

 sensors-22-05859

sensors-22-05859

Sensors 2022, 22(15), 5859; doi:10.3390/s22155859

Article

A Circular-Based Reference Point Extraction Method for Correcting the Alignment of Round Parts

Chang Bae Moon 1, Byeong Man Kim 2,* and Dong-Seong Kim 3,*

1

Department of Smart Electronics, Korea Polytechnic VII (Changwon Campus), Changwon 51518, Gyeongsangnam-do, Korea

2

Computer Software Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Korea

3

Department of IT Covergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Korea

*

Correspondence: bmkim@kumoh.ac.kr (B.M.K.); dskim@kumoh.ac.kr (D.-S.K.); Tel.: +82-54-478-7544 (B.M.K.)

Academic Editor: Jiayi Ma

Received: 5 July 2022 / Accepted: 2 August 2022 / Published: 5 August 2022

Abstract

:

For products such as smartphones, the technology gap between companies is gradually narrowing with the advancements in technology. Therefore, product design can be a visible strategy for differentiation. However, it is difficult to apply automated production and defect detection processes to the various designs that are being developed. This study proposes a high-speed circular measurement method for correcting the alignment of round parts, which is difficult in an automated process. For analyzing the performance of the proposed method, its processing speed and accuracy are compared with those of the existing methods. The results of the analysis indicate that the overall performance of the proposed method is better than those of the existing methods.

Keywords:

round parts; alignment; circular-based reference point extraction method; high-speed

1. Introduction

For products with high consumer demand, such as smartphones, the technology gap between companies is gradually narrowing with the advances in technology. Hence, product design appears to be a visible strategy for improving a product’s competitiveness and differentiating it from the other products. However, the application of automated production and defect detection to products or parts with various designs is challenging. In the automated production process, rule-based information such as a standardized location or machine vision technology is applied for precise control in assembling the manufactured parts. In rule-based technology, a robot moves to the corresponding position for assembling parts, based on a three-dimensional coordinate input. Machine vision technology analyzes the image of a product or part to enable a robot to assemble the parts or to determine whether a product is defective.

Machine vision technologies can be classified into two categories: those applied before and after production. The former are applied before production for assembling the parts, whereas the latter are applied after production for detecting whether a product is defective. One of the essential techniques in the two categories is alignment correction. In general, this is a technique for judging the angle and position using an engraved mark or unique pattern of the product. However, with parts that have a round design or glass parts, such as in smartphones, there are cases where unique patterns or marks cannot be engraved due to the structural characteristics.

There are two important factors in machine vision technology: the accuracy and processing speed. If the accuracy is not ensured, a product with defective parts may be classified as defective as a whole; if the processing speed is not ensured, production may decrease. Thus, accuracy and processing speed are essential in machine vision technology. In view of the above, this study proposes a prototype-based reference point extraction method to enhance the accuracy and processing speed for the purpose of aligning round parts.

The feature extraction methods for alignment correction involve the use of a line [1,2], integral histograms [3,4], projection-based integral histograms [5], the long axis [6], Hough Line-based reference feature extraction [7], Harris Corner-based feature extraction [8], and Moravec Corner-based feature extraction [9]. The method involving the use of a line, which is a feature included in the part, has the advantage of rapidly correcting the alignment of products with line components; however, it is difficult to apply to round-shaped parts. The integral histogram method detects the marks on products through template matching; however, it is difficult to apply a mark to certain products such as the glass of a smartphone. The long-axis method is applied when the morpheme of the product is atypical, but the processing time is considerable even for products with a simple shape, such as the round parts of smartphones. The Hough Line [7], Harris Corner [8], and Moravec Corner [9] methods also have the disadvantage of long processing times.

In view of the above, this study proposes a circular-based feature extraction method that can be applied both before and after production in machine vision technology for the correcting the alignment of products such as the round parts of smartphones. The remainder of this article is structured as follows. Chapter 2 indicates the systems to which the proposed method can be applied, and Chapter 3 describes the proposed circle-based feature extraction method. Chapter 4 compares the accuracy and processing speed of the proposed method with those of the existing methods, and finally, Chapter 5 concludes the study.

2. Structure of the Assembly and Inspection Process System

The method proposed in this study can be applied to two processes: the process of assembling products in the assembly area when the parts are inputted as shown on the left of Figure 1, and the process of judging the presence or absence of defects in the inspection area when products are inputted as shown on the right of Figure 1. This inspection process determines the presence of defects related to the appearance or assembly state and not the function of the product [10,11]. The method proposed in this study performs alignment correction for round-shaped products as well, as shown in Figure 2. It is considered to be a markerless method because it does not require a unique pattern or marker on the product.

The assembly and inspection process system is mainly composed of an inspection device or image processing module, a PLC module, a lighting module, and a camera module. The functions of each module are as follows:

	
Lighting module: This module adjusts the amount of light. When a product is placed in the shooting area, the module provides the required level of light for shooting and is controlled by the inspector/image processing module.

	
Camera module: When a product is placed in the classifier or image processor inspection area, this module captures the product and sends the image to the classifier or image processor module.

	
Classifier or image processing module: This module receives an image for reading from the camera module and sends the control information to the PLC after calculating the quality of the product or the alignment correction value using the received image.

	
PLC module: This module receives the image reception and image shooting information from the classifier or image processor module and lighting module, and controls the motor on the basis of the information received from the classifier or image processor module.

In the detailed system structure related to the alignment correction of products shown on the left of Figure 3, the angle and movement position for alignment correction are calculated using the first image input, and the calculated angle is used for controlling the motor. In the detailed system structure related to the inspection process shown on the right of Figure 3, the ROI is extracted for the first image inputted after alignment correction, and a machine learning process such as a CNN is applied to determine whether the product is defective. The process commonly applied to both systems is shown in the center of Figure 3, where the method proposed in this study corresponds to Step 1.1.1.

3. Circle-Based Reference Point Extraction Method for the Correcting the Alignment of Round Parts

Reference point extraction involves two processes: preprocessing and searching for a reference point, as depicted in Figure 4. When the first image is used as input, to find the reference point, preprocessing is performed in the following order: setting the ROI area, searching for the starting point to search for the reference point, and generating a circular coordinate array from the starting point. If the results of checking indicate that the current position is the reference point in the reference point search process, the reference point (the central coordinates of the circle) is returned. If the current position is not the reference point, the pixel is moved (left or right along the axis) to update the circular coordinate array, followed by the process of rechecking whether the position moved to is the reference point.

3.1. Concept of the Proposed Algorithm

The proposed algorithm extracts circle-based reference points for correcting the alignment of object designs comprising a mixture of curved components and line components as shown in Figure 5a,b, as well as object designs comprising curved components as shown in Figure 5c. Among the existing methods, line-based reference point extraction can extract the reference point using the line components in the object (Figure 5b); however, it has difficulties in extracting the reference point for an object composed of curved components (Figure 5c). In view of the above, this study proposes a circle-based reference point extraction method that can be applied to both type of objects (Figure 5b,c).

The proposed template for extracting the reference point has a circular shape, as depicted in Figure 6a, consisting of the top, bottom, left, and right areas, and a center point (Position A, i.e., the center of the circle). Position B in the top area or Position C in the bottom area is moved (to the left or right) according to the location of the search starting point and is used for determining the reference point depending on whether the reference point is to the left or right. For example, in Figure 6b, as the starting point is at the bottom, the point corresponding to Template C moves along the boundary line (Path A in Figure 6b) from the start (the start of the search in Figure 6b) to the end (the end of search in Figure 6b), and the algorithm checks whether the reference point exists. As the reference point is to the right of the starting point in Figure 6b, the correct reference point is determined using the coordinates in the right-hand area of the template. For each movement, the coordinate value corresponding to Position C becomes the boundary line’s coordinate value, and the coordinate values of the right-hand area also change accordingly.

3.2. Preprocessing

The preprocessing process of the proposed method includes the following steps: ROI area setting, starting point search, and circular coordinate array generation, as shown in Figure 7. Finally, the circular coordinate array is constructed.

	(1)

	
ROI Area Setting

In the ROI area setting step, a standard image is provided to the user, as shown in Figure 8a, in which the ROI area is set. In the figure, the red box indicates the ROI area. The coordinate (x , y) is the starting point of the ROI area, and w and h are the size of the ROI area.

	(2)

	
Starting Point Search

The starting point search requires a user-inputted point for commencing the search. A and B are examples of the user-inputted points in Figure 8b. When the search is based on Point A, the position where the pixel value p x , y ≠ p x , y + 1 increases by 1 from the position of Point A along the y-axis is defined as the starting point. When the search is based on Point B, the point where it decreases by unity from the position of Point B along the y -axis and the position with the pixel value p x , y ≠ p x , y − 1 is defined as the starting point. The center of the circle (c x , c y) is calculated as (x , y + r) by adding the radius r to the starting point (x , y) .

	(3)

	
Circular Coordinate Array Generation

The circular coordinate array comprises four circular coordinate arrays (corresponding to the top, bottom, left, and right), as shown on the right of Figure 9. The first half of each array consists of the coordinates of the circular path points corresponding to 45°, obtained using the Midpoint Circle Algorithm [12], and the second half consists of coordinates corresponding to −45°. Thus, the value of Position A in the circular coordinate array corresponding to the top area on the right of Figure 9 indicates the coordinates of A on the left. The value of Position B indicates the coordinates of B on the left, and similarly for Positions C, D, E, F, G, and H in the right-hand circular coordinate array. Furthermore, the circular coordinate arrays of the top area (T), the bottom area (B), the right-hand area (R), and the left-hand area (L) have coordinates in the range of − 45 ° < T < 45 ° with respect to the top at 0°, 135 ° < B < 225 ° , 45 ° < R < 135 ° , and 225 ° < L < 315 ° , respectively.

The pseudocode for generating a circular coordinate array is shown in Figure 10. As the input parameters of the Midpoint Circle Array Generation Method (MCAGM), the central coordinate of a circle, the radius of the circle, and the circular coordinate to be generated are given. The given circular coordinate array is constructed using the center coordinates of the circle (c x ,   c y) and the difference coordinates (x , y) from the center. The algorithm below is used to change the part that draws the circle in Bresenham’s circle drawing algorithm [13] to the part that stores the coordinates of the circle. That is, Lines 1.3 and 1.8 are changed and the function set_Circle_Cooedinate() is added. Line 2.1 in Figure 10 defines the upper coordinate array of the circle (top in Figure 9). Lines 2.2, 2.3, and 2.4 define the bottom coordinate array (bottom in Figure 9), the left coordinate array (left in Figure 9), and the right coordinate array of the circle (right in Figure 9), respectively.

3.3. Reference Point Search

As shown in Figure 11, the reference point search process proceeds by checking the right-hand (or left-hand) side of the circular coordinate array and determining whether the reference point search has been successful. If the search is successful, it terminates after returning the center coordinates. If the search fails, the circular coordinate array is updated after shifting the pixel to the right (or left), followed by the process of checking the right-hand (or left-hand) side of the circular coordinate array.

The pseudocode for searching for the lower-right reference point using the circular coordinate array is shown in Figure 12. The circle center coordinate (c x ,   c y) and the coordinate array carray [i, len] are the inputs. In Figure 12, the check_Right_Side function (Line 3) determines whether the center coordinate of the location is the reference point. If it is the reference point, the search for the reference point is terminated by returning the center coordinate (c x ,   c y) . If not, the gap between the next position moves and the current position is calculated by the move_Bottom_Right_Position function (Line 4) to continue searching for the reference point. Moreover, the gap value is reflected in the circular coordinate array through the update_Carray function (Line 5) and the center coordinate (c x ,   c y) through Line 6.

	(i)

	
Checking the right-hand (or left-hand) side of the circular coordinate array and determining whether the search for the reference point has been successful

The method for searching for the reference point of the lower-right area based on the circular coordinate array is as shown in Figure 13a, where a point (x , y) in the circular coordinate array is checked regarding whether its pixel value is not same as that of the position to its right (x + 1 , y) . If such a point exists, the search is successful. Figure 13b depicts a case where the search is successful, whereas Figure 13c shows a case where a continued search is required. If the search is successful, the search terminates by returning the coordinate (x C , y C) , which is the center C of the circle. Thus, the center coordinate (x C , y C) is the reference point.

The pseudocode for searching the lower-right area based on the circular coordinate array is shown in Figure 14, where the coordinate array carray [i, len] is used as the input parameter. The values x and y are set to one of coordinates of the given circular coordinate array, as in Line 3, and the pixel value of the coordinate (x , y) and that of the coordinate (x + 1 , y) are checked to ensure that they are different. That is, it is checked to ensure it satisfies image _ array (x , y) ≠ image _ array (x + 1 , y) . The position satisfying this condition is defined as the reference point (see Line 4 and Figure 13b). If the condition is not satisfied, checking of the next coordinate is performed until end of the given circular coordinate array.

	(ii)

	
Moving the pixel coordinates to the right (or left) and updating the circular coordinate array

If the right-hand area search fails, the search continues by moving right (or left) from the current position. First, it moves from the current position (A in Figure 15a) to the right (or left) by w m . In this study, w m is fixed to 1. Then, if the moved position (B in Figure 15a) is not a point on the bottom boundary, it moves further up (or down) by h m . Finally, after calculating the movement distance (w m , h m) , the circular coordinate array is updated, as shown in Figure 15b, and the process of searching for the reference point commences again.

The pseudocode for calculating the difference between the current position’s coordinates and the coordinates to be moved to on the lower-right corner based on the circular coordinate array is shown in Figure 16. The difference coordinate (d x , d y) and the coordinate array c a r r a y [i , l e n] are used as the input parameters. The difference coordinate (d x , d y) is a parameter for returning the difference between the current position and the next position moved to. By moving a pixel (right) along the x -axis, the value of dx is set to unity (see Line 1.1). For the y -axis, because the slope fluctuates as indicated by h m in Figure 16a, the range of fluctuation in the y -axis is defined from +3 (maximum) to -3 (minimum) (see Lines 1.1 and 1.2) such that it can approach 0° (horizontal) to a maximum of +70° and a minimum of –70°. Thus, the candidate ranges of the difference coordinate (d x , d y) become (1 , − 3) , (1 , − 2) , … , (1 , 0) , (1 , 1) , … , and (1 , 3) , and the position (coordinate) for moving is determined by receiving the candidate range from the check_Bottom_Side function. To determine the next position, all the pixel values corresponding to the circular coordinate array must be the same (see Lines 2.3 and 2.4), and at least one of the pixel values located at the bottom of the circular coordinate array must have a different value from the pixel value of the circular coordinate array (see Lines 2.8 and 2.9).

The pseudocode for updating the circular coordinate array is shown in Figure 17. With the difference coordinate (d x , d y) and the coordinate array carray [i, len] as the inputs, it is updated as indicated in Lines 3 and 4.

4. Experiment and Results

To verify the performance of the proposed method, an experiment was conducted to examine two factors: the processing speed and the accuracy. For the experiment, 78 images of an actual field (see Figure 18a, alignment-corrected images) were used, and preprocessing was performed. The images used for the experiment included images of the holes (speaker, home button, etc.) in the glass on the front of smartphones. As preprocessing, flood filling (Figure 18c) and image rotation (Figure 18d) were applied [6], after iterative binarization (Figure 18b) of the grayscale image (Figure 18a). For an objective performance analysis, the performance of the proposed method was compared with those of the line-based [7,14] and corner-based reference point extraction methods [8,9,14], among the existing reference point search algorithms [8,9,14].

4.1. Experimental Results for Processing Speed

Rotated images (Figure 18d) were used in the experiment, as described above. For the line-based reference point extraction method, images to which the Sobel operation had been applied were used. For the performance comparison, the end coordinate of the circle algorithm (ECCA) method adopting the midpoint circle algorithm (MCA) [12,13,15], which is another alternative to the circular-based reference point extraction method, was used. For convenience, the method proposed in Section 3 is referred to as the midpoint circular array generation method (MCAGM). Both methods are conceptually the same but differ in their concrete implementation.

The ECCA method has a similar structure to that of the MCA, in general, as shown in Figure 19. However, in the MCA, the function of drawing a circle is performed, and in the ECCA, the function of determining the reference point of an object is performed. Moreover, if the ECCA is applied, a procedure for determining whether or not to search for a reference point using the ECCA whenever a coordinate movement for searching occurs is added; this reduces the processing speed compared with that of the proposed method using a circular array (MCAGM). In the MCA, the entire circle is drawn through Lines 1.3, 1.8, and 2.1–2.4, as depicted in Figure 19a, and the coordinates of 1/8 are calculated through Lines 1.1, 1.2, and 1.4–1.7. If we applying this in the ECCA method, the reference line is determined through Lines 1.4, 1.9, 1.10, 1.11, and 2.1–2.5, as depicted in Figure 19b. The movement in the ECCA has the same structure as that of the move_Bottom_Right_Position function in Figure 16, whereas the method used to search for the bottom boundary (the boundary between the object and background) of the next position (coordinate) for moving is similar to that in Figure 19b. The code in Figure 19b determines whether the reference point is to be searched, but a method for determining the bottom boundary is added when searching for the next location (coordinate) to move. In this study, a detailed description of the movement in the ECCA is not included.

Figure 20 shows the results for the processing speed. The average processing speed was 7.81 ms for the proposed method (MCAGM), 67.91 ms for the line-based method, 496.30 ms for the Harris Corner-based method, and 1520.96 ms for the Moravec Corner-based reference point extraction method. The minimum and maximum processing speeds were 6 ms and 13 ms, respectively, for the proposed method (MCAGM); 51 ms and 271 ms, respectively, for the line-based method; 361 ms and 940 ms, respectively, for the Harris Corner-based method; and 1148 ms and 2214 ms, respectively, for the Moravec Corner-based method (see Table 1). Thus, the proposed method (MCAGM) had better performance than the line-based reference point extraction method (by 60.10 ms), the Harris Corner-based method (by 488.49 ms), and the Moravec Corner-based method (by 1512.88 ms). In addition, the overall performance of the MCAGM was better than that of the ECCA; in terms of the maximum processing time, it was better by 46 ms.

4.2. Experimental Results for the Accuracy

The experimental results for the accuracy reveal that the Harris Corner-based and Moravec Corner-based reference point extraction methods can accurately search for the reference point when the corner is clear, as shown in A in Figure 21a. Due to the characteristics of the test subjects (with a round corner as in B), it is difficult to clearly search for the reference point. Therefore, in the accuracy test, the performance of the proposed method (MCAGM) was compared only with that of the line-based reference point extraction method. Although accuracy verification should be performed with respect to the movement of the object and the slope of the object, in this study, only the slope of the object was measured to conduct an accuracy test. In the case of the proposed method, the slope was calculated after searching for the left-hand and right-hand reference points at the top or bottom, as shown in Figure 21b.

The angle measurement results of the proposed method (MCAGM) and the method using the line are close to the angle before rotation, as shown in Figure 22; the measurement error with respect to the actual angle is depicted in Figure 23. Overall, in the proposed method, the average error was 0.0047°, the minimum error was 0.3972°, and the maximum error was 0.1077° from the bottom; the average error was 0.0020°, the minimum error was 0.2476°, and the maximum error was 0.0792° from the top; the average error was 0.0024°, the minimum error was 0.3156°, and the maximum error was 0.0894° based on the mean ((top+bottom)/2). For the line-based reference point extraction method, the average error was 0.0016°, the minimum error was 0.0153°, and the maximum error was 0.0074° (see Table 2).

For analyzing the cause of the large error in the proposed method in detail, the images with the largest error (Image No. 46 in Figure 22) and the least error (Image No. 6 in Figure 22) were used. Comparison and analysis were performed by superimposing the same rotational line on the image to which rotation transformation was applied (e.g., image rotation 1° → line rotation 1°). Of course, the line of the object and the rotational line must coincide. In the case of the image with the smallest error (Figure 24a), there was almost no space between the object’s line and the rotational line (see A and B in Figure 24a), which means that the two lines were almost identical. However, for the image with the largest error, the space between the object and the line (see A and B in Figure 24b) was larger that than in Figure 24a, which means that the two lines did not coincide. Therefore, Image 46 was reverse rotated by the angle measured by each algorithm (see Figure 24c,d). From these results, it can be seen that the line-based method has fewer errors, as shown in Table 2, but the results of the proposed method are better according to the detailed analysis.

Overall, the experimental results of the processing speed established that the performance of the proposed method is good. In addition, in the accuracy test, the proposed methods (MCAGM and ECCA) showed better performance than the existing ones. In particular, among the proposed methods, the MCAGM showed better performance than the ECCA in terms of the processing speed.

5. Conclusions

With the advances in technology, the technological gap between product companies is gradually narrowing. Therefore, product design can be considered a visible strategy for differentiation. However, it is difficult to apply automated production and defect detection processes to products or parts with various designs. Therefore, a circular-based reference point extraction method for round-shaped parts was proposed in this study. To demonstrate the effectiveness of the proposed method, its processing speed was analyzed by using the ECCA, which is another implementation alternative, as the baseline. The existing methods, including the line-based, Harris Corner-based, and the Moravec Corner-based reference point extraction methods, were compared with the proposed method and analyzed in terms of the processing speed and accuracy.

The proposed method (MCAGM) showed better performance than the line-based reference point extraction method (by 60.10 ms), the Harris Corner-based method (by 488.49 ms), and the Moravec Corner-based method (by 1512.88 ms). Moreover, the overall performance of the MCAGM was better than that of the ECCA. In terms of the maximum processing time, it was better by 46 ms, in particular. The accuracy analysis results indicated that although the performance of the line-based reference point extraction method was the best among the existing methods, the performance of the proposed method (MCAGM) was better. Thus, the method proposed in this study showed better overall performance than the existing reference point extraction methods, as well as the ECCA method, which was the baseline for the proposed algorithm.

Author Contributions

Conceptualization and writing—review and editing, B.M.K. and C.B.M.; formal analysis, B.M.K. and D.-S.K.; design, implementation, and experiment, C.B.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1F1A104833611, 2021R1I1A1A01042270, 2018R1A6A1A03024003). This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2022-2020-0-01612) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Acknowledgments

The authors are grateful to the support the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1F1A104833611, 2021R1I1A1A01042270, 2018R1A6A1A03024003). This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2022-2020-0-01612) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation).

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Karunarathne, S.; Ganganath, R. A Sovereign Button Detection and Measure the Alignment Using Image Processing. In Proceedings of the 2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS), Kandy, Sri Lanka, 9–11 December 2021; pp. 359–364. [Google Scholar]

	

Le, M.-T.; Tu, C.-T.; Guo, S.-M.; Lien, J.-J.J. A PCB alignment system using RST template matching with CUDA on embedded GPU board. Sensors 2020, 20, 2736. [Google Scholar] [CrossRef] [PubMed]

	

Kwon, S.J.; Park, C.S.; Lee, S.M. Kinematics and Control of a Visual Alignment System for Flat Panel Displays. J. Inst. Control Robot. Syst. 2008, 14, 369–375. [Google Scholar]

	

Park, C.S.; Kwon, S.J. An Efficient Vision Algorithm for Fast and Fine Mask-Panel Alignment. In Proceedings of the 2006 SICEICASE International Joint Conference (SICE-ICCAS 2006), Busan, Korea, 18–21 October 2006; pp. 1461–1465. [Google Scholar]

	

Moon, C.B.; Kim, H.; Kim, H.; Lee, D.; Kim, T.H.; Chung, H.; Kim, B.M. A Fast Way for Alignment Marker Detection and Position Calibration. Korea Inf. Process. Soc. 2016, 5, 35–42. [Google Scholar] [CrossRef]

	

Moon, C.-B.; Lee, J.-Y.; Kim, D.-S.; Kim, B.-M. Inspection System for Vehicle Headlight Defects Based on Convolutional Neural Network. Appl. Sci. 2021, 11, 4402. [Google Scholar] [CrossRef]

	

Mu, Z.; Li, Z. A Novel Shi-Tomasi Corner Detection Algorithm Based on Progressive Probabilistic Hough Transform. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2918–2922. [Google Scholar]

	

Haggui, O.; Tadonki, C.; Lacassagne, L.; Sayadi, F.; Ouni, B. Harris Corner Detection on a NUMA Manycore. Future Gener. Comput. Syst. 2018, 88, 442–452. [Google Scholar] [CrossRef]

	

Yuxi, Z.; Cui, R. The Algorithm Design of Wavelet Image Fusion Based on M interest Operator on The Determined Condition. In Proceedings of the Second International Conference on Mechanic Automation and Control Engineering (MACE), Inner Mongolia, China, 15–17 July 2011; pp. 749–752. [Google Scholar]

	

Giap, D.B.; Le, T.N.; Wang, J.-W.; Wang, C.-N. Wavelet Subband-Based Tensor for Smartphone Physical Button Inspection. IEEE Access 2021, 9, 107399–107415. [Google Scholar] [CrossRef]

	

Qiu, Y.; Tang, L.; Li, B.; Niu, S.; Niu, T. Uneven Illumination Surface Defects Inspection Based on Saliency Detection and Intrinsic Image Decomposition. IEEE Access 2020, 8, 190663–190676. [Google Scholar] [CrossRef]

	

Li, Y.; Zhang, M.; Liu, Y.; Xiong, Z. Fish-Eye Distortion Correction Based on Midpoint Circle Algorithm. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 2224–2228. [Google Scholar]

	

Bresenham’s Circle Drawing Algorithm. Available online: https://www.geeksforgeeks.org/bresenhams-circle-drawing-algorithm/ (accessed on 24 June 2022).

	

Suzuki, K.; Inoue, T.; Nagata, T.; Kasai, M.; Nonomura, T.; Matsuda, Y. Markerless Image Alignment Method for Pressure-Sensitive Paint Image. Sensors 2022, 22, 453. [Google Scholar] [CrossRef] [PubMed]

	

Wright, W.E. Parallel Algorithm for Line and Circle Drawing that are Based on J. E. Bresenham’s line and circle algorithms. IEEE Comput. Graph. Appl. 1990, 10, 60–67. [Google Scholar] [CrossRef]

[image: Sensors 22 05859 g001 550]

Figure 1. Product assembly process (left) and inspection process (right).

Figure 1. Product assembly process (left) and inspection process (right).

[image: Sensors 22 05859 g001]

[image: Sensors 22 05859 g002 550]

Figure 2. Example of a round design.

Figure 2. Example of a round design.

[image: Sensors 22 05859 g002]

[image: Sensors 22 05859 g003 550]

Figure 3. Detailed structure of the product assembly process and defect detection system.

Figure 3. Detailed structure of the product assembly process and defect detection system.

[image: Sensors 22 05859 g003]

[image: Sensors 22 05859 g004 550]

Figure 4. Process of extracting the reference point of the product.

Figure 4. Process of extracting the reference point of the product.

[image: Sensors 22 05859 g004]

[image: Sensors 22 05859 g005 550]

Figure 5. Targets for alignment correction: (a) smartphone hole; (b) object with curved and linear components; (c) object with curved components.

Figure 5. Targets for alignment correction: (a) smartphone hole; (b) object with curved and linear components; (c) object with curved components.

[image: Sensors 22 05859 g005]

[image: Sensors 22 05859 g006 550]

Figure 6. Concept of the circle-based reference point search algorithm. (a) Circle and function for reference point extraction (ⓐ: center point A, ⓑ: top point B, ⓒ: bottom point C); (b) Object with curved components (ⓐ: moving path A).

Figure 6. Concept of the circle-based reference point search algorithm. (a) Circle and function for reference point extraction (ⓐ: center point A, ⓑ: top point B, ⓒ: bottom point C); (b) Object with curved components (ⓐ: moving path A).

[image: Sensors 22 05859 g006]

[image: Sensors 22 05859 g007 550]

Figure 7. Preprocessing.

Figure 7. Preprocessing.

[image: Sensors 22 05859 g007]

[image: Sensors 22 05859 g008 550]

Figure 8. Preprocessing steps. (a) Setting the ROI. (b) Starting point search (ⓐ: search position of point A, ⓑ: search position of point B).

Figure 8. Preprocessing steps. (a) Setting the ROI. (b) Starting point search (ⓐ: search position of point A, ⓑ: search position of point B).

[image: Sensors 22 05859 g008]

[image: Sensors 22 05859 g009 550]

Figure 9. Generation of a circular coordinate array.

Figure 9. Generation of a circular coordinate array.

[image: Sensors 22 05859 g009]

[image: Sensors 22 05859 g010 550]

Figure 10. Proposed algorithm (circular coordinate array generation).

Figure 10. Proposed algorithm (circular coordinate array generation).

[image: Sensors 22 05859 g010]

[image: Sensors 22 05859 g011 550]

Figure 11. Starting point search process.

Figure 11. Starting point search process.

[image: Sensors 22 05859 g011]

[image: Sensors 22 05859 g012 550]

Figure 12. Proposed algorithm: reference point search for the lower-right corner.

Figure 12. Proposed algorithm: reference point search for the lower-right corner.

[image: Sensors 22 05859 g012]

[image: Sensors 22 05859 g013 550]

Figure 13. Reference point extraction method (lower-right area). (a) Right-hand search area of the circular coordinate array. (b) Successful search. (c) Search continued.

Figure 13. Reference point extraction method (lower-right area). (a) Right-hand search area of the circular coordinate array. (b) Successful search. (c) Search continued.

[image: Sensors 22 05859 g013]

[image: Sensors 22 05859 g014 550]

Figure 14. Proposed algorithm (reference point check for the lower-right corner).

Figure 14. Proposed algorithm (reference point check for the lower-right corner).

[image: Sensors 22 05859 g014]

[image: Sensors 22 05859 g015 550]

Figure 15. Movement of the coordinates and updating of the circular coordinate array. (a) Example of coordinate movement (ⓐ: the current position A, ⓑ: the moved position B). (b) Updating the circular coordinate array.

Figure 15. Movement of the coordinates and updating of the circular coordinate array. (a) Example of coordinate movement (ⓐ: the current position A, ⓑ: the moved position B). (b) Updating the circular coordinate array.

[image: Sensors 22 05859 g015]

[image: Sensors 22 05859 g016 550]

Figure 16. Proposed algorithm for movement to the right and bottom.

Figure 16. Proposed algorithm for movement to the right and bottom.

[image: Sensors 22 05859 g016]

[image: Sensors 22 05859 g017 550]

Figure 17. Proposed algorithm for updating the circular coordinate array.

Figure 17. Proposed algorithm for updating the circular coordinate array.

[image: Sensors 22 05859 g017]

[image: Sensors 22 05859 g018 550]

Figure 18. Experimental image sample and preprocessed image for the experiment: (a) experimental image sample; (b) iterative binarization; (c) flood filling; (d) rotation.

Figure 18. Experimental image sample and preprocessed image for the experiment: (a) experimental image sample; (b) iterative binarization; (c) flood filling; (d) rotation.

[image: Sensors 22 05859 g018]

[image: Sensors 22 05859 g019 550]

Figure 19. Midpoint circle algorithm vs. the check End Coordinate of the Circle algorithm. (a) Midpoint circle algorithm. (b) Check End Coordinate of the Circle algorithm for the midpoint circle.

Figure 19. Midpoint circle algorithm vs. the check End Coordinate of the Circle algorithm. (a) Midpoint circle algorithm. (b) Check End Coordinate of the Circle algorithm for the midpoint circle.

[image: Sensors 22 05859 g019]

[image: Sensors 22 05859 g020 550]

Figure 20. Results for processing speed (release mode).

Figure 20. Results for processing speed (release mode).

[image: Sensors 22 05859 g020]

[image: Sensors 22 05859 g021 550]

Figure 21. Experimental image sample and preprocessed image for the experiment. (a) Results of the Harris and Moravec Corner methods (ⓐ: corner A, ⓑ: round corner B). (b) Slope calculation in the proposed method).

Figure 21. Experimental image sample and preprocessed image for the experiment. (a) Results of the Harris and Moravec Corner methods (ⓐ: corner A, ⓑ: round corner B). (b) Slope calculation in the proposed method).

[image: Sensors 22 05859 g021]

[image: Sensors 22 05859 g022 550]

Figure 22. Angle measurement results.

Figure 22. Angle measurement results.

[image: Sensors 22 05859 g022]

[image: Sensors 22 05859 g023 550]

Figure 23. Measurement error.

Figure 23. Measurement error.

[image: Sensors 22 05859 g023]

[image: Sensors 22 05859 g024 550]

Figure 24. Analysis results: (a) Image No. 6 (ⓐ: error A, ⓑ: error B); (b) Image No. 46 (ⓐ: error A, ⓑ: error B). (c) After reverse rotation by the angle measured by the proposed method. (d) After reverse rotation by the angle measured by the line-based method.

Figure 24. Analysis results: (a) Image No. 6 (ⓐ: error A, ⓑ: error B); (b) Image No. 46 (ⓐ: error A, ⓑ: error B). (c) After reverse rotation by the angle measured by the proposed method. (d) After reverse rotation by the angle measured by the line-based method.

[image: Sensors 22 05859 g024]

[image: Table]

Table 1. Comparison of the processing times.

Table 1. Comparison of the processing times.

	Unit: ms
	Proposed 1

(MCAGM)
	Proposed 2

(ECCA)
	Hough Line
	Harris Corner
	Moravec Corner

	Average
	7.81
	9.82
	67.91
	496.30
	1520.69

	Min
	6
	7
	51
	361
	1148

	Max
	13
	59
	271
	940
	2214

[image: Table]

Table 2. Slope error comparison.

Table 2. Slope error comparison.

	Unit: Angle (°)
	Bottom-Side Error

(Proposed)
	Top-Side Error

(Proposed)
	Average Error

(Proposed)
	Error

(Hough Line)

	Average
	0.0047
	0.0020
	0.0024
	0.0016

	Min
	0.3972
	0.2476
	0.3156
	0.0153

	Max
	0.1077
	0.0792
	0.0894
	0.0074

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file8.jpg
@ (b) ©

media/file27.png
[check_Right_Side(int carrayli, len])
1. Set index to 0
2. Repeat Steps 3 to 5 until index < length of carrayy
3.Set x to carrayiry, index) and Set y to carrayiry, indgex]
4. If image_array .,y # image_array x4, return true
5. Increment the value of index
6. Return false

* Rx: x coordinate of the right, Ry: y coordinate of the right

media/file43.png
th Oh =1 ©O \D

[¥ C e CN

- #
ZO:IMI}IIIIII“,-'r 1.45

/7 14 A
P 1.35

5

=f{=True Angle =—4—Proposed(Bottom Side) =—¢—Proposed(Top Side) =-e—Proposed(Average) =-@—Hough Line

1 3 5 7 9111315171921 232527 2931 3335373941 434547 49 515355575961 6365676971737577
Image No

media/file12.jpg

media/file14.jpg
(a)

(b)

media/file35.png

media/file20.jpg
Circle Coordinates Array

Search-Procgss

media/file5.png
Assembly System Fault Detection System

- ~

Step 1 : Alignment Calibration and ROI Extraction

Step 1 : Alignment Calibration

— _ at

@ | Stei 1.1.2 ‘

* ROI Images
Step 1.1.3

Step 2 : Alignment Calibration Step 2 : Defect Check by CNN

A ROI Image(1). ROI(2)...... ROI (n)
Motor Control F s

media/file19.png
[Midpoint_Circle_Array_Generartion_Method (int carrayli, index], int cx, int cy, int r)]

1.1 Set index to 0 and len to the length of the array corresponding to arr

1.2 Set decision parameter d to d =3 — (2 X 1)

1.3 call set_Circle_Coordinate(int carrayli, len], int index, int cx, int cy, int x, int y) function.
and increment value of the index

1.4 Repeat steps 1.5to 1.8 until x <y

1.5 Increment value of x

161t d<O0 thensetd=d + (4 Xx) + 6

1.7 Else, set d =d + 4 X (x — y) + 10 and decrement y by 1

1.8 Call set_Circle_Coordinate(int carrayli, len], int index, int cx, int cy, int x, int y) function.
and the increment value of the index

[set_Circle_Coordinate(int carrayl[i, len], int index, int xc, int yc, int x, int y)]
2.1 set carray ryindgex) = XC + X, CArray ryingex)y = Y+,
Carray(rx,ien/2+index) — XC — X and Carray(ry,en/2+index) — Y€ +Y
2.2 set carray gy indgex) = XC + X, CArray gy ingex) = YC Y,
Carraypxilen/2+index) — X€C — X and carraypyien/2+index) — Y€ —Y
2.3 set carrayxindgex) = XC — Y, CArray iy indgex) = yC+X,
Carrayxien/2+index) — XC —Y and carrayyien/2+index)y — Y€ — X
2.4 set carraygy,ingex) = XC + Y, CArray ry,index) = Y€ + X,
CArrayY rxlen/2+index) — XC +Y and Carrayryien/2+index) — Y€ — X

X T:top, B:bottom, L:left, R: right, x: x coordinate, y: y coordinate

media/file45.png
2 0.45

=4—Bottom Side Error(proposed) =—Top Side Error(proposed) —o—Average Error(proposed) =i Error(HoughLine)

0.4
0.35
0.3
0:25
0.2
0.15

0.1

0

1. 3 % 5 %1l 13 15 LF 19 21 23 25 27 2931 33 35 37 3041 4345 4748 51 53 53 AT 59 6163 65:9) o971 7375 77
Image No

nav.xhtml

 sensors-22-05859

 		
 sensors-22-05859

media/file11.png
AT T Start for Search End for Search

et i L LLbn
!

Bottom Area "

(C) .
-)
%

(a) (b)

media/file41.png
Bottom-Left Site Search Bottom-Right Site Search Top-Left Site Search Top-Right Site Search

O J)(C 0O 0ICUL

4 4

(b)

media/file37.png
[Midpoint_Circle_Algorithm(int cx, int cy, int 7)]
1.1 Set initial values of (x, y)
1.2 Set decision parameter d to d =3 — (2 X 1)
1.3 Call drawCircle(int cx, int cy, int x, int y) function
1.4 Repeat Steps 1.5to 1.8 until x <y
1.5 Increment the value of x
l6lf d<0,setd=d+ (4 Xx)+ 6
1.7 Else,set d =d + 4 X (x — y) + 10 and decrement y by 1
1.8 Call drawCircle(int cx, int cy, int x, int y) function

[draw_Circle(int cx, int cy, int x, int y)]
2.1 set COLOR value of image_array cxix, cy+y) and image_arraycx—x cy+y)//Top Area
2.2 set COLOR value of image_array cxix, cy—y)y and image_arraycx_x cy—y)//Bottom Area
cy—x)//Left Area
2.4 set COLOR value of image_array cxiy, cy+x) and image_array cxiy, cy-x) //Right Area

2.3 set COLOR value of image_arraycx—y, cy+x) and image_arrayc—y,

(a)

[check_End_Coordinate_of Circle_Algorithm_by_Midpoint_Circle (int cx, int cy, int r)]
1.1 Set initial values of (x, y)
1.2 Set decision parameter d to d =3 — (2 X 1)
1.3 Call isend = check_End_Coordinate(int cx, int cy, int x, int y) function
1.4 If isend == true, return true
1.5 Repeat Steps 1.6 to 1.10 until x <y
1.6 Increment the value of x
1.7lt d <0,setd=d + (4 X x) + 6
1.8 Else,set d =d + 4 X (x — y) + 10 and decrement y by 1
1.9 Call isend = check_End_Coordinate(int cx, int cy, int x, int y) function
1.10 If isend ==true, return true
1.11 Return false

[check_End_Coordinate(int cx, int cy, int x, int y)]
2.1If image_array cx—y, cy+x) # image_array c-_y, cy+x—1) - return true
2.2 If image_array cx—y, cy—x) # image_array c-_y, cy—x—1) - return true
2.3 If image_array cxiy, cy+x) # image_array cx+y, cy+x+1) - return true
2.4 If image_array cx4y, cy—x) # image_array cx+y, cy—x+1) - return true
2.5 Return false

(b)

media/file46.jpg

media/file10.jpg
T Start for Search End forSearch

AL
TS

@ ()

media/file40.jpg

media/file16.jpg
len = len of Midpoint Circle Algorithmx2

LT
Soath Raxse
-
<
_ 5
(exy. o fex o) o LeBAR X
ool " K o
/ D coa b

TR e

x
¥

non

media/file3.png
- wel—

e

Magnification

Horizontal

media/file22.jpg
Isearch_Bottom_Right_Standard_Coordinates(int carrayli, lenl int &cx, int &cy)]
1.Set index to cx and set dx and dy to0
2 Repeat Steps 3to 6 until index < image_width
3.1 call check_Right_Side(int carrayli, lenl) function) = true, break (or return)
4. Call move_Bottom_Right_Position(int carrayl, lenl, int &dx, int &) function
5. Call update_Carray(int carrayli,lenl,int dx, int dy) function
6. Set value cx to cx+= dx and set value cy to cy+=dy

media/file25.png
Top Area X son son =X axis Measure Coordinates

Y o o =y axis Measure Coordinates

Bottom Area X coe son = X axis Measure Coordinates

Y see see =y axis Measure Coordinates

Left Area X R s - 1 = x axis Measure Coordinates
Y soe soe =y axis Measure Coordinates

Right Area| X oo s + 1 =x axis Measure Coordinates
Y so0 soe =y axis Measure Coordinates

(a)

------ e,
\Measure
'- Center C Iﬂrdmates I.'AIEE
Success Bottom Area not Success

(b) (c)

media/file0.jpg
HD et
OTOTOX
T

I

media/file26.jpg
[check Right Si
1.5el index 100
2. Repeat Steps 3 to 5 untl index < Length of carrayy
3.6t x 10 7Y, e A0 Set Y 10 CAITAY iy, nart
.16 (Mage_arrayy IMAge_arrayicesy, returm truc
5. Increment the value of index
6 Retum false

t carrayli, lenl)

Rx: x coordinate of the right, Ry: coordinate of the right

media/file34.jpg
(@ (b) © (@

media/file13.png
Pre-Process

h

ROI Area Setting — Coordinates Searching

¥
Circle Coordinates Array
Creation

r------\

"-------J

media/file31.png
[move_Bottom_Right_Position(int carrayli, len], int &dx, int &dy)]
1.1 Set dy to -3 and set dx to1
1.2 Repeat Steps 1.3 to 1.4 until dy < 3
1.3 If (call check_Bottom_Side(int carrayli, len], int dx, int dy) function) == true, break
1.4 Increment the value of dy

[check_Bottom_Side(int carrayli, len], int &dx, int &dy)]

2.1 Set index to 0

2.2 Repeat Steps 2.3 to 2.5 until index < length of carrayg

2.3 5et x; to carray gy, indgex) T dx, set y; to carray gy index) + dy,
Set x, to carray gy, ingex+1) + dx and set y, to carray gy, index+1) + dy

2.4 If image_array,,) # image_array,, ,,), return false

2.5 Increment value of index

2.6 Set index to 0

2.7 Repeat Steps 2.8 to 2.10 until index < length of carrayg

2.8 Set x; to carray gy, ingex)y + dx, set y; to carray gy, ingexy +dy,
and set y, to carray gy, ingexy +dy — 1

2.9 If image_array, ,.y# image_array, ,,) #,returntrue

2.10 Increment the value of index

2.11 Return false

% Bx: x coordinate of the bottom, By: y coordinate of the bottom

media/file39.png
o
= —8-Proposed(MCADM) =4—Proposed(ECCA) -#-HoughLine -#—HarmrisCorner =d#—MoravecCorners

ZOOIN 11/ 130

2000 —I—Prupusad(Mm'I)—i—Pmpns‘F CA)=m—HoughLine
100
1500 50

. 0-9-90-0-9-0-0-90-00-9-0-0-0-0-0-0-0-0-9

345 31415
1000 12 34 6 78 91011121314151617181920
500

1357 911131517192}123252729313335373941434547495153555759616365676971737577

Image No

media/file18.jpg
[Midpoint_Circle_Array_Generartion_Method (int carrayi, index], int cx, int cy, int)]

1.1 et index t0.0 and len to the length of the array corresponding to arr

12 Set decision parameter d to d =3 — (2 X)

1.3 call set_Circle_ Coordinatelint carrayl, lenl, int index, int cx,int cy, int %, int y) function.
and increment value of the index.

1.4 Repeat steps 15t0 18 until x < y

15 Increment value of ¥

61 d <0 thenset d=d + (4 X 1) + 6

1.7Else, set d =d + 4 X (x — y) + 10 and decrement y by 1

1.8 Call set_Circle_Coordinate(int carrayli lenl int index,int cx,int ¢
and the increment value of the index

) function

set_Circle_Coordinateint carrayi, lenl, int index, int xc,int ye, int %, int)1
21 set Carrayreinaen = X6+, CArTQYayinen) = ¥E+3,
e~ and. carrayyenzinder
42, AT apinaen = Y6,
OO pinftointey = XE = X AN COTAY pysnfzointery = YE =Y
23 set COrTaY(ainden = %€ =Y, CUTupingery = Y A%,
ATy ssenavins) = XE = ¥ AN CUTOY iy seaainer) = YE =
24 5et COTQY rnden = X+ Y, AT ayinary = YE+ .
QY ptntontesy = X0 +9 A0 €AY ryienintry = YE =X

 T:top, B: bottom,

€arTayrsienzomden w2

2250t Carray(suinaen

: left, R: right, x: x coordinate, y: y coordinate

media/file9.png
(a) (b) (c)

media/file42.jpg
o Tre Angle —+-roposedBoton Sidk) - PropowTopSide) -e-Propose(Aversge) ~a-Hovgh Line
370 III3ISITION 228272931 3335 3739 41 4345 4749518355 5750 61 365 6769 T T3 7S 7T
Image No

media/file23.png
[search_Bottom_Right Standard_Coordinates(int carrayli, len], int &cx, int &cy)]
1. Set index to cx and set dx and dy to 0
2. Repeat Steps 3 to 6 until index < image_width
3. If (call check_Right_Side(int carrayli, len]) function) == true, break (or return)
4. Call move_Bottom_Right_Position(int carrayli, len], int &dx, int &dy) function
5. Call update_Carray(int carrayli, len], int dx, int dy) function
6. Set value cx to cx+= dx and set value cy to cy+=dy

media/file36.jpg
[Midpoint_Circle_Algorithm(int cx, int cy, int 1)l
11 Setintial values of (x,)
1.2et decision parameer d to d =3 = (2 %)
13 CalldrawCircle(int cx,int cy, int %, int y) function
L4 Repeat Steps 15 to 18 until ¥ < y
15 Increment the value o
161 d <0 setd=d + (4% %) +6
1.7 Else,set d =d + 4 X (x ~ y) + 10 and decrement y by 1
1 Call drawCircle(nt cx,int cy, int %, int y) function

draw._Circletint x,int e int % int]
2.1 st COLOR value of image.array s, cysy) and MG aY s,y Top Arca
22.5et COLOR value of image.arraycevs, -3y a0 (MAge.rTaY(rr c-ry//Boltom Arca
2:35ct COLOR value of image_arayce, cyy and IMage araycey, cy/Let Arca
24 5ct COLOR vl of image.r7Yces, cysy and IMage.raycey, ooy IRight Arca

@

check_End_Coordinate_of_Circle_Algorithm_by_Midpoint_Circle (int cx, int cy, int 1)l
1.1 Setintial values of (x,)
1.25et decision parameter d to d
13Call isend = check_End_Coor
LA isend == true, return true
15 Repeat Steps 16 1o 110 until x < y
16 Increment the value o x
171d <0 setd=d + (4x 1) +6
L8 Elsc,set d =d + 4 X (x = y) + 10 and decrement y by 1
19 Cal isend = check_End_Coordinate(int cx, int cy, int x it) function
LIS isend
111 Return false:

—@xn
teint cx,int cy, int x,

) function

rue,return true

Icheck_End_Coordinatetnt e, int y,int,inty)
2118 mage T3y s, ey ATy, cyoncsy Flam e
221 MagE.ATEY 3,y IMOEE_ATY oy, 21, RO
2316 MR ATEY a0, v MBS oy, cyne s LU
2416 M0 ATEY vy,) # MOy, - Feurm e
25 Retum false

)

media/file15.png
User Interface

(a)

| Start Coordinates

(b)

media/file28.jpg
Top Area

Bottom Area

Left Area

Right Area

R]

(@)

ey
pe

-
pe

R
pe

+we
he

media/file2.jpg
Magnification

Horizontal

media/file32.jpg
[update_Carray(int carayli, lenl, int dx, int dy)l
1.Set index to0

2 Repeat Steps 3to 4 until index < length of carray
3.Set carrayirs, maex+= d%, CArTaYyiry, maex)’

Titop, B:bottom, L:left, R right, x: x coordinate, y: y coordinate.

media/file6.jpg
Pre-Process

Search-Process Yepeq

Standard Coordinates

media/file24.jpg
TopArea X [=xaxis Measure Coordinates.
v = S =y i Messre Coordies
Bottom Area X [T T x axis Measure Coordinates
[T T T i Messae Coondnes
Learen x -1 = x s Messue Coondiates

¥ o = s Mo Coordates

1= axis Messure Coordimtes
¥ axis Messure Coordinates

Right Area(X

Bottom Area ot Success

Success

(b) ©

media/file29.png
Top Area

Bottom Area

Left Area

Right Area

Xf

’&7

&7

Xf

(b)

+w™
+ h™

+ wh
-+ h™

+w™
+ h™

+wo
+h™

media/file1.png
Image Processor

T\ TN TN N &) (& TestArea
CICICICICIONG

Input - ‘

Assembly Area

—
N
o
-
FamaY
-
N
-

media/file7.png
Image ‘ cee

Y

Pre-Process

Search-Process @

|

Standard Coordinates

media/file33.png
[update_Carray(int carrayli, len], int dx, int dy)]
1. Set index to0
2. Repeat Steps 3 to 4 until index < length of carray
3.5et carrayry, ingex)= AX, CaArrayiry ingext= Ay, set carraypy, ingex;t= dx, carrayipy, ingex+= dy
4. 5et carrayiy, indgex] = AX, CArrayiy, indgex]t= Ay, s€t carrayiry, indgex]t= dX, CArrayiry, ingext= dy

* T:top, B:bottom, L:left, R:right, x: x coordinate, y: y coordinate

media/file44.jpg
o4
2

Bt Sds Eneogosd) ~+-Top Sde Encnropo) +-Avenpe En(ppoed) - ErHoughL o)

media/file47.png
Angle of Line : 5°
Angle of Line: 1°

(a) (b)

Angle of Line : 0 | | Angle of Line : 0

(c)

Angle of Line : 0 |

| Angle of Line : 0

(d)

media/file38.jpg
22500

2000

1500

1000

~-Proposed(MCADM) ~+-Propose(ECCA) ~#-HoughLine —-HarrisCormer —+~MoravecComers

. 12345678 9101121314151617181920

1357 9111315171931282527203133 35373041 43 45 4749 5153 85575961 63656769 71737577
Image No

media/file17.png
) len = len of Midpoint Circle Algorithmx2
- —
__________ T Epﬁl‘ia _X " _eee || cee
T YT s LT -
CXX, CY 1Y, g__ma LE':" cyTy] = ——==- . .\é. (ex+x, ev+y) (:E:julen-"l’ (cx-x, ev+y)
I
7 d — B E\‘ — —| BottomArea X|[| —|i
/ viL] L
_Id : 'xé' (cx+x, cv-v) e (d)len’2 (c‘x-x,.q;-ﬁ
(cxy, oyt '*}rE’I' r%[n—x cyT 1T ,_',' ';‘
(ex-v, €v- 1)_Lf (cx, cy) lhql[:m—J cy- 1}| Left Area X || ||
\I / l I Y |_| L N |_| L N
S— S
! I ké," (cx-v, cy+x)**® ('-f"llen-"l (cx-1, 2%
' |
— Right Area X
7 r'w:fl'l.':. ﬁJ'-l‘l}_d}:.kc ‘nff AT 1 £ 1 1,: | : N Y H e H ‘e
/ ‘ ‘ ‘ ‘ ’ ‘ ‘ ’ ‘ ‘ ’ ’ : - "I.E:l (ex+1, cv+x) |:l::|1E112 (cx+y, cy-x)
A

media/file4.jpg
Anseiy Spsen

=

St - Ament Cabrtion

JFaolt Dutoction Sywien

1l

e

St v o 1 RO e

St - DetetChek by OV
[—

media/file30.jpg
[move_Bottom_Right_Position(int carrayli, len, int &dx, int &dy)]
1.1Set dy to3and set dx to1
1.2 Repeat Steps 13to 14 until dy <3
131 (call check_Bottom_Side(int carrayfi,len], int i int dy) function)
14 Increment the value of dy

{check_Bottom_Side(int carrayl, lenl,int &, int &dy)]
2150t index 100
22 Repeat Steps 2310 25 until index < length of carray,
2350t 1, 10 Carrayas, nacy + 55t Y1 10 CATY(a, i+,
Set £ 10 Carray e ngee sy + % a0 et Y2 10 CATaY 3y, sy + Y
241 image.array, ., # IMage ATy, 5, roturn fase
25 Increment value of index
26 et index 100
27 Repeat Steps 2810 210 untl index < length of carray,
2850t x, 10 Carrape naey + dx €t 4 © COTTY(ay gy +
and set ;10 Carray(y naen +dy - 1
2918 image.aray(s, , # Image aFTay, , %, Fetum true
210 Increment the value of index
211 Retumn false

Br: x coordinate of the bottom, By: y coordinate of the bottom

media/file21.png
Foo R R R R R R R

Circle Coordinates Array

P
Search-Process
| Right Site (or Left Site)
Measure
Success
v
‘ Coordinates Move ‘ } Center Coordinates Return
. v
Circle Coordinates Array
Update
| End

'-------------;

\

