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Abstract: Nonintrusive load monitoring (NILM) is a technology that analyzes the load consumption
and usage of an appliance from the total load. NILM is becoming increasingly important because
residential and commercial power consumption account for about 60% of global energy consumption.
Deep neural network-based NILM studies have increased rapidly as hardware computation costs
have decreased. A significant amount of labeled data is required to train deep neural networks.
However, installing smart meters on each appliance of all households for data collection requires
the cost of geometric series. Therefore, it is urgent to detect whether the appliance is used from the
total load without installing a separate smart meter. In other words, domain adaptation research,
which can interpret the huge complexity of data and generalize information from various environ-
ments, has become a major challenge for NILM. In this research, we optimize domain adaptation
by employing techniques such as robust knowledge distillation based on teacher–student structure,
reduced complexity of feature distribution based on gkMMD, TCN-based feature extraction, and
pseudo-labeling-based domain stabilization. In the experiments, we down-sample the UK-DALE and
REDD datasets as in the real environment, and then verify the proposed model in various cases and
discuss the results.

Keywords: nonintrusive load monitoring; transfer learning; domain adaptation; pseudo labeling;
semi-supervised learning; appliance usage classification

1. Introduction

Understanding energy usage in buildings has been considered an important issue
because residential and commercial power consumption account for about 60% of global
energy consumption [1]. Optimized energy usage management has advantages for both
suppliers and consumers of energy. From the supplier’s point of view, planned consump-
tion may be encouraged according to the frequency and pattern of use of home appliances.
In addition, it is also easy for consumers to develop plans that can reduce costs through
comprehensive information about device-specific operations [2]. The electricity usage pro-
file is to install a submeter for each appliance and record instantaneous power readings, but
in reality, applying this method to all devices is difficult to realize due to cost and difficulty
in maintenance. Therefore, nonintrusive load monitoring (NILM) aims to disaggregate
energy consumption by device. The NILM method that does not depend on submeters has
shown significant efficiency in commercial and residential energy utilization and remains
an important task [3].

NILM is inherently difficult because it analyzes information about the simultaneous
switching or noise generation of multiple devices without attaching multiple subme-
ters [4–6]. To solve the problem, many techniques such as dynamic time warping (DTW),
matrix factorization, neuro-fuzzy modeling, and graph signal processing (GSP) have been
proposed and supervised and unsupervised learning-based techniques have been stud-
ied [7–9]. Hart [10] first introduced unsupervised learning methods to decompose electrical
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loads through clustering. However, various techniques such as hidden Markov models
(HMM) have been proposed for a while because clustering-based methods do not have
training data and are difficult to predict accurate power loads. In recent years, the num-
ber of research studies on deep neural networks (DNNs) has increased rapidly with the
advancement of high-end hardware devices, and the availability of data for supervised
learning has increased [11]. Long short-term memory (LSTM), a representative supervised
learning technology, considered NILM as a prediction problem based on time series data.
Refs. [12,13] proposed a method for learning models by controlling data applied with
various data sampling-based windows. Nolasco et al. [14] included multi-label procedures
to increase the recognition rate for multi-loads by marking on loads at any given time and
developed architectures based on convolutional neural networks (CNNs), resulting in an
outstanding performance in signal detection and feature extraction. However, existing
supervised learning methods for NILM still have two problems. First, there is a funda-
mental problem that assumes that the power usage data of real devices has a distribution
similar to that of training data. It is impossible to ensure the same performance in actual
situations because devices of the same type have different energy consumption depending
on products and brands, noise form, intensity, physical environment, etc. [15]. To overcome
this problem, training data containing all domain information must be acquired, but it is
practically impossible since collecting the energy consumption of each device from different
houses requires huge costs. Another problem is that, even assuming that neural network
models are trained on all the data for different environments, extracting critical information
is very difficult because of the vast amount of complex data [16–18]. Therefore, identifying
suitable techniques that can handle the large complexity of data and generalize various
domains of information is the main challenge in NILM.

To solve these problems, we consider domain adaptation [19,20]. Domain adaptation is
one of the transfer learnings, which can adapt the trained model to the other domain dataset
on the same task. This concept can easily be applied to the NILM system. Many researchers
proposed domain adaptation systems to generalize various domain information [21,22].
Liu et al. [21] conducted a regression study to refine energy consumption by applying
the most typical domain adaptation method to NILM. Since only the basic concept of
domain adaptation has been applied to NILM, it has the potential to develop in various
ways. Ref. [22] proposed a method that incorporates the mean teacher method into domain
adaptation. Regression work is performed on the source and target domains using one
model. However, this method did not show good performance in domain generalization
due to its shallow model structure. To the best of our knowledge, there are no papers
on classification tasks in domain adaptation studies for NILM. In this paper, we perform
classification tasks for device usage detection in NILM by incorporating powerful feature
information distillation based on the teacher–student structure and pseudo-labeling (PL)
into domain adaptation.

The main contents of this paper are as follows:

1. We conduct the first classification study in the domain adaptation field for NILM;
2. We show performance improvements by incorporating robust feature information

distillation techniques based on the teacher–student structure into domain adaptation;
3. The decision boundaries are refined through PL-based domain stabilization.

The remainder of this paper is organized as follows. Section 2 shows a brief review of
related studies of NILM and domain adaptation. Section 3 introduces the proposed method.
Section 4 presents the experimental setup, case study, and discussions. Finally, Section 5
concludes the paper.

2. Related Work
2.1. Nonintrusive Load Monitoring

Consider a building with m appliances and k operating power modes of each appliance
for time [1, . . . , T]. Let xi = (xi(1 . . . . . . , xi(T)) denote the energy consumption of the i-th
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device. The whole energy usage of the i-th device in sample time n can be formulated
as follows:

xi(n) =
[
Ui

1 . . .), . . . , Ui
k(n)

] ψi
1

...
ψi

k

+ εi(n) (1)

where ψi
k is the electricity consumption consumed in a particular operating mode, εi(n)

denotes the measurement of background noises, and Ui
k(n) is the operating On/Off [0, 1]

status of the i-th appliance in time n. The operating status assures the equality constraint
∑k

j=1 Ui
j(n) = 1 since all appliances operate in a single mode. At time n, the final energy

aggregate of the house is expressed as follows:

x(n) = ∑m
i=1

[
. . . (n), . . . , Ui

k(n)
] ψi

1
...

ψi
k

+ εi(n) (2)

The goal of the NILM algorithm is to disaggregate the measured electricity usage x
to generate appliance-specific energy consumption profiles [23,24]. Therefore, the final
challenge is to reduce the difference between the actual measurements of the device and
the disaggregated energy consumption [25].

Elafoudi et al. [7] detected the edge within the time window and used DTW to
identify the unique load signature. Lin et al. [8] proposed a hybrid classification technique
that combines fuzzy c-means and clustering piloting with neuro-fuzzy classification to
distinguish devices that have similar load signatures. He et al. [9] handled the NILM as a
single-channel blind source separation problem to perform low-complexity classification
active power measurements. Based on this idea, they proposed the GSP-based NILM
system to handle the large training overhead and the computational cost of the conventional
graph-based method.

2.2. Domain Adaptation

Domain adaptation is an area of transfer learning [26]. In general transfer learning, a
task or domain can be changed from source to target; however, in domain adaptation, the
task sets the premise that only the domain is changed [19,27]. This aims to generalize the
classification or regression model, which is trained on the source domain to be applied to
the target domains with different distributions, since distribution disagreement between
training and real data yields poor model performance. Ganin et al. [19] proposed a multi-
task learning model with a class and domain classifier. The model was trained to only
classify class labels, except for domain labels. For this, they introduced the gradient
reversal layer (GRL) to the domain classifier. The GRL multiplies the negative constant
and the gradient on the backward pass. Additionally, it makes the model remove the
domain information in its feature extractor. With the advancement of deep neural networks
(DNNs), the performance of domain adaptation has achieved outstanding performance
in various fields [11,14,28–33]. In [34], domain adversarial training of neural networks
(DANN), inspired by the generative adversarial network (GAN), laid the foundation for
applying adversarial learning methodologies to domain adaptation and accomplished
excellent performance. In addition, domain adaptation algorithms based on maximum
mean discrepancy (MMD) between source and target were mainly studied [35–38]. In [39],
Long et al. proposed a joint MMD to adjust the joint distribution. Deep domain confusion
(DDC) [34] proposed a technique for using pre-trained networks by adding adaptive layers
based on MMD.

Although domain adaptation is used in various fields as expressed above, the applica-
tion of domain adaptation in NILM has not been researched a lot and requires advancement.
In [40], Wan proposed a domain adaptation algorithm for optical character recognition
(OCR), which was extended to apply it to the NILM field and produce prominent results.
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Recently, Wang and Mao proposed applying a model-agnostic meta-learning (MAML)-
based domain adaptation algorithm to NILM, inspired by the pre-trained model, which is
heavily studied in the NLP field and outperformed the state-of-the-art deep learning-based
methods. [41].

3. Semi-Supervised Domain Adaptation for Multi-Label Classification on Non-Intrusive
Load Monitoring

Various deep learning models are applied to the NILM field. However, the task of
segmenting the use of different devices in many houses is still a relatively new concept.
To solve this problem, we propose the semi-supervised domain adaptation for multi-label
classification on non-intrusive load monitoring. The overall diagram is shown in Figure 1.
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tion for multi-label classification on nonintrusive load monitoring.

Several hypotheses are proposed in this work to apply semi-supervised domain
adaptation to NILM. The first hypothesis is that the distribution of source and target
domains is different. Most NILM systems are based on this hypothesis. We also use labels
on the source for domain adaptation, not on the target. Second, even if the distribution of
source domain data and target domain data is different in NILM, it is assumed that the
same device has domain-independent common characteristics regardless of the domain.
Because in motor devices, lagging current with slow current flow occurs, which results
in a low power factor. Additionally, capacitor devices generate leading current with fast
current flow, which results in a high-power factor. The power factor is the ratio of active
power to apparent power regardless of the magnitude of power consumption. In other
words, if two different houses use the same electronic devices (e.g., refrigerator, TV, etc.)
from different manufacturers, it is assumed that there is a common usage pattern even if
the power consumption is different.

The proposed method consists of three main steps, shown in Figure 2. In the knowl-
edge distillation stage, high-level knowledge is distilled into the student network (SN)
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by a temporal convolutional network (TCN) [42]-based teacher network (TN) [43] trained
using labeled source data. Domain-dependent features vary depending on the domain,
and domain-independent features are constant regardless of the domain. In the next step,
we perform a robust domain adaptation that allows us to extract only domain-independent
features to adapt source and target data to neural networks regardless of domain. Appli-
ance usage detection classifies devices from source domain data. Additionally, domain
classifiers are trained with GRL to prevent classification for source and target domains. As a
result, feature extractors can extract robust domain-independent features that enable device
usage classification regardless of domain. In the domain stabilization step in Figure 2, we
stabilize the domain through PL-based fine-tuning. First, domain-independent features
of target data are extracted from the feature extractor and then pseudo-labeled based on
the source domain label in appliance usage detection. Since all the target data cannot be
pseudo-labeled, it is partially pseudo-labeled. Therefore, the target data consists of pseudo-
labeled data and unlabeled data. Secondary domain adaptation is performed based on the
enhanced target domain data and domain-independent features extracted through robust
distillation. The network performance is stabilized and improved through the advantages
of low-density separation between classes and entropy regularization. Details of each part
of the proposed framework are in the subsections.
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3.1. Network Architecture

The goal of this section is to build a semi-supervised domain adaptation model that can
estimate the target domain label Yt using labeled source data (Xs, Ys) and target data Xt. As
shown in Figure 2, the model includes three parts: knowledge distillation, robust domain
adaptation, and domain stabilization. Details of the network structure are as follows:

(1) Knowledge distillation: knowledge is distilled using a TCN feature extraction-based
teacher–student network to receive robust domain-independent features of source
data. TCN is an extended time-series data modeling structure in CNN. It provides
better performance than typical time-series deep learning models such as LSTM
because it has a much longer and more effective memory without a gate mechanism.
The TCN consists of several residual blocks, and this block consists of a dilated casual
convolution operation O. For input x ∈ Rn and filter f t : {0, 1 . . . , k− 1} → R , O at
point s is defined by Equation (3).

O(s) = (x ∗d f t)(s) =
k−1

∑
i=0

f t(i)·xs−d·i (3)

where d is the dilated factor, ∗d is ∗d-dilated convolution, k is the filter size, and s− d·i
is the past value. However, as the network depth increases, performance decreases
rapidly due to overfitting. However, as the network depth increases, performance
decreases quickly due to overfitting. Resnet’s key concept, namely, residual mapping,
can solve this problem. The TCN residual block includes two layers of dilated casual
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convolution based on the ReLU activation function, weighted normalization, and
dropout. The 1 × 1 convolution layer on the TCN ensures that the input and output
are the same size. The output of the transformation T of the time series data in
the TCN dual block is added to the identity mapping of the input x and expressed
as follows:

R(s) = T(x, θ) + x (4)

where θ means the set of parameters of the network. It has already been demonstrated
that this concept of residual block improves network performance by learning modi-
fications to identity mapping rather than overall transformations. Based on this, it
is possible to build a deep TCN network by stacking multiple TCN residual blocks.
Assuming that xI is the input of the I-th block, the network forward propagation from
the I-th block to the I + n-th block can then be formulated as follows:

xI+n = xI +
I+n−1

∑
i=I

T(xi, θi) (5)

where, xI is I-th block, θi is the parameter set of the i-th block. Therefore, the feature
extractor FEte(xs, θ fte) of the TN is defined as follows:

FEte(xs, θ f _te) = xs +
k−1

∑
i=0

T(xs_i, θ f _te_i) (6)

where the number of layers is k, xs is source data, θ fte is the parameter set of TN, xsi

is ith source data, θ ftei
is the parameter set of ith block in the TN. Additionally, the

feature extractor FEst(xs, θ fst) of SN can be defined as follows:

FEst(xs, θ f _st) = xs +
l−1

∑
i=0

T(xs_i, θ f _st_i) (7)

where l is the number of layers, θ fst is the parameter set of SN, θ fsti
is the parameter

set of ith block in SN. Based on fte extracted from Equation (6), the TN must extract
soft label information for transferring knowledge to the SN through appliance usage
detection, which consists of a fully connected layer. The output ŷte of the TN is defined
as follows:

ŷte = So f tmaxwith T(AUDte( fte, θte)i) =
eAUDte( fte , θte)i

T

∑K
j=1

eAUDte( fte , θte)j

T

(8)

where te refers to the TN, ŷte is a predicted classification label of xs in the TN, T is
a temperature parameter, So f tmaxwith T is a So f tmax function with a temperature
parameter. θte is the parameter set of AUDte, AUDte( fte, θte)i is the elements of
output vector of AUDte, i refers to ith element, K is the number of elements of the
output vector. Maximize the benefits of soft label values for knowledge distillation by
using temperature parameters to prevent information loss in So f tmax output. The
estimated soft label ŷte is compared to the soft prediction ŷstsp of SN and is used as a
distillation loss in network training. ŷstsp is obtained as follows:

ŷst_sp = So f tmaxwith T(AUDst( fst_s, θst)i) =
eAUDst( fst_s , θst)i

T

∑K
j=1

e
AUDst( fst_s , θst)j

T

(9)

where st refers to SN, ŷstsp is a predicted classification label of xs in the SN and a
soft prediction value of SN, θst is the parameter set of AUDst, and AUDst( fsts , θst)i
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is the i-th element of the output vector of AUDst. The classification performance of
SN should be evaluated along with knowledge distillation. The performance can be
evaluated by comparing the hard prediction ŷsthp of SN with the ground truth ys of
the source domain data. ŷsthp is obtained as follows:

ŷst_hp = So f tmax(AUDst( fst_s, θst)i) =
eAUDst( fst_s , θst)i

∑K
j=1 eAUDst( fst_s , θst)j

(10)

where ŷsthp is a predicted classification label of xs in the SN and is used as a hard
prediction value of SN. In Equation (10), the temperature parameter is not used.

(2) Robust domain adaptation: domain adaptation is performed with robust features
extracted with knowledge distillation to obtain domain-independent features. Domain
adaptation consists of the following three stages: feature extractor, domain classifier,
and appliance usage detection. First, a feature extractor FEst of SN is used. A feature
extractor FEst

(
xs, θ fst

)
of the source data and an FEst

(
xt, θ fst

)
of the target data

share a parameter set. Models learned with only source data are difficult to express
with target data. To adapt the target domain data representation to FEst, the model
learns the feature distribution difference between the two domains using MMD and
minimizes it. The MMD distance is obtained as follows:

MMD(Xs, Xt) = ‖
1
ns

ns

∑
i=1

ϕ
(

xi
s

)
− 1

nt

nt

∑
j=1

ϕ
(

xj
t

)
‖
H

(11)

where ϕ is a feature space mapping function that turns the original feature space into
the reproducing kernel Hilbert space H. Further descriptions of the kernel are given
in the following subsection. The domain classifier DC( f , θdc) learns by setting the
ground truth values of the source domain data and the target domain data dcs = 0 and
dct = 1, respectively, to separate the domain-independent features from the feature
extractor. DC( f , θdc) has an output d̂cs for source domain data and an output d̂ct for
target domain data. The two outputs are defined as follows:

d̂cs = So f tmax(DC( fst_s, θdc)) (12)

d̂ct = So f tmax(DC( fst_t, θdc)) (13)

where fsts is the source domain feature, fstt is the target domain feature and θdc is
the parameter set of DC. d̂cs and d̂ct values between 0 and 1. DC can obtain domain-
independent features from FEst by learning that the source and target domains cannot
be classified. Appliance usage detection uses the AUDst of SN. AUDst verifies classi-
fication performance using source data as input domain-independent features. The
prediction of device usage detection can be obtained using Equation (10). In network
inference, prediction of the target domain may be obtained using Equation (14).

ŷt = So f tmax(AUDst( fst_t, θst)) (14)

where ŷt is the prediction of target data. Detection performance for target domain
data is evaluated by comparing ŷt with ground truth yt of target domain data.

(3) Domain stabilization: The target domain data is pseudo-labeled with AUDst to en-
hance the data, thereby stabilizing the domain and improving the performance of
the network. First, the feature fstt of the target domain data xt is input to the AUDst.
If So f tmax(AUDst( fstt , θst)) is obtained through Equation (14), PL is generated as a
prediction value having the highest probability among So f tmax values. However,
if the probability is lower than the threshold, the data is not pseudo-labeled. The
threshold is obtained experimentally. Domain stabilization consists of three steps,
such as feature extraction and domain classifier. Appliance usage detection uses
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the following three types of data: source data (Xs, Ys), pseudo-labeled target data
(Xt, Ytl), and unlabeled target data Xt. For feature extraction, fsts , fsttl and fstt are
output through FEst. DC has no change in the domain, fsts , fsttl and fstt are classified
as inputs, as in Equations (12) and (13). The appliance usage detection performs
AUDst

(
fsts , fsttl ; θst

)
.

3.2. Network Losses

We carefully design network losses to obtain domain-independent features from
feature distributions. We divide the network loss into the following four stages: knowl-
edge distillation loss, feature distribution difference loss, domain classification loss, and
appliance usage detection loss.

(1) Knowledge distillation loss: As shown in Figure 1, the knowledge distillation phase
loss is the sum of the distillation loss Lds and student loss Lds. Lds is to include the
difference in the classification results of the TN and the SN in the loss. Lds is defined
as follows:

Lds = 2αT2Lce

 eAUDte( fte , θte)i
T

∑K
j=1

e
AUDte( fte , θte)j

T

,
e
AUDst( fsts , θst)i

T

∑K
j=1

e
AUDst( fsts , θst)j

T


= 2αT2Lce(So f tmaxwith T(AUDte( fte, θte)i), So f tmaxwith T(AUDst( fsts , θst)i))

= 2αT2Lce
(
ŷte, ŷst_sp

)
(15)

where Lce is the cross-entropy loss and α is the learning rate. The cross-entropy loss
is calculated about teacher and student output. If the classification results of the
teacher and the student are the same and distillation is good, Lds takes a small value.
Additionally, Lst means the cross-entropy loss of the classification of SN. Lst is defined
as follows:

Lst = (1− α)Lce

(
eAUDst( fsts , θst)i

∑K
j=1 e

AUDst( fsts , θst)j
, ys

)
= (1− α)Lce(So f tmax(AUDst( fsts , θst)i), ys)

= (1− α)Lce

(
ŷst_hp, ys

) (16)

Even in a network with relatively fewer parameters than in the TN, Lst is also reduced
when Lds is smaller, so it shows good feature extraction and classification performance.

(2) Feature distribution difference loss: As shown in Figure 1, the feature distribution
difference loss is MMD Loss [44] L f . L f estimates the difference between the feature
distribution of the source domain data Xs and the feature distribution of the target
domain data Xt through MMD. L f is generally defined as follows:

L f ( fst_s, fst_t) = MMD2( fst_s, fst_t) = ‖EXs∼ fst_s ϕ(Xs)−EXt∼ fst_t ϕ(Xt)‖2
H

= <EXs∼ fsts
ϕ(Xs),EX′s∼ fsts

ϕ(X′s)>H +<EXt∼ fstt
ϕ(Xt),EX′ t∼ fstt

ϕ(X′t)>H
−2<EXs∼ fst_s ϕ(Xs),EXt∼ fst_t ϕ(Xt)>H

(17)

For the mapping function ϕ of Equation (17), we use kernel tricks because compu-
tational resources are required too much to obtain all the moments. We utilize the
Gaussian kernel as shown in Equation (18).

gk(x, y) = exp

(
−‖x− y‖2

2σ2

)
(18)

where gk is the Gaussian kernel. In the Equation (18), Taylor’s development of the
exponential develops as in Equation (19).

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + · · · (19)
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Since Equation (19) contains all the moments for x, we use the Gaussian kernel.
Gk(x, y) is derived as Equation (20).

gk(x, y) = <ϕ(x), ϕ(y)>H (20)

When Equation (15) is organized using Equation (20), L f is re-formulated as shown
in Equation (21).

L f ( fst_s, fst_t) = <EXs∼ fst_s ϕ(Xs),EX′s∼ fst_s
ϕ(X′s)>H +<EXt∼ fst_t ϕ(Xt),EX′t∼ fst_t

ϕ(X′t)>H
−2<EXs∼ fsts

ϕ(Xs),EXt∼ fstt
ϕ(Xt)>H

= EXsX′s∼ fsts
gk(Xs, X′s) +EXtX′ t∼ fstt

gk(Xt, X′t)− 2EXs∼ fst_s ,Xt∼ fst_t gk(Xs, Xt)

(21)

(3) Domain classification loss: As shown in Figure 1, the domain classification loss Ldc
is related to FEst and DC. DC( f , θdc) is modeled so that the source domain and
the target domain cannot be distinguished. To minimize the distribution difference
between fsts and fstt , the loss of DC( f , θdc) should be maximized. Using d̂cs and d̂ct
of DC( f , θdc), cross-entropy loss as a binary classifier-based Ldc can be obtained as
Equation (22).

Ldc(xs, xt; θ f _st, θdc) = −
sn

∑
i=1

[
log(1− d̂c

i
s) + log(d̂c

i
t)
]

(22)

where, sn is the sample number of mini-batch.

(4) Appliance usage detection loss: as shown in Figure 1, the appliance usage detection
loss usesLst in the domain adaptation phase andLaud in the robust domain adaptation
phase. Since both losses are applied to the same AUDst, the same loss equation is
formularized as in Equations (23) and (24).

Lst = Lce(So f tmax(AUDst( fst_s, θst)i), ys) (23)

Laud = Lce(So f tmax(AUDst( fst_s, θst)i), ys) + Lce
(
So f tmax

(
AUDst( fst_tl , θst)i

)
, yt
)

(24)

Each neural network is learned by differentiating loss with corresponding weights, as
shown in the dotted line in Figure 1.

3.3. Training Strategy

According to the network loss discussed above, the final optimization objective can be
expressed as follows:

(θ∗f _st, θ∗st, θ∗dc) = argmin[Laud + Ldc + L f ] (25)

Assuming that θ f _te, θte are pre-learned high-performance networks, they do not
perform additional learning to reduce network loss. When we learn Ldc of Equation (22),
we apply the gradient reversal layer (GRL) to learn in a direction that fails to classify
domains. The pseudo-code of the proposed model is summarized in Algorithm 1.
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Algorithm 1: Parameter optimization procedure of the proposed method.

Input: The source domain data (xs, ys), The target domain data (xt) with M total samples,
respectively.
Output: The optimized parameters (θ∗fst

, θ∗st, θ∗dc)

# Knowledge Distillation Phase
for m = 0 to epochs do
for n to minibatch do

#Foward propagation
Teacher: fte ← FEte(xs, θ f _te) , ŷte ← AUDte( fte, θte)
Student: fst_s ← FEst(xs, θ f _st) , ŷst_sp ← AUDst( fst_s, θst) , ŷst_hp ← AUDst( fst_s, θst)

Lds ← (ŷte, ŷst_sp) = 2αT2Lce(ŷte, ŷst_sp) , Lst ← (ŷst_hp, ys) = (1− α)Lce(ŷst_hp, ys)
L ← Lds + Lst
#Back propagation
θ f _st, θst ← Adam(∇θL, θ f _st, θst)

end for
end for
# Domain Adaptation Phase
for m = 0 to epochs do
for n to minibatch do

#Foward propagation
Source: fst_s ← FEst(xs, θ f _st), d̂cs ← DC( fst_s, θdc), ŷst_hp ← AUDst( fst_s, θst)

Target: fst_t ← FEst(xt, θ f _st) , d̂ct ← DC( fst_t, θdc)
L f ← ( fst_s, fst_t) = EXs X′ s∼ fsts

gk(Xs, X′s) +EXt X′ t∼ fstt
gk(Xt, X′t)− 2EXs∼ fsts ,Xt∼ fstt

gk(Xs, Xt),

Ldc ← (xs, xt; θ f _st, θdc) = −
sn
∑

i=1

[
log(1− d̂c

i
s) + log(d̂c

i
t)
]
,

Lst ← ( fst_s, θst) = Lce(So f tmax(AUDst( fst_s, θst)), ys)
L ← L f + Ldc + Lst
#Back propagation
θ f _st, θst, θdc ← Adam(∇θL, θ fst , θst, θdc)

end for
end for
# Robust Domain Adaptation Phase
#Pseudo labeling
fst_t ← FEst(xt, θ f _st) , ytl ← AUDst( fst_t, θst)

for m = 0 to epochs do
for n to minibatch do

#Foward propagation
Source: fst_s ← FEst(xs, θ f _st), d̂cs ← DC( fst_s, θdc), ŷst_hp ← AUDst( fst_s, θst)

Target: fst_t ← FEst(xt, θ f _st) , d̂ct ← DC( fst_t, θdc)
Pseudo Target: fst_tl ← FEst(xt, θ f _st), ŷst_tl ← AUDst( fst_tl, θst)
L f ← ( fst_s, fst_t) = EXs X′ s∼ fsts

gk(Xs, X′s) +EXt X′ t∼ fstt
gk(Xt, X′t)− 2EXs∼ fsts ,Xt∼ fstt

gk(Xs, Xt),

Ldc ← (xs, xt; θ f _st, θdc) = −
sn
∑

i=1
[log(1− d̂c

i
s) + log(d̂c

i
t)],

Laud ← ( fsts , fsttl ; θst)
= Lce(So f tmax(AUDst( fst_s, θst)i), ys) + Lce(So f tmax(AUDst( fst_tl , θst)i), ytl)

L ← L f + Ldc + Laud
#Back propagation
θ f _st, θst, θdc ← Adam(∇θL, θ fst , θst, θdc)

end for
end for

(θ∗fst
, θ∗st, θ∗dc)

4. Experiments
4.1. Data Preparation
4.1.1. Dataset

Two publicly available NILM datasets, UK-DALE [45] and REDD [46], were used for
performance evaluation. UK-DALE collected smart meter data from five UK buildings,
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with sampling resolution and corresponding device-level consumption of 1 s and 6 s,
respectively, for the total home consumption. The data set was recorded for 39–600 days.
REDD was collected from six actual buildings in the United States. The measurement
period is between 3 and 19 days, consisting of appliance-level energy consumption data
sampled every 3 s and total measurements sampled every 1 s.

This article analyzes the use of the following five representative house appliances:
dishwasher (DW), refrigerator (FG), kettle (KT), microwave (MV), and washing machine
(WM). Since REDD does not have kettle data, NILM uses four house appliances, excluding
kettles. The selected electronic products exhibit various power patterns and power levels.
FG generally consumes constant and low power; however, other power consumption is
very high power. DW and WM have very complex power usage patterns and power
strengths. MV and KT have very monotonous power usage patterns. These five home
appliances are generally designated as representative research targets because they account
for most of the power consumption in the building.

In UK-DALE, House 1 uses data collected for 74 days from 1 January 2013 to 15 March
2013, and House 2 uses data collected for 74 days from 1 June 2013 to 13 August 2013.
In REDD, House 1 and House 3 use data collected over 39 days from 17 April 2011 to
25 May 2011.

4.1.2. Data Preprocessing

Each power consumption of the two datasets is downsampled to 1 min and then pre-
processed for missing values using linear interpolation. Each house appliance is classified
as ON (1) if the power consumption (for 15 min) is greater than the experimentally set
threshold and is classified as OFF (0) if it is less than the threshold. Figures 3 and 4 show
the power usage of each home appliance in UK-DALE and REDD, respectively, and the
thresholds for determining the ON event accordingly. The threshold was experimentally
determined to be sure to include all ON states. However, since the FG is continuously
operating, the threshold was determined based on the state in which the motor was running.
Table 1 shows the exact threshold value of each home appliance and the number of ON
events determined accordingly. The split ratio of training, validation, and test data are
6:2:2. The sliding window is used for around 15 min based on the ON event. A sliding
window W with a stride length ls runs the sequence forward to obtain an input sample
x = (x1, x2, . . . , xW). For each ith window, the network has yi =

(
yi

DW , yi
FG, yi

KT , yi
MV , yi

WM
)

as output power.

4.2. Experimental Setup
4.2.1. Implementation Configuration

To obtain an input sample, W is set to 15, and ls is set to 15 so that data is non-
overlapped. In the TN, there are 3.2 times more parameters in the feature extractor and
1.6 times more parameters in the fully connected layer compared to the SN. The epochs in
the robust domain adaptation and the domain stabilization phases are not set separately
because the early stopping parameter automatically controls learning. The basic structure of
SN is cited in [20]. The TN is experimentally determined to have a structure approximately
twice as large as the SN. The mini-batch size is set to the maximum value applicable in the
experimental environment. The decaying learning rate is used to determine the optimal
value by repeatedly reducing it by one-third. The parameters of the proposed model are
listed in Table 2.
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All experimental models were modified and executed in Python 3.6 [47] and the
Pytorch framework [48], and learning and inferencing used the NVIDIA RTX 2070 SUPER.

4.2.2. Ablation Study Methods

Our model consists of the following four main techniques: TCN, gkMMD, teacher–
student (TS) structure, and PL. We introduce an ablation study on five methods to investigate
how individual components influence performance improvements in the proposed model.

1. Baseline: Typical domain adaptation method with BiLSTM-based feature extractors;
2. TCN-DA: Domain adaptation method with TCN-based feature extractor;
3. gkMMD-DA: Domain adaptation method with Gaussian kernel trick-based MMD

Loss in baseline;
4. TS-DA: A domain adaptation method for extracting features based on the robust

knowledge distillation of the teacher–student structure. The feature extractor of SN
used BiLSTM, such as the baseline, and the feature extractor of TN used BiLSTM,
which is four times the size of the student;

5. PL-DA: How to perform domain optimization with pseudo labeling on baseline method
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Table 1. ON threshold and the number of ON events in UK-DALE and REDD datasets.

UK-DALE REDD

House 1 House 2 House 1 House 3

Appliance Threshold The Number
of ON Event Threshold The Number

of ON Event Threshold The Number
of ON Event Threshold The Number

of ON Event

DW 2000 4431 1800 3236 1000 6712 650 2934

FG 250 2441 400 5291 400 2944 350 3344

KT 2200 4495 2000 1694 - - - -

MV 1400 1242 1200 4218 1200 4809 1600 1327

WM 1800 4980 1500 1524 2500 4796 2200 5764

4.2.3. Evaluation Metrics

Performance evaluation uses the F1-score, a general metric. The F1-score is derived as
shown in Equation (26).

F1(TP, FP, FN) =
2

1
TP

TP+FP
+ 1

TP
TP+FN

=
2TP

2TP + FP + FN
(26)

where TP is true positive, FP is false positive, and FN is false negative.
To the best of our knowledge, there is no low sampling-based classification study

in the domain adaptation field for NILM. Therefore, we did not conduct a one-on-one
comparison with other studies.
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Table 2. Training parameters.

Parameter Description Value

Number of TCN blocks
8 (TN)

5 (SN)

Number of filters in each TCN block
128 (TN)

64 (SN)

Filter size 3

Number of fully connected layers

5 (TN)

3 (SN)

2 (Domain Classifier)

Dilation factor 2i for block i

Activation function ReLU

Dropout probability 0.1

Number of maximum epochs 200

Number of minimum early stopping epochs 4

Mini-batch size 512

Learning rate 3 × 10−3

4.3. Case Studies and Discussions

In this section, we conduct an experiment assuming two cases. In the first case, a
house was designated as a source domain and a house was designated as a target domain
within the same dataset. The second case was experimented with by specifying a source
domain and a target domain between different datasets. Tables 3–5 show the F1 scores of
domain adaptations for six segmentation methods. The ‘Improvement’ row shows how
much the proposed method has improved. In addition, experiments on ablation studies are
included, indicating how much each method affects overall performance.

4.3.1. Domain Adaptation within the Same Dataset

In this subsection, experiments are carried out on the first case described above. In
Table 3, U1 denotes House1, U2 denotes House2, R1 denotes House1 of REDD, and R3

denotes House3 of REDD. There is no result for the appliances since REDD does not have a
kettle, and DW is not used in R3.

Based on the baseline, TCN-DA was the method that had the most influence on
performance except for our method, showing an average performance improvement of
3.38%. Next, TS-DA showed a performance improvement of 2.45%. In the case of gkMMD-
DA, there was a bit of performance improvement or slightly reduced performance. Table 4
shows F1 score for TCN and gkMMD. gkMMD generally helps improve the performance
when used with networks with residual blocks. PL-DA showed an average performance
stabilization of 0.51% because it learns models in the direction of stabilizing the domain by
finetuning the network. Our method showed a significant performance improvement of
6.03% on average compared to the baseline.

4.3.2. Domain Adaptation between Different Datasets

In this subsection, experiments are performed on the second case described above. In
Table 5, UK-DALE→ REDD is an experiment using UK-DALE as a source domain and
REDD as a target domain, and REDD → UK-DALE is an experiment using REDD as a
source domain and UK-DALE as a target domain.
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Table 3. F1 score comparison of domain adaptation within the same dataset.

Appliance Method
UK-DALE REDD

(U1→U2) (U2→U1) (R1→R3) (R3→R1)

DW

Baseline 0.781 0.805 − −
TCN-DA 0.832 0.827 − −

gkMMD-DA 0.778 0.793 − −
TS-DA 0.812 0.826 − −
PL-DA 0.787 0.811 − −
Ours 0.822 0.832 − −

Improvement 5.25% 3.35% − −

FG

Baseline 0.833 0.834 0.817 0.818

TCN-DA 0.842 0.841 0.829 0.840

gkMMD-DA 0.837 0.836 0.819 0.819

TS-DA 0.850 0.853 0.824 0.827

PL-DA 0.834 0.845 0.818 0.819

Ours 0.875 0.872 0.843 0.852

Improvement 5.04% 4.56% 3.18% 4.16%

KT

Baseline 0.761 0.832 − −
TCN-DA 0.811 0.839 − −

gkMMD-DA 0.753 0.820 − −
TS-DA 0.807 0.835 − −
PL-DA 0.770 0.833 − −
Ours 0.817 0.868 − −

Improvement 7.36% 4.33% − −

MV

Baseline 0.742 0.791 0.793 0.790

TCN-DA 0.751 0.798 0.806 0.721

gkMMD-DA 0.746 0.795 0.797 0.774

TS-DA 0.753 0.803 0.804 0.798

PL-DA 0.744 0.796 0.794 0.793

Ours 0.774 0.812 0.814 0.818

Improvement 4.31% 2.65% 2.65% 3.54%

WM

Baseline 0.615 0.611 0.841 0.782

TCN-DA 0.725 0.708 0.844 0.799

gkMMD-DA 0.623 0.625 0.842 0.786

TS-DA 0.668 0.653 0.832 0.783

PL-DA 0.623 0.615 0.843 0.783

Ours 0.736 0.713 0.870 0.832

Improvement 19.67% 16.69% 3.45% 6.39%
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Table 4. F1 score comparison of TCN + gkMMD domain adaptation within the same dataset.

Appliance UK-DALE REDD

(U1→U2) (U2→U1) (R1→R3) (R3→R1)

DW 0.823 0.828 − −
FG 0.857 0.854 0.834 0.847

KT 0.813 0.841 − −
MV 0.762 0.805 0.809 0.764

WM 0.730 0.709 0.852 0.815

Table 5. F1 score comparison of domain adaptation between different datasets.

Appliance Method UK-DALE→REDD REDD→ UK-DALE

DW

Baseline 0.741 0.712

TCN-DA 0.779 0.737

gkMMD-DA 0.736 0.713

TS-DA 0.770 0.745

PL-DA 0.747 0.714

Ours 0.778 0.747

Improvement 4.99% 4.92%

FG

Baseline 0.786 0.764

TCN-DA 0.794 0.787

gkMMD-DA 0.787 0.769

TS-DA 0.800 0.772

PL-DA 0.787 0.770

Ours 0.821 0.797

Improvement 4.45% 4.32%

MV

Baseline 0.719 0.739

TCN-DA 0.726 0.716

gkMMD-DA 0.719 0.746

TS-DA 0.729 0.749

PL-DA 0.717 0.743

Ours 0.742 0.763

Improvement 3.2% 3.25%

WM

Baseline 0.563 0.758

TCN-DA 0.669 0.773

gkMMD-DA 0.573 0.766

TS-DA 0.610 0.758

PL-DA 0.568 0.763

Ours 0.672 0.769

Improvement 19.36% 1.45%

In the second case experiment, the average performance is improved by 5.74% even
though the degree of domain characteristic change is greater than that of the first case
experiment. Although the domains are different, the same type of appliance has almost the
same pattern as the power usage, so the domain adaptation is well performed. Therefore,
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we have confirmed the possibility that in the field of NILM, we do not have to learn new
neural networks even if each household and living area are different. Our method shows
better results compared to the baseline.

Experiments show that domain adaptations within the same dataset perform well
when the proposed method is used, and performance improvements can also be seen
for domain adaptations between different datasets. It is a very significant result that our
method without individual model learning for all households achieves a performance
improvement of 5–6% through only one learning. There are several main reasons for
improving accuracy. (1) Rich domain independent feature information is extracted by
learning through teacher–student-based knowledge distillation. (2) By using TCN residual
blocks and gkMMD together can effectively reduce the distribution mismatch between the
two domains. (3) PL can stabilize the network’s decision boundaries.

4.3.3. Discussions

The proposed model can automatically track the use of individual appliances under
full load. We look at a series of our method-based applications for elderly households
living alone and public electricity management institutions.

In the case of elderly households living alone, the risk of dying alone is generally very
high. This risk situation is one of the critical problems to be solved at the government level.
By analyzing device usage patterns, it is possible to develop a household risk detection
system through abnormality detection in the household. Efficient energy management is
an essential issue in public electricity management institutions. It is possible to develop
an energy management system that adjusts the power generation ratio by identifying
and managing energy-inefficient customers using home appliance usage patterns and
power usage.

There are several limitations to the proposed method. (1) Domain adaptation is difficult
to apply if house appliances of source and target data are different. (2) The difference in
power usage between households is so large that the data imbalance is severe. (3) Although
performance is improved by reducing distribution differences over the source and target
features, there is no clear academic basis for extracting domain-independent features by
reducing distribution differences. It is generally on an experimental basis. In future work,
we aim to address the second limitation, which is the data imbalance. Data imbalance is
the most fundamental problem in neural network training. Future work is planned in the
direction of GAN-based sampling methods to resolve data imbalance or networks that
perform high-quality learning despite data imbalance.

5. Conclusions

We developed a novel methodology that combines robust knowledge transfer and
network stabilization for NILM to improve previous tasks and perform generalization
across domains. The proposed method improves the detection performance of device usage
for unlabeled target domain data by using a network trained only on the labeled source
data. Teacher–student-based knowledge distillation is adopted to transfer quality features
from the source domain. PL is utilized for domain stabilization through low-density
separation between classes and entropy regularization effects. gkMMD is employed to
reduce distribution differences between domain-independent features. Based on various
techniques, we improve the performance of the proposed domain adaptation method by
considering the distribution of robust domain-independent features.

To prove the proposed method, we used UK-DALE data and REDD as data. For data
preprocessing, data such as training, verification, and testing were constructed by experi-
mentally setting thresholds for distinguishing ON events in each appliance. Five methods
of ablation study were performed for the performance test. Within the same dataset, do-
main adaptation improved the F1 score of the proposed method over the baseline by an
average of 6.04%. Domain adaptation on different datasets improved the F1 score of the
proposed method over the baseline by an average of 5.74%. While performance has not
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improved significantly for problems with much larger domain feature changes, maintaining
existing performance alone is a great achievement.
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