .

3.2. Preprocessing

The preprocessing process of the proposed method includes the following steps: ROI
area setting, starting point search, and circular coordinate array generation, as shown in
Figure 7. Finally, the circular coordinate array is constructed.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

The proposed template for extracting the reference point has a circular shape, as de-
picted in Figure 6a, consisting of the top, bottom, left, and right areas, and a center point
(Position A, i.e., the center of the circle). Position B in the top area or Position C in the
bottom area is moved (to the left or right) according to the location of the search starting
point and is used for determining the reference point depending on whether the reference
point is to the left or right. For example, in Figure 6b, as the starting point is at the bottom,
the point corresponding to Template C moves along the boundary line (Path A in Figure
6b) from the start (the start of the search in Figure 6b) to the end (the end of search in
Figure 6b), and the algorithm checks whether the reference point exists. As the reference
point is to the right of the starting point in Figure 6b, the correct reference point is deter-
mined using the coordinates in the right-hand area of the template. For each movement,
the coordinate value corresponding to Position C becomes the boundary line’s coordinate
value, and the coordinate values of the right-hand area also change accordingly.

(a) (b)

Figure 6. Concept of the circle-based reference point search algorithm. (a) Circle and function for
reference point extraction (ⓐ: center point A, ⓑ: top point B, ⓒ: bottom point C); (b) Object with
curved components (ⓐ: moving path A).

3.2. Preprocessing
The preprocessing process of the proposed method includes the following steps: ROI

area setting, starting point search, and circular coordinate array generation, as shown in
Figure 7. Finally, the circular coordinate array is constructed.

Figure 7. Preprocessing.

(1) ROI Area Setting
In the ROI area setting step, a standard image is provided to the user, as shown in

Figure 8a, in which the ROI area is set. In the figure, the red box indicates the ROI area.

Figure 7. Preprocessing.

(1) ROI Area Setting

In the ROI area setting step, a standard image is provided to the user, as shown in
Figure 8a, in which the ROI area is set. In the figure, the red box indicates the ROI area.
The coordinate (x, y) is the starting point of the ROI area, and w and h are the size of the
ROI area.

(2) Starting Point Search

The starting point search requires a user-inputted point for commencing the search. A
and B are examples of the user-inputted points in Figure 8b. When the search is based on
Point A, the position where the pixel value px, y 6= px, y+1 increases by 1 from the position
of Point A along the y-axis is defined as the starting point. When the search is based on
Point B, the point where it decreases by unity from the position of Point B along the y-axis
and the position with the pixel value px, y 6= px, y−1 is defined as the starting point. The
center of the circle (cx, cy) is calculated as (x, y + r) by adding the radius r to the starting
point (x, y).

Sensors 2022, 22, 5859 6 of 17

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

The coordinate (𝑥, 𝑦) is the starting point of the ROI area, and 𝑤 and ℎ are the size of
the ROI area.
(2) Starting Point Search

The starting point search requires a user-inputted point for commencing the search.
A and B are examples of the user-inputted points in Figure 8b. When the search is based
on Point A, the position where the pixel value 𝑝 , ≠ 𝑝 , increases by 1 from the posi-
tion of Point A along the y-axis is defined as the starting point. When the search is based
on Point B, the point where it decreases by unity from the position of Point B along the 𝑦-
axis and the position with the pixel value 𝑝 , ≠ 𝑝 , is defined as the starting point. The
center of the circle (𝑐𝑥, 𝑐𝑦) is calculated as (𝑥, 𝑦 + 𝑟) by adding the radius 𝑟 to the start-
ing point (𝑥, 𝑦).

(a) (b)

Figure 8. Preprocessing steps. (a) Setting the ROI. (b) Starting point search (ⓐ: search position of
point A, ⓑ: search position of point B).

(3) Circular Coordinate Array Generation
The circular coordinate array comprises four circular coordinate arrays (correspond-

ing to the top, bottom, left, and right), as shown on the right of Figure 9. The first half of
each array consists of the coordinates of the circular path points corresponding to 45°,
obtained using the Midpoint Circle Algorithm [12], and the second half consists of coor-
dinates corresponding to −45°. Thus, the value of Position A in the circular coordinate
array corresponding to the top area on the right of Figure 9 indicates the coordinates of A
on the left. The value of Position B indicates the coordinates of B on the left, and similarly
for Positions C, D, E, F, G, and H in the right-hand circular coordinate array. Furthermore,
the circular coordinate arrays of the top area (T), the bottom area (B), the right-hand area
(R), and the left-hand area (L) have coordinates in the range of −45° < T < 45° with re-
spect to the top at 0°, 135° < B < 225°, 45° < R < 135°, and 225° < L < 315°, respec-
tively.

The pseudocode for generating a circular coordinate array is shown in Figure 10. As
the input parameters of the Midpoint Circle Array Generation Method (MCAGM), the
central coordinate of a circle, the radius of the circle, and the circular coordinate to be
generated are given. The given circular coordinate array is constructed using the center
coordinates of the circle (𝑐𝑥,   𝑐𝑦) and the difference coordinates (𝑥,   𝑦) from the center.
The algorithm below is used to change the part that draws the circle in Bresenham’s circle
drawing algorithm [13] to the part that stores the coordinates of the circle. That is, Lines
1.3 and 1.8 are changed and the function set_Circle_Cooedinate() is added. Line 2.1 in
Figure 10 defines the upper coordinate array of the circle (top in Figure 9). Lines 2.2, 2.3,
and 2.4 define the bottom coordinate array (bottom in Figure 9), the left coordinate array
(left in Figure 9), and the right coordinate array of the circle (right in Figure 9), respec-
tively.

Figure 8. Preprocessing steps. (a) Setting the ROI. (b) Starting point search (a©: search position of
point A, b©: search position of point B).

(3) Circular Coordinate Array Generation

The circular coordinate array comprises four circular coordinate arrays (corresponding
to the top, bottom, left, and right), as shown on the right of Figure 9. The first half of each
array consists of the coordinates of the circular path points corresponding to 45◦, obtained
using the Midpoint Circle Algorithm [12], and the second half consists of coordinates
corresponding to −45◦. Thus, the value of Position A in the circular coordinate array
corresponding to the top area on the right of Figure 9 indicates the coordinates of A on
the left. The value of Position B indicates the coordinates of B on the left, and similarly for
Positions C, D, E, F, G, and H in the right-hand circular coordinate array. Furthermore, the
circular coordinate arrays of the top area (T), the bottom area (B), the right-hand area (R),
and the left-hand area (L) have coordinates in the range of −45◦ < T < 45◦ with respect to
the top at 0◦, 135◦ < B < 225◦, 45◦ < R < 135◦, and 225◦ < L < 315◦, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18

Figure 9. Generation of a circular coordinate array.

[Midpoint_Circle_Array_Generartion_Method (int carray[i, index], int 𝒄𝒙, int 𝒄𝒚, int 𝒓)]
1.1 Set index to 0 and len to the length of the array corresponding to arr
1.2 Set decision parameter 𝑑 to 𝑑 = 3  −  (2  ×  𝑟)
1.3 call set_Circle_Coordinate(int carray[i, len], int 𝒊𝒏𝒅𝒆𝒙, int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝐲) function.

and increment value of the index
1.4 Repeat steps 1.5 to 1.8 until 𝑥 ≤ 𝑦
1.5 Increment value of 𝑥
1.6 If 𝑑 < 0 then set 𝑑 = 𝑑  + (4  ×  𝑥)   +  6
1.7 Else, set 𝑑 = 𝑑  +  4  ×  (𝑥  −  𝑦)  +  10 and decrement y by 1
1.8 Call set_Circle_Coordinate(int carray[i, len], int 𝒊𝒏𝒅𝒆𝒙, int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝐲) function.

and the increment value of the index

[set_Circle_Coordinate(int carray[i, len], int 𝒊𝒏𝒅𝒆𝒙, int 𝒙𝐜, int 𝒚𝐜, int 𝒙, int 𝒚)]

2.1 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 + 𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑦𝑐 + 𝑦, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 − 𝑥 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 + 𝑦
2.2 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 + 𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = yc − y, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 − 𝑥 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 − 𝑦
2.3 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 − 𝑦, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = yc + x, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 − 𝑦 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 − 𝑥
2.4 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 + 𝑦, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = yc + x, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 + 𝑦 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 − 𝑥

※ 𝑇: top, 𝐵: bottom, 𝐿: left, 𝑅: right, 𝑥: 𝑥 coordinate, 𝑦: 𝑦 coordinate

Figure 10. Proposed algorithm (circular coordinate array generation).

3.3. Reference Point Search
As shown in Figure 11, the reference point search process proceeds by checking the

right-hand (or left-hand) side of the circular coordinate array and determining whether
the reference point search has been successful. If the search is successful, it terminates after
returning the center coordinates. If the search fails, the circular coordinate array is up-
dated after shifting the pixel to the right (or left), followed by the process of checking the
right-hand (or left-hand) side of the circular coordinate array.

Figure 9. Generation of a circular coordinate array.

The pseudocode for generating a circular coordinate array is shown in Figure 10. As
the input parameters of the Midpoint Circle Array Generation Method (MCAGM), the
central coordinate of a circle, the radius of the circle, and the circular coordinate to be
generated are given. The given circular coordinate array is constructed using the center
coordinates of the circle (cx, cy) and the difference coordinates (x, y) from the center. The
algorithm below is used to change the part that draws the circle in Bresenham’s circle
drawing algorithm [13] to the part that stores the coordinates of the circle. That is, Lines
1.3 and 1.8 are changed and the function set_Circle_Cooedinate() is added. Line 2.1 in
Figure 10 defines the upper coordinate array of the circle (top in Figure 9). Lines 2.2, 2.3,
and 2.4 define the bottom coordinate array (bottom in Figure 9), the left coordinate array
(left in Figure 9), and the right coordinate array of the circle (right in Figure 9), respectively.

Sensors 2022, 22, 5859 7 of 17

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18

Figure 9. Generation of a circular coordinate array.

[Midpoint_Circle_Array_Generartion_Method (int carray[i, index], int 𝒄𝒙, int 𝒄𝒚, int 𝒓)]
1.1 Set index to 0 and len to the length of the array corresponding to arr
1.2 Set decision parameter 𝑑 to 𝑑 = 3  −  (2  ×  𝑟)
1.3 call set_Circle_Coordinate(int carray[i, len], int 𝒊𝒏𝒅𝒆𝒙, int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝐲) function.

and increment value of the index
1.4 Repeat steps 1.5 to 1.8 until 𝑥 ≤ 𝑦
1.5 Increment value of 𝑥
1.6 If 𝑑 < 0 then set 𝑑 = 𝑑  + (4  ×  𝑥)   +  6
1.7 Else, set 𝑑 = 𝑑  +  4  ×  (𝑥  −  𝑦)  +  10 and decrement y by 1
1.8 Call set_Circle_Coordinate(int carray[i, len], int 𝒊𝒏𝒅𝒆𝒙, int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝐲) function.

and the increment value of the index

[set_Circle_Coordinate(int carray[i, len], int 𝒊𝒏𝒅𝒆𝒙, int 𝒙𝐜, int 𝒚𝐜, int 𝒙, int 𝒚)]

2.1 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 + 𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑦𝑐 + 𝑦, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 − 𝑥 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 + 𝑦
2.2 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 + 𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = yc − y, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 − 𝑥 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 − 𝑦
2.3 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 − 𝑦, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = yc + x, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 − 𝑦 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 − 𝑥
2.4 set 𝑐𝑎𝑟𝑟𝑎𝑦(,) = 𝑥𝑐 + 𝑦, 𝑐𝑎𝑟𝑟𝑎𝑦(,) = yc + x, 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑥𝑐 + 𝑦 and 𝑐𝑎𝑟𝑟𝑎𝑦(, /) = 𝑦𝑐 − 𝑥

※ 𝑇: top, 𝐵: bottom, 𝐿: left, 𝑅: right, 𝑥: 𝑥 coordinate, 𝑦: 𝑦 coordinate

Figure 10. Proposed algorithm (circular coordinate array generation).

3.3. Reference Point Search
As shown in Figure 11, the reference point search process proceeds by checking the

right-hand (or left-hand) side of the circular coordinate array and determining whether
the reference point search has been successful. If the search is successful, it terminates after
returning the center coordinates. If the search fails, the circular coordinate array is up-
dated after shifting the pixel to the right (or left), followed by the process of checking the
right-hand (or left-hand) side of the circular coordinate array.

Figure 10. Proposed algorithm (circular coordinate array generation).

3.3. Reference Point Search

As shown in Figure 11, the reference point search process proceeds by checking the
right-hand (or left-hand) side of the circular coordinate array and determining whether
the reference point search has been successful. If the search is successful, it terminates
after returning the center coordinates. If the search fails, the circular coordinate array is
updated after shifting the pixel to the right (or left), followed by the process of checking
the right-hand (or left-hand) side of the circular coordinate array.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

Figure 11. Starting point search process.

The pseudocode for searching for the lower-right reference point using the circular
coordinate array is shown in Figure 12. The circle center coordinate (𝑐𝑥,   𝑐𝑦) and the co-
ordinate array carray[i, len] are the inputs. In Figure 12, the check_Right_Side function
(Line 3) determines whether the center coordinate of the location is the reference point. If
it is the reference point, the search for the reference point is terminated by returning the
center coordinate (𝑐𝑥,   𝑐𝑦). If not, the gap between the next position moves and the cur-
rent position is calculated by the move_Bottom_Right_Position function (Line 4) to con-
tinue searching for the reference point. Moreover, the gap value is reflected in the circular
coordinate array through the update_Carray function (Line 5) and the center coordinate (𝑐𝑥,   𝑐𝑦) through Line 6.

[search_Bottom_Right_Standard_Coordinates(int carray[i, len], int &𝐜𝒙, int &𝐜𝒚)]
1. Set 𝑖𝑛𝑑𝑒𝑥 to 𝑐𝑥 and set 𝑑𝑥 and 𝑑𝑦 to 0
2. Repeat Steps 3 to 6 until 𝑖𝑛𝑑𝑒𝑥 < 𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ
3. If (call check_Right_Side(int carray[i, len]) function) == true, break (or return)
4. Call move_Bottom_Right_Position(int carray[i, len], int &𝒅𝒙, int &𝒅𝒚) function
5. Call update_Carray(int carray[i, len], int 𝒅𝒙, int 𝒅𝒚) function
6. Set value 𝑐𝑥 to 𝑐𝑥+= 𝑑𝑥 and set value 𝑐𝑦 to 𝑐𝑦+= 𝑑𝑦

Figure 12. Proposed algorithm: reference point search for the lower-right corner.

(i) Checking the right-hand (or left-hand) side of the circular coordinate array and de-
termining whether the search for the reference point has been successful
The method for searching for the reference point of the lower-right area based on the

circular coordinate array is as shown in Figure 13a, where a point (𝑥, 𝑦) in the circular
coordinate array is checked regarding whether its pixel value is not same as that of the
position to its right (𝑥 + 1, 𝑦). If such a point exists, the search is successful. Figure 13b
depicts a case where the search is successful, whereas Figure 13c shows a case where a
continued search is required. If the search is successful, the search terminates by returning
the coordinate (𝑥 , 𝑦), which is the center 𝐶 of the circle. Thus, the center coordinate (𝑥 , 𝑦) is the reference point.

Figure 11. Starting point search process.

Sensors 2022, 22, 5859 8 of 17

The pseudocode for searching for the lower-right reference point using the circular
coordinate array is shown in Figure 12. The circle center coordinate (cx, cy) and the
coordinate array carray [i, len] are the inputs. In Figure 12, the check_Right_Side function
(Line 3) determines whether the center coordinate of the location is the reference point. If
it is the reference point, the search for the reference point is terminated by returning the
center coordinate (cx, cy). If not, the gap between the next position moves and the current
position is calculated by the move_Bottom_Right_Position function (Line 4) to continue
searching for the reference point. Moreover, the gap value is reflected in the circular
coordinate array through the update_Carray function (Line 5) and the center coordinate
(cx, cy) through Line 6.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

Figure 11. Starting point search process.

The pseudocode for searching for the lower-right reference point using the circular
coordinate array is shown in Figure 12. The circle center coordinate (𝑐𝑥,   𝑐𝑦) and the co-
ordinate array carray[i, len] are the inputs. In Figure 12, the check_Right_Side function
(Line 3) determines whether the center coordinate of the location is the reference point. If
it is the reference point, the search for the reference point is terminated by returning the
center coordinate (𝑐𝑥,   𝑐𝑦). If not, the gap between the next position moves and the cur-
rent position is calculated by the move_Bottom_Right_Position function (Line 4) to con-
tinue searching for the reference point. Moreover, the gap value is reflected in the circular
coordinate array through the update_Carray function (Line 5) and the center coordinate (𝑐𝑥,   𝑐𝑦) through Line 6.

[search_Bottom_Right_Standard_Coordinates(int carray[i, len], int &𝐜𝒙, int &𝐜𝒚)]
1. Set 𝑖𝑛𝑑𝑒𝑥 to 𝑐𝑥 and set 𝑑𝑥 and 𝑑𝑦 to 0
2. Repeat Steps 3 to 6 until 𝑖𝑛𝑑𝑒𝑥 < 𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ
3. If (call check_Right_Side(int carray[i, len]) function) == true, break (or return)
4. Call move_Bottom_Right_Position(int carray[i, len], int &𝒅𝒙, int &𝒅𝒚) function
5. Call update_Carray(int carray[i, len], int 𝒅𝒙, int 𝒅𝒚) function
6. Set value 𝑐𝑥 to 𝑐𝑥+= 𝑑𝑥 and set value 𝑐𝑦 to 𝑐𝑦+= 𝑑𝑦

Figure 12. Proposed algorithm: reference point search for the lower-right corner.

(i) Checking the right-hand (or left-hand) side of the circular coordinate array and de-
termining whether the search for the reference point has been successful
The method for searching for the reference point of the lower-right area based on the

circular coordinate array is as shown in Figure 13a, where a point (𝑥, 𝑦) in the circular
coordinate array is checked regarding whether its pixel value is not same as that of the
position to its right (𝑥 + 1, 𝑦). If such a point exists, the search is successful. Figure 13b
depicts a case where the search is successful, whereas Figure 13c shows a case where a
continued search is required. If the search is successful, the search terminates by returning
the coordinate (𝑥 , 𝑦), which is the center 𝐶 of the circle. Thus, the center coordinate (𝑥 , 𝑦) is the reference point.

Figure 12. Proposed algorithm: reference point search for the lower-right corner.

(i) Checking the right-hand (or left-hand) side of the circular coordinate array and
determining whether the search for the reference point has been successful

The method for searching for the reference point of the lower-right area based on the
circular coordinate array is as shown in Figure 13a, where a point (x, y) in the circular
coordinate array is checked regarding whether its pixel value is not same as that of the
position to its right (x + 1, y). If such a point exists, the search is successful. Figure 13b
depicts a case where the search is successful, whereas Figure 13c shows a case where a
continued search is required. If the search is successful, the search terminates by returning
the coordinate

(
xC, yC), which is the center C of the circle. Thus, the center coordinate(

xC, yC) is the reference point.
The pseudocode for searching the lower-right area based on the circular coordinate

array is shown in Figure 14, where the coordinate array carray [i, len] is used as the
input parameter. The values x and y are set to one of coordinates of the given circular
coordinate array, as in Line 3, and the pixel value of the coordinate (x, y) and that of the
coordinate (x + 1, y) are checked to ensure that they are different. That is, it is checked
to ensure it satisfies image_array(x, y) 6= image_array(x+1, y). The position satisfying this
condition is defined as the reference point (see Line 4 and Figure 13b). If the condition is
not satisfied, checking of the next coordinate is performed until end of the given circular
coordinate array.

(ii) Moving the pixel coordinates to the right (or left) and updating the circular coordinate array

If the right-hand area search fails, the search continues by moving right (or left) from
the current position. First, it moves from the current position (A in Figure 15a) to the right
(or left) by wm. In this study, wm is fixed to 1. Then, if the moved position (B in Figure 15a)
is not a point on the bottom boundary, it moves further up (or down) by hm. Finally, after
calculating the movement distance (wm, hm), the circular coordinate array is updated, as
shown in Figure 15b, and the process of searching for the reference point commences again.

Sensors 2022, 22, 5859 9 of 17

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18

(a)

(b) (c)

Figure 13. Reference point extraction method (lower-right area). (a) Right-hand search area of the
circular coordinate array. (b) Successful search. (c) Search continued.

The pseudocode for searching the lower-right area based on the circular coordinate
array is shown in Figure 14, where the coordinate array carray[i, len] is used as the input
parameter. The values x and y are set to one of coordinates of the given circular coordinate
array, as in Line 3, and the pixel value of the coordinate (𝑥, 𝑦) and that of the coordinate (𝑥 + 1, 𝑦) are checked to ensure that they are different. That is, it is checked to ensure it
satisfies image_array(,) ≠ image_array(,). The position satisfying this condition is de-
fined as the reference point (see Line 4 and Figure 13b). If the condition is not satisfied,
checking of the next coordinate is performed until end of the given circular coordinate
array.

[check_Right_Side(int carray[i, len])
1. Set 𝑖𝑛𝑑𝑒𝑥 to 0
2. Repeat Steps 3 to 5 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
3. Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦[, ] and Set 𝑦 to 𝑐𝑎𝑟𝑟𝑎𝑦[, ]
4. If 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,) ≠ 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,), return true
5. Increment the value of 𝑖𝑛𝑑𝑒𝑥
6. Return false

※ 𝑅𝑥: 𝑥 coordinate of the right, 𝑅𝑦: 𝑦 coordinate of the right

Figure 14. Proposed algorithm (reference point check for the lower-right corner).

Figure 13. Reference point extraction method (lower-right area). (a) Right-hand search area of the
circular coordinate array. (b) Successful search. (c) Search continued.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18

(a)

(b) (c)

Figure 13. Reference point extraction method (lower-right area). (a) Right-hand search area of the
circular coordinate array. (b) Successful search. (c) Search continued.

The pseudocode for searching the lower-right area based on the circular coordinate
array is shown in Figure 14, where the coordinate array carray[i, len] is used as the input
parameter. The values x and y are set to one of coordinates of the given circular coordinate
array, as in Line 3, and the pixel value of the coordinate (𝑥, 𝑦) and that of the coordinate (𝑥 + 1, 𝑦) are checked to ensure that they are different. That is, it is checked to ensure it
satisfies image_array(,) ≠ image_array(,). The position satisfying this condition is de-
fined as the reference point (see Line 4 and Figure 13b). If the condition is not satisfied,
checking of the next coordinate is performed until end of the given circular coordinate
array.

[check_Right_Side(int carray[i, len])
1. Set 𝑖𝑛𝑑𝑒𝑥 to 0
2. Repeat Steps 3 to 5 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
3. Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦[, ] and Set 𝑦 to 𝑐𝑎𝑟𝑟𝑎𝑦[, ]
4. If 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,) ≠ 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,), return true
5. Increment the value of 𝑖𝑛𝑑𝑒𝑥
6. Return false

※ 𝑅𝑥: 𝑥 coordinate of the right, 𝑅𝑦: 𝑦 coordinate of the right

Figure 14. Proposed algorithm (reference point check for the lower-right corner). Figure 14. Proposed algorithm (reference point check for the lower-right corner).

The pseudocode for calculating the difference between the current position’s coordi-
nates and the coordinates to be moved to on the lower-right corner based on the circular
coordinate array is shown in Figure 16. The difference coordinate (dx, dy) and the coordi-
nate array carray[i, len] are used as the input parameters. The difference coordinate (dx, dy)
is a parameter for returning the difference between the current position and the next posi-
tion moved to. By moving a pixel (right) along the x-axis, the value of dx is set to unity
(see Line 1.1). For the y-axis, because the slope fluctuates as indicated by hm in Figure 16a,
the range of fluctuation in the y-axis is defined from +3 (maximum) to −3 (minimum) (see
Lines 1.1 and 1.2) such that it can approach 0◦ (horizontal) to a maximum of +70◦ and a
minimum of –70◦. Thus, the candidate ranges of the difference coordinate (dx, dy) become
(1,−3), (1,−2), . . . , (1, 0), (1, 1), . . . , and (1, 3), and the position (coordinate) for moving
is determined by receiving the candidate range from the check_Bottom_Side function. To

Sensors 2022, 22, 5859 10 of 17

determine the next position, all the pixel values corresponding to the circular coordinate
array must be the same (see Lines 2.3 and 2.4), and at least one of the pixel values located
at the bottom of the circular coordinate array must have a different value from the pixel
value of the circular coordinate array (see Lines 2.8 and 2.9).

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

(ii) Moving the pixel coordinates to the right (or left) and updating the circular coordi-
nate array
If the right-hand area search fails, the search continues by moving right (or left) from

the current position. First, it moves from the current position (A in Figure 15a) to the right
(or left) by 𝑤 . In this study, 𝑤 is fixed to 1. Then, if the moved position (B in Figure
15a) is not a point on the bottom boundary, it moves further up (or down) by ℎ . Finally,
after calculating the movement distance (𝑤 ,  ℎ), the circular coordinate array is up-
dated, as shown in Figure 15b, and the process of searching for the reference point com-
mences again.

(a)

(b)

Figure 15. Movement of the coordinates and updating of the circular coordinate array. (a) Example
of coordinate movement (ⓐ: the current position A, ⓑ: the moved position B). (b) Updating the
circular coordinate array.

The pseudocode for calculating the difference between the current position’s coordi-
nates and the coordinates to be moved to on the lower-right corner based on the circular
coordinate array is shown in Figure 16. The difference coordinate (𝑑𝑥, 𝑑𝑦) and the coor-
dinate array 𝑐𝑎𝑟𝑟𝑎𝑦[,] are used as the input parameters. The difference coordinate (𝑑𝑥, 𝑑𝑦) is a parameter for returning the difference between the current position and the
next position moved to. By moving a pixel (right) along the 𝑥-axis, the value of dx is set
to unity (see Line 1.1). For the 𝑦-axis, because the slope fluctuates as indicated by ℎ in
Figure 16a, the range of fluctuation in the 𝑦-axis is defined from +3 (maximum) to -3 (min-
imum) (see Lines 1.1 and 1.2) such that it can approach 0° (horizontal) to a maximum of
+70° and a minimum of –70°. Thus, the candidate ranges of the difference coordinate (𝑑𝑥, 𝑑𝑦) become (1, −3), (1, −2), . . . , (1,0),  (1,1), . . . , and (1,3), and the position (coordi-
nate) for moving is determined by receiving the candidate range from the check_Bot-
tom_Side function. To determine the next position, all the pixel values corresponding to
the circular coordinate array must be the same (see Lines 2.3 and 2.4), and at least one of
the pixel values located at the bottom of the circular coordinate array must have a different
value from the pixel value of the circular coordinate array (see Lines 2.8 and 2.9).

Figure 15. Movement of the coordinates and updating of the circular coordinate array. (a) Example
of coordinate movement (a©: the current position A, b©: the moved position B). (b) Updating the
circular coordinate array.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

 [move_Bottom_Right_Position(int carray[i, len], int &𝐝𝐱, int &𝐝𝐲)]
1.1 Set 𝑑𝑦 to -3 and set 𝑑𝑥 to 1
1.2 Repeat Steps 1.3 to 1.4 until 𝑑𝑦 < 3
1.3 If (call check_Bottom_Side(int carray[i, len], int 𝒅𝒙, int 𝒅𝒚) function) == true, break
1.4 Increment the value of 𝑑𝑦

[check_Bottom_Side(int carray[i, len], int &𝐝𝐱, int &𝐝𝐲)]
2.1 Set 𝑖𝑛𝑑𝑒𝑥 to 0
2.2 Repeat Steps 2.3 to 2.5 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
2.3 Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑥, set y to carray(, ) + dy,

Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + dx and set y to carray(, ) + dy
2.4 If image_array(, ) ≠ image_array(, ), return false
2.5 Increment value of 𝑖𝑛𝑑𝑒𝑥
2.6 Set 𝑖𝑛𝑑𝑒𝑥 to 0
2.7 Repeat Steps 2.8 to 2.10 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
2.8 Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑥, set y to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑦,

and set 𝑦 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑦 − 1
2.9 If image_array(, ) ≠ image_array(, ) ≠ , return true
2.10 Increment the value of 𝑖𝑛𝑑𝑒𝑥
2.11 Return false

※ B𝑥: 𝑥 coordinate of the bottom, 𝐵𝑦: 𝑦 coordinate of the bottom

Figure 16. Proposed algorithm for movement to the right and bottom.

The pseudocode for updating the circular coordinate array is shown in Figure 17.
With the difference coordinate (𝑑𝑥, 𝑑𝑦) and the coordinate array carray[i, len] as the in-
puts, it is updated as indicated in Lines 3 and 4.

[update_Carray(int carray[i, len], int 𝒅𝒙, int 𝒅𝒚)]
1. Set 𝑖𝑛𝑑𝑒𝑥 to 0
2. Repeat Steps 3 to 4 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
3. Set 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦, set 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦
4. Set 𝑐𝑎𝑟𝑟𝑎𝑦[, ] += 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦, set 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦

※ 𝑇: top, 𝐵: bottom, 𝐿: left, 𝑅: right, 𝑥: 𝑥 coordinate, 𝑦: 𝑦 coordinate

Figure 17. Proposed algorithm for updating the circular coordinate array.

4. Experiment and Results
To verify the performance of the proposed method, an experiment was conducted to

examine two factors: the processing speed and the accuracy. For the experiment, 78 im-
ages of an actual field (see Figure 18a, alignment-corrected images) were used, and pre-
processing was performed. The images used for the experiment included images of the
holes (speaker, home button, etc.) in the glass on the front of smartphones. As prepro-
cessing, flood filling (Figure 18c) and image rotation (Figure 18d) were applied [6], after
iterative binarization (Figure 18b) of the grayscale image (Figure 18a). For an objective
performance analysis, the performance of the proposed method was compared with those
of the line-based [7,14] and corner-based reference point extraction methods [8,9,14],
among the existing reference point search algorithms [8,9,14].

Figure 16. Proposed algorithm for movement to the right and bottom.

Sensors 2022, 22, 5859 11 of 17

The pseudocode for updating the circular coordinate array is shown in Figure 17. With
the difference coordinate (dx, dy) and the coordinate array carray [i, len] as the inputs, it is
updated as indicated in Lines 3 and 4.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

 [move_Bottom_Right_Position(int carray[i, len], int &𝐝𝐱, int &𝐝𝐲)]
1.1 Set 𝑑𝑦 to -3 and set 𝑑𝑥 to 1
1.2 Repeat Steps 1.3 to 1.4 until 𝑑𝑦 < 3
1.3 If (call check_Bottom_Side(int carray[i, len], int 𝒅𝒙, int 𝒅𝒚) function) == true, break
1.4 Increment the value of 𝑑𝑦

[check_Bottom_Side(int carray[i, len], int &𝐝𝐱, int &𝐝𝐲)]
2.1 Set 𝑖𝑛𝑑𝑒𝑥 to 0
2.2 Repeat Steps 2.3 to 2.5 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
2.3 Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑥, set y to carray(, ) + dy,

Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + dx and set y to carray(, ) + dy
2.4 If image_array(, ) ≠ image_array(, ), return false
2.5 Increment value of 𝑖𝑛𝑑𝑒𝑥
2.6 Set 𝑖𝑛𝑑𝑒𝑥 to 0
2.7 Repeat Steps 2.8 to 2.10 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
2.8 Set 𝑥 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑥, set y to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑦,

and set 𝑦 to 𝑐𝑎𝑟𝑟𝑎𝑦(, ) + 𝑑𝑦 − 1
2.9 If image_array(, ) ≠ image_array(, ) ≠ , return true
2.10 Increment the value of 𝑖𝑛𝑑𝑒𝑥
2.11 Return false

※ B𝑥: 𝑥 coordinate of the bottom, 𝐵𝑦: 𝑦 coordinate of the bottom

Figure 16. Proposed algorithm for movement to the right and bottom.

The pseudocode for updating the circular coordinate array is shown in Figure 17.
With the difference coordinate (𝑑𝑥, 𝑑𝑦) and the coordinate array carray[i, len] as the in-
puts, it is updated as indicated in Lines 3 and 4.

[update_Carray(int carray[i, len], int 𝒅𝒙, int 𝒅𝒚)]
1. Set 𝑖𝑛𝑑𝑒𝑥 to 0
2. Repeat Steps 3 to 4 until 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑎𝑦
3. Set 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦, set 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦
4. Set 𝑐𝑎𝑟𝑟𝑎𝑦[, ] += 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦, set 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑥, 𝑐𝑎𝑟𝑟𝑎𝑦[, ]+= 𝑑𝑦

※ 𝑇: top, 𝐵: bottom, 𝐿: left, 𝑅: right, 𝑥: 𝑥 coordinate, 𝑦: 𝑦 coordinate

Figure 17. Proposed algorithm for updating the circular coordinate array.

4. Experiment and Results
To verify the performance of the proposed method, an experiment was conducted to

examine two factors: the processing speed and the accuracy. For the experiment, 78 im-
ages of an actual field (see Figure 18a, alignment-corrected images) were used, and pre-
processing was performed. The images used for the experiment included images of the
holes (speaker, home button, etc.) in the glass on the front of smartphones. As prepro-
cessing, flood filling (Figure 18c) and image rotation (Figure 18d) were applied [6], after
iterative binarization (Figure 18b) of the grayscale image (Figure 18a). For an objective
performance analysis, the performance of the proposed method was compared with those
of the line-based [7,14] and corner-based reference point extraction methods [8,9,14],
among the existing reference point search algorithms [8,9,14].

Figure 17. Proposed algorithm for updating the circular coordinate array.

4. Experiment and Results

To verify the performance of the proposed method, an experiment was conducted to
examine two factors: the processing speed and the accuracy. For the experiment, 78 images
of an actual field (see Figure 18a, alignment-corrected images) were used, and preprocessing
was performed. The images used for the experiment included images of the holes (speaker,
home button, etc.) in the glass on the front of smartphones. As preprocessing, flood filling
(Figure 18c) and image rotation (Figure 18d) were applied [6], after iterative binarization
(Figure 18b) of the grayscale image (Figure 18a). For an objective performance analysis,
the performance of the proposed method was compared with those of the line-based [7,14]
and corner-based reference point extraction methods [8,9,14], among the existing reference
point search algorithms [8,9,14].

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

(a) (b) (c) (d)

Figure 18. Experimental image sample and preprocessed image for the experiment: (a) experimental
image sample; (b) iterative binarization; (c) flood filling; (d) rotation.

4.1. Experimental Results for Processing Speed
Rotated images (Figure 18d) were used in the experiment, as described above. For

the line-based reference point extraction method, images to which the Sobel operation had
been applied were used. For the performance comparison, the end coordinate of the circle
algorithm (ECCA) method adopting the midpoint circle algorithm (MCA) [12–13,15],
which is another alternative to the circular-based reference point extraction method, was
used. For convenience, the method proposed in Section 3 is referred to as the midpoint
circular array generation method (MCAGM). Both methods are conceptually the same but
differ in their concrete implementation.

The ECCA method has a similar structure to that of the MCA, in general, as shown
in Figure 19. However, in the MCA, the function of drawing a circle is performed, and in
the ECCA, the function of determining the reference point of an object is performed. More-
over, if the ECCA is applied, a procedure for determining whether or not to search for a
reference point using the ECCA whenever a coordinate movement for searching occurs is
added; this reduces the processing speed compared with that of the proposed method
using a circular array (MCAGM). In the MCA, the entire circle is drawn through Lines 1.3,
1.8, and 2.1–2.4, as depicted in Figure 19a, and the coordinates of 1/8 are calculated
through Lines 1.1, 1.2, and 1.4–1.7. If we applying this in the ECCA method, the reference
line is determined through Lines 1.4, 1.9, 1.10, 1.11, and 2.1–2.5, as depicted in Figure 19b.
The movement in the ECCA has the same structure as that of the move_Bottom_Right_Po-
sition function in Figure 16, whereas the method used to search for the bottom boundary
(the boundary between the object and background) of the next position (coordinate) for
moving is similar to that in Figure 19b. The code in Figure 19b determines whether the
reference point is to be searched, but a method for determining the bottom boundary is
added when searching for the next location (coordinate) to move. In this study, a detailed
description of the movement in the ECCA is not included.

Figure 20 shows the results for the processing speed. The average processing speed
was 7.81 ms for the proposed method (MCAGM), 67.91 ms for the line-based method,
496.30 ms for the Harris Corner-based method, and 1520.96 ms for the Moravec Corner-
based reference point extraction method. The minimum and maximum processing speeds
were 6 ms and 13 ms, respectively, for the proposed method (MCAGM); 51 ms and 271
ms, respectively, for the line-based method; 361 ms and 940 ms, respectively, for the Har-
ris Corner-based method; and 1148 ms and 2214 ms, respectively, for the Moravec Corner-
based method (see Table 1). Thus, the proposed method (MCAGM) had better perfor-
mance than the line-based reference point extraction method (by 60.10 ms), the Harris
Corner-based method (by 488.49 ms), and the Moravec Corner-based method (by 1512.88
ms). In addition, the overall performance of the MCAGM was better than that of the
ECCA; in terms of the maximum processing time, it was better by 46 ms.

Figure 18. Experimental image sample and preprocessed image for the experiment: (a) experimental
image sample; (b) iterative binarization; (c) flood filling; (d) rotation.

4.1. Experimental Results for Processing Speed

Rotated images (Figure 18d) were used in the experiment, as described above. For
the line-based reference point extraction method, images to which the Sobel operation had
been applied were used. For the performance comparison, the end coordinate of the circle
algorithm (ECCA) method adopting the midpoint circle algorithm (MCA) [12,13,15], which
is another alternative to the circular-based reference point extraction method, was used.
For convenience, the method proposed in Section 3 is referred to as the midpoint circular
array generation method (MCAGM). Both methods are conceptually the same but differ in
their concrete implementation.

The ECCA method has a similar structure to that of the MCA, in general, as shown
in Figure 19. However, in the MCA, the function of drawing a circle is performed, and
in the ECCA, the function of determining the reference point of an object is performed.
Moreover, if the ECCA is applied, a procedure for determining whether or not to search for
a reference point using the ECCA whenever a coordinate movement for searching occurs
is added; this reduces the processing speed compared with that of the proposed method
using a circular array (MCAGM). In the MCA, the entire circle is drawn through Lines 1.3,
1.8, and 2.1–2.4, as depicted in Figure 19a, and the coordinates of 1/8 are calculated through

Sensors 2022, 22, 5859 12 of 17

Lines 1.1, 1.2, and 1.4–1.7. If we applying this in the ECCA method, the reference line is
determined through Lines 1.4, 1.9, 1.10, 1.11, and 2.1–2.5, as depicted in Figure 19b. The
movement in the ECCA has the same structure as that of the move_Bottom_Right_Position
function in Figure 16, whereas the method used to search for the bottom boundary (the
boundary between the object and background) of the next position (coordinate) for moving
is similar to that in Figure 19b. The code in Figure 19b determines whether the reference
point is to be searched, but a method for determining the bottom boundary is added when
searching for the next location (coordinate) to move. In this study, a detailed description of
the movement in the ECCA is not included.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

[Midpoint_Circle_Algorithm(int 𝒄𝒙, int 𝒄𝒚, int 𝒓)]
1.1 Set initial values of (𝑥,   𝑦)
1.2 Set decision parameter 𝑑 to 𝑑 = 3  −  (2  ×  𝑟)
1.3 Call drawCircle(int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝐲) function
1.4 Repeat Steps 1.5 to 1.8 until 𝑥 ≤ 𝑦
1.5 Increment the value of x
1.6 If 𝑑 < 0, set 𝑑 = 𝑑  + (4  ×  𝑥)  +  6
1.7 Else, set 𝑑 = 𝑑  +  4  ×  (𝑥  −  𝑦)  +  10 and decrement 𝑦 by 1
1.8 Call drawCircle(int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝐲) function

[draw_Circle(int 𝒄𝒙, int 𝐜𝒚, int 𝒙, int 𝒚)]
2.1 set 𝐶𝑂𝐿𝑂𝑅 value of 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  ) and 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  )//Top Area
2.2 set 𝐶𝑂𝐿𝑂𝑅 value of 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  ) and 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  )//Bottom Area
2.3 set 𝐶𝑂𝐿𝑂𝑅 value of 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  ) and 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  )//Left Area
2.4 set 𝐶𝑂𝐿𝑂𝑅 value of 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  ) and 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦(,  ) //Right Area

(a)
[check_End_Coordinate_of_Circle_Algorithm_by_Midpoint_Circle (int 𝒄𝒙, int 𝒄𝒚, int 𝒓)]

1.1 Set initial values of (𝑥,  𝑦)
1.2 Set decision parameter 𝑑 to 𝑑 = 3  −  (2  ×  𝑟)
1.3 Call 𝑖𝑠𝑒𝑛𝑑 = check_End_Coordinate(int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝒚) function
1.4 If 𝑖𝑠𝑒𝑛𝑑 == true, return true
1.5 Repeat Steps 1.6 to 1.10 until 𝑥 ≤ 𝑦
1.6 Increment the value of 𝑥
1.7 If 𝑑 < 0, set 𝑑 = 𝑑  + (4  ×  𝑥)  +  6
1.8 Else, set 𝑑 = 𝑑  +  4  ×  (𝑥  −  𝑦)  +  10 and decrement 𝑦 by 1
1.9 Call 𝑖𝑠𝑒𝑛𝑑 = check_End_Coordinate(int 𝒄𝒙, int 𝒄𝒚, int 𝒙, int 𝒚) function
1.10 If 𝑖𝑠𝑒𝑛𝑑 == true, return true
1.11 Return false

[check_End_Coordinate(int cx, int cy, int x, int y)]
2.1 If image_array(,  ) ≠ image_array(,  ) , return true
2.2 If image_array(,  ) ≠ image_array(,  ) , return true
2.3 If image_array(,  ) ≠ image_array(,  ) , return true
2.4 If image_array(,  ) ≠ image_array(,  ) , return true
2.5 Return false

(b)

Figure 19. Midpoint circle algorithm vs. the check End Coordinate of the Circle algorithm. (a) Mid-
point circle algorithm. (b) Check End Coordinate of the Circle algorithm for the midpoint circle.
Figure 19. Midpoint circle algorithm vs. the check End Coordinate of the Circle algo-
rithm. (a) Midpoint circle algorithm. (b) Check End Coordinate of the Circle algorithm for the
midpoint circle.

Sensors 2022, 22, 5859 13 of 17

Figure 20 shows the results for the processing speed. The average processing speed
was 7.81 ms for the proposed method (MCAGM), 67.91 ms for the line-based method,
496.30 ms for the Harris Corner-based method, and 1520.96 ms for the Moravec Corner-
based reference point extraction method. The minimum and maximum processing speeds
were 6 ms and 13 ms, respectively, for the proposed method (MCAGM); 51 ms and 271
ms, respectively, for the line-based method; 361 ms and 940 ms, respectively, for the Harris
Corner-based method; and 1148 ms and 2214 ms, respectively, for the Moravec Corner-
based method (see Table 1). Thus, the proposed method (MCAGM) had better performance
than the line-based reference point extraction method (by 60.10 ms), the Harris Corner-
based method (by 488.49 ms), and the Moravec Corner-based method (by 1512.88 ms). In
addition, the overall performance of the MCAGM was better than that of the ECCA; in
terms of the maximum processing time, it was better by 46 ms.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

Figure 20. Results for processing speed (release mode).

Table 1. Comparison of the processing times.

Unit: ms Proposed 1
(MCAGM)

Proposed 2
(ECCA) Hough Line Harris Corner Moravec Corner

Average 7.81 9.82 67.91 496.30 1520.69
Min 6 7 51 361 1148
Max 13 59 271 940 2214

4.2. Experimental Results for the Accuracy
The experimental results for the accuracy reveal that the Harris Corner-based and

Moravec Corner-based reference point extraction methods can accurately search for the
reference point when the corner is clear, as shown in A in Figure 21a. Due to the charac-
teristics of the test subjects (with a round corner as in B), it is difficult to clearly search for
the reference point. Therefore, in the accuracy test, the performance of the proposed
method (MCAGM) was compared only with that of the line-based reference point extrac-
tion method. Although accuracy verification should be performed with respect to the
movement of the object and the slope of the object, in this study, only the slope of the
object was measured to conduct an accuracy test. In the case of the proposed method, the
slope was calculated after searching for the left-hand and right-hand reference points at
the top or bottom, as shown in Figure 21b.

(a) (b)

Figure 20. Results for processing speed (release mode).

Table 1. Comparison of the processing times.

Unit: ms Proposed 1
(MCAGM)

Proposed 2
(ECCA) Hough Line Harris

Corner
Moravec
Corner

Average 7.81 9.82 67.91 496.30 1520.69
Min 6 7 51 361 1148
Max 13 59 271 940 2214

4.2. Experimental Results for the Accuracy

The experimental results for the accuracy reveal that the Harris Corner-based and
Moravec Corner-based reference point extraction methods can accurately search for the
reference point when the corner is clear, as shown in A in Figure 21a. Due to the charac-
teristics of the test subjects (with a round corner as in B), it is difficult to clearly search
for the reference point. Therefore, in the accuracy test, the performance of the proposed
method (MCAGM) was compared only with that of the line-based reference point extrac-
tion method. Although accuracy verification should be performed with respect to the
movement of the object and the slope of the object, in this study, only the slope of the object
was measured to conduct an accuracy test. In the case of the proposed method, the slope
was calculated after searching for the left-hand and right-hand reference points at the top
or bottom, as shown in Figure 21b.

Sensors 2022, 22, 5859 14 of 17

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

Figure 20. Results for processing speed (release mode).

Table 1. Comparison of the processing times.

Unit: ms Proposed 1
(MCAGM)

Proposed 2
(ECCA) Hough Line Harris Corner Moravec Corner

Average 7.81 9.82 67.91 496.30 1520.69
Min 6 7 51 361 1148
Max 13 59 271 940 2214

4.2. Experimental Results for the Accuracy
The experimental results for the accuracy reveal that the Harris Corner-based and

Moravec Corner-based reference point extraction methods can accurately search for the
reference point when the corner is clear, as shown in A in Figure 21a. Due to the charac-
teristics of the test subjects (with a round corner as in B), it is difficult to clearly search for
the reference point. Therefore, in the accuracy test, the performance of the proposed
method (MCAGM) was compared only with that of the line-based reference point extrac-
tion method. Although accuracy verification should be performed with respect to the
movement of the object and the slope of the object, in this study, only the slope of the
object was measured to conduct an accuracy test. In the case of the proposed method, the
slope was calculated after searching for the left-hand and right-hand reference points at
the top or bottom, as shown in Figure 21b.

(a) (b)

Figure 21. Experimental image sample and preprocessed image for the experiment. (a) Results of the
Harris and Moravec Corner methods (a©: corner A, b©: round corner B). (b) Slope calculation in the
proposed method).

The angle measurement results of the proposed method (MCAGM) and the method
using the line are close to the angle before rotation, as shown in Figure 22; the measurement
error with respect to the actual angle is depicted in Figure 23. Overall, in the proposed
method, the average error was 0.0047◦, the minimum error was 0.3972◦, and the maximum
error was 0.1077◦ from the bottom; the average error was 0.0020◦, the minimum error
was 0.2476◦, and the maximum error was 0.0792◦ from the top; the average error was
0.0024◦, the minimum error was 0.3156◦, and the maximum error was 0.0894◦ based on the
mean ((top+bottom)/2). For the line-based reference point extraction method, the average
error was 0.0016◦, the minimum error was 0.0153◦, and the maximum error was 0.0074◦

(see Table 2).

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18

Figure 21. Experimental image sample and preprocessed image for the experiment. (a) Results of
the Harris and Moravec Corner methods (ⓐ: corner A, ⓑ: round corner B). (b) Slope calculation in
the proposed method).

The angle measurement results of the proposed method (MCAGM) and the method
using the line are close to the angle before rotation, as shown in Figure 22; the measure-
ment error with respect to the actual angle is depicted in Figure 23. Overall, in the pro-
posed method, the average error was 0.0047°, the minimum error was 0.3972°, and the
maximum error was 0.1077° from the bottom; the average error was 0.0020°, the minimum
error was 0.2476°, and the maximum error was 0.0792° from the top; the average error was
0.0024°, the minimum error was 0.3156°, and the maximum error was 0.0894° based on
the mean ((top+bottom)/2). For the line-based reference point extraction method, the av-
erage error was 0.0016°, the minimum error was 0.0153°, and the maximum error was
0.0074° (see Table 2).

Figure 22. Angle measurement results.

Figure 23. Measurement error.

Figure 22. Angle measurement results.

Table 2. Slope error comparison.

Unit: Angle (◦) Bottom-Side Error
(Proposed)

Top-Side Error
(Proposed)

Average Error
(Proposed)

Error
(Hough Line)

Average 0.0047 0.0020 0.0024 0.0016
Min 0.3972 0.2476 0.3156 0.0153
Max 0.1077 0.0792 0.0894 0.0074

Sensors 2022, 22, 5859 15 of 17

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18

Figure 21. Experimental image sample and preprocessed image for the experiment. (a) Results of
the Harris and Moravec Corner methods (ⓐ: corner A, ⓑ: round corner B). (b) Slope calculation in
the proposed method).

The angle measurement results of the proposed method (MCAGM) and the method
using the line are close to the angle before rotation, as shown in Figure 22; the measure-
ment error with respect to the actual angle is depicted in Figure 23. Overall, in the pro-
posed method, the average error was 0.0047°, the minimum error was 0.3972°, and the
maximum error was 0.1077° from the bottom; the average error was 0.0020°, the minimum
error was 0.2476°, and the maximum error was 0.0792° from the top; the average error was
0.0024°, the minimum error was 0.3156°, and the maximum error was 0.0894° based on
the mean ((top+bottom)/2). For the line-based reference point extraction method, the av-
erage error was 0.0016°, the minimum error was 0.0153°, and the maximum error was
0.0074° (see Table 2).

Figure 22. Angle measurement results.

Figure 23. Measurement error.

Figure 23. Measurement error.

For analyzing the cause of the large error in the proposed method in detail, the images
with the largest error (Image No. 46 in Figure 22) and the least error (Image No. 6 in
Figure 22) were used. Comparison and analysis were performed by superimposing the
same rotational line on the image to which rotation transformation was applied (e.g., image
rotation 1◦ → line rotation 1◦). Of course, the line of the object and the rotational line must
coincide. In the case of the image with the smallest error (Figure 24a), there was almost no
space between the object’s line and the rotational line (see A and B in Figure 24a), which
means that the two lines were almost identical. However, for the image with the largest
error, the space between the object and the line (see A and B in Figure 24b) was larger that
than in Figure 24a, which means that the two lines did not coincide. Therefore, Image 46
was reverse rotated by the angle measured by each algorithm (see Figure 24c,d). From these
results, it can be seen that the line-based method has fewer errors, as shown in Table 2, but
the results of the proposed method are better according to the detailed analysis.

Overall, the experimental results of the processing speed established that the perfor-
mance of the proposed method is good. In addition, in the accuracy test, the proposed
methods (MCAGM and ECCA) showed better performance than the existing ones. In
particular, among the proposed methods, the MCAGM showed better performance than
the ECCA in terms of the processing speed.

Sensors 2022, 22, 5859 16 of 17

Sensors 2022, 22, x FOR PEER REVIEW 16 of 18

Table 2. Slope error comparison.

Unit: Angle (°) Bottom-Side Error
(Proposed)

Top-Side Error
(Proposed)

Average Error
(Proposed)

Error
(Hough Line)

Average 0.0047 0.0020 0.0024 0.0016
Min 0.3972 0.2476 0.3156 0.0153
Max 0.1077 0.0792 0.0894 0.0074

For analyzing the cause of the large error in the proposed method in detail, the im-
ages with the largest error (Image No. 46 in Figure 22) and the least error (Image No. 6 in
Figure 22) were used. Comparison and analysis were performed by superimposing the
same rotational line on the image to which rotation transformation was applied (e.g., im-
age rotation 1° → line rotation 1°). Of course, the line of the object and the rotational line
must coincide. In the case of the image with the smallest error (Figure 24a), there was
almost no space between the object’s line and the rotational line (see A and B in Figure
24a), which means that the two lines were almost identical. However, for the image with
the largest error, the space between the object and the line (see A and B in Figure 24b) was
larger that than in Figure 24a, which means that the two lines did not coincide. Therefore,
Image 46 was reverse rotated by the angle measured by each algorithm (see Figure 24c,d).
From these results, it can be seen that the line-based method has fewer errors, as shown
in Table 2, but the results of the proposed method are better according to the detailed
analysis.

(a) (b)

(c)

(d)

Figure 24. Analysis results: (a) Image No. 6 (ⓐ: error A, ⓑ: error B); (b) Image No. 46 (ⓐ: error A,
ⓑ: error B). (c) After reverse rotation by the angle measured by the proposed method. (d) After
reverse rotation by the angle measured by the line-based method.

Figure 24. Analysis results: (a) Image No. 6 (a©: error A, b©: error B); (b) Image No. 46 (a©: error
A, b©: error B). (c) After reverse rotation by the angle measured by the proposed method. (d) After
reverse rotation by the angle measured by the line-based method.

5. Conclusions

With the advances in technology, the technological gap between product companies is
gradually narrowing. Therefore, product design can be considered a visible strategy for
differentiation. However, it is difficult to apply automated production and defect detection
processes to products or parts with various designs. Therefore, a circular-based reference
point extraction method for round-shaped parts was proposed in this study. To demonstrate
the effectiveness of the proposed method, its processing speed was analyzed by using the
ECCA, which is another implementation alternative, as the baseline. The existing methods,
including the line-based, Harris Corner-based, and the Moravec Corner-based reference
point extraction methods, were compared with the proposed method and analyzed in terms
of the processing speed and accuracy.

The proposed method (MCAGM) showed better performance than the line-based
reference point extraction method (by 60.10 ms), the Harris Corner-based method (by
488.49 ms), and the Moravec Corner-based method (by 1512.88 ms). Moreover, the overall
performance of the MCAGM was better than that of the ECCA. In terms of the maximum
processing time, it was better by 46 ms, in particular. The accuracy analysis results indicated
that although the performance of the line-based reference point extraction method was the
best among the existing methods, the performance of the proposed method (MCAGM) was
better. Thus, the method proposed in this study showed better overall performance than
the existing reference point extraction methods, as well as the ECCA method, which was
the baseline for the proposed algorithm.

Sensors 2022, 22, 5859 17 of 17

Author Contributions: Conceptualization and writing—review and editing, B.M.K. and C.B.M.;
formal analysis, B.M.K. and D.-S.K.; design, implementation, and experiment, C.B.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1F1A104833611,
2021R1I1A1A01042270, 2018R1A6A1A03024003). This research was supported by the MSIT (Ministry
of Science and ICT), Korea, under the Grand Information Technology Research Center support pro-
gram (IITP-2022-2020-0-01612) supervised by the IITP (Institute for Information and Communications
Technology Planning and Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are grateful to the support the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2020R1F1A104833611, 2021R1I1A1A01042270, 2018R1A6A1A03024003). This research was supported
by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research
Center support program (IITP-2022-2020-0-01612) supervised by the IITP (Institute for Information
and Communications Technology Planning and Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karunarathne, S.; Ganganath, R. A Sovereign Button Detection and Measure the Alignment Using Image Processing. In

Proceedings of the 2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS), Kandy, Sri Lanka,
9–11 December 2021; pp. 359–364.

2. Le, M.-T.; Tu, C.-T.; Guo, S.-M.; Lien, J.-J.J. A PCB alignment system using RST template matching with CUDA on embedded
GPU board. Sensors 2020, 20, 2736. [CrossRef] [PubMed]

3. Kwon, S.J.; Park, C.S.; Lee, S.M. Kinematics and Control of a Visual Alignment System for Flat Panel Displays. J. Inst. Control
Robot. Syst. 2008, 14, 369–375.

4. Park, C.S.; Kwon, S.J. An Efficient Vision Algorithm for Fast and Fine Mask-Panel Alignment. In Proceedings of the 2006
SICEICASE International Joint Conference (SICE-ICCAS 2006), Busan, Korea, 18–21 October 2006; pp. 1461–1465.

5. Moon, C.B.; Kim, H.; Kim, H.; Lee, D.; Kim, T.H.; Chung, H.; Kim, B.M. A Fast Way for Alignment Marker Detection and Position
Calibration. Korea Inf. Process. Soc. 2016, 5, 35–42. [CrossRef]

6. Moon, C.-B.; Lee, J.-Y.; Kim, D.-S.; Kim, B.-M. Inspection System for Vehicle Headlight Defects Based on Convolutional Neural
Network. Appl. Sci. 2021, 11, 4402. [CrossRef]

7. Mu, Z.; Li, Z. A Novel Shi-Tomasi Corner Detection Algorithm Based on Progressive Probabilistic Hough Transform. In
Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2918–2922.

8. Haggui, O.; Tadonki, C.; Lacassagne, L.; Sayadi, F.; Ouni, B. Harris Corner Detection on a NUMA Manycore. Future Gener. Comput.
Syst. 2018, 88, 442–452. [CrossRef]

9. Yuxi, Z.; Cui, R. The Algorithm Design of Wavelet Image Fusion Based on M interest Operator on The Determined Condition. In
Proceedings of the Second International Conference on Mechanic Automation and Control Engineering (MACE), Inner Mongolia,
China, 15–17 July 2011; pp. 749–752.

10. Giap, D.B.; Le, T.N.; Wang, J.-W.; Wang, C.-N. Wavelet Subband-Based Tensor for Smartphone Physical Button Inspection. IEEE
Access 2021, 9, 107399–107415. [CrossRef]

11. Qiu, Y.; Tang, L.; Li, B.; Niu, S.; Niu, T. Uneven Illumination Surface Defects Inspection Based on Saliency Detection and Intrinsic
Image Decomposition. IEEE Access 2020, 8, 190663–190676. [CrossRef]

12. Li, Y.; Zhang, M.; Liu, Y.; Xiong, Z. Fish-Eye Distortion Correction Based on Midpoint Circle Algorithm. In Proceedings of the
2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 2224–2228.

13. Bresenham’s Circle Drawing Algorithm. Available online: https://www.geeksforgeeks.org/bresenhams-circle-drawing-
algorithm/ (accessed on 24 June 2022).

14. Suzuki, K.; Inoue, T.; Nagata, T.; Kasai, M.; Nonomura, T.; Matsuda, Y. Markerless Image Alignment Method for Pressure-Sensitive
Paint Image. Sensors 2022, 22, 453. [CrossRef] [PubMed]

15. Wright, W.E. Parallel Algorithm for Line and Circle Drawing that are Based on J. E. Bresenham’s line and circle algorithms. IEEE
Comput. Graph. Appl. 1990, 10, 60–67. [CrossRef]

http://doi.org/10.3390/s20092736
http://www.ncbi.nlm.nih.gov/pubmed/32403333
http://doi.org/10.3745/KTSDE.2016.5.1.35
http://doi.org/10.3390/app11104402
http://doi.org/10.1016/j.future.2018.01.048
http://doi.org/10.1109/ACCESS.2021.3099965
http://doi.org/10.1109/ACCESS.2020.3032108
https://www.geeksforgeeks.org/bresenhams-circle-drawing-algorithm/
https://www.geeksforgeeks.org/bresenhams-circle-drawing-algorithm/
http://doi.org/10.3390/s22020453
http://www.ncbi.nlm.nih.gov/pubmed/35062414
http://doi.org/10.1109/38.59038

	Introduction
	Structure of the Assembly and Inspection Process System
	Circle-Based Reference Point Extraction Method for the Correcting the Alignment of Round Parts
	Concept of the Proposed Algorithm
	Preprocessing
	Reference Point Search

	Experiment and Results
	Experimental Results for Processing Speed
	Experimental Results for the Accuracy

	Conclusions
	References

