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Abstract: The developed method of steganographic hiding of text information in an audio signal
based on the wavelet transform acquires a deep meaning in the conditions of the use by an attacker
of deliberate unauthorized manipulations with a steganocoded audio signal to distort the text
information embedded in it. Thus, increasing the robustness of the stego-system by compressing the
steganocoded audio signal subject to the preservation of the integrity of text information, taking into
account the features of the psychophysiological model of sound perception, is the main objective
of this scientific research. The task of this scientific research is effectively solved using a multilevel
discrete wavelet transform using adaptive block normalization of text information with subsequent
recursive embedding in the low-frequency component of the audio signal and further scalar product of
the obtained coefficients with the Daubechies wavelet filters. The results of the obtained experimental
studies confirm the hypothesis, namely that it is proposed to use recursive embedding in the low-
frequency component (approximating wavelet coefficients) followed by their scalar product with
wavelet filters at each level of the wavelet decomposition, which will increase the average power
of hidden data. It should be noted that upon analyzing the existing method, which is based on
embedding text information in the high-frequency component (detailed wavelet coefficients), at the
last level of the wavelet decomposition, we obtained the limit CR = 6, and in the developed, CR = 20,
with full integrity of the text information in both cases. Therefore, the resistance of the stego-system
is increased by 3.3 times to deliberate or passive compression of the audio signal in order to distort
the embedded text information.

Keywords: audio signal; text information masking; steganographic encoder; spectrum analysis;
wavelet transform; wavelet coefficients; orthogonal wavelet filters

1. Introduction

Recently, scientific research in the field of wireless acoustic sensor networks solves
very important technical problems. Many areas have been covered, such as self-localization
of acoustic sensors, recognition and coding of audio signals, active noise control, and
localization of sound sources [1,2].

This paper considers another important area in acoustic sensory systems, information
security, which will allow use of a highly redundant audio signal that is received from
acoustic sensors as a container for hiding text information in it, so that the classical problem
of audio steganography is solved. It will also be quite relevant to apply the developed
method in voice messengers, where a fake voice message is transmitted that hides a true
text message. In this case, the attacker will not be able to recognize the essence of the
hidden correspondence of users, and if we assume that the microphone of a mobile device
will act as an acoustic sensor, then it is possible to mask hidden correspondence against the
background of another audio conference in real time, which also can confuse the attacker.
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It is necessary to remember the features of text recognition systems against the background
of multimedia information (images, video), which is obtained from video sensors, where
the recognized text can also be hidden in the audio signal of acoustic sensor networks.

It should be noted that if we slightly modify the developed method at the stage of
processing hidden information before integrating it into the audio signal (adapt the method
to another type of information), then it can be easily used not only for hiding text infor-
mation, but also for hiding signal parameters (object recognition features), which are the
result of the analysis, processing, and classification of information received from different
types of network sensors (video and audio sensors). This type of hidden information is
very common today in computer vision, speech, and video recognition. In this case, it is not
the carrier signal itself (audio, video, images) that is subject to hiding in the audio signal,
but its recognition features, depending on the specific classification task being solved. For
example, the semantic parameters of speech or the biometric features of the voice can be
hidden in the audio signal; if we are talking about recognizing video information or images,
then there is an opportunity to hide the parameters that characterize the tracking of moving
objects in time, identification of a person by photo, optical character recognition, and other
such signal parameters.

To ensure the effective hiding of text information in an audio signal, a deep under-
standing of their amplitude–frequency characteristics [3] is required. This is because many
factors will depend on the correct analysis of where in the amplitude–frequency component
text information is to be integrated. The main ones are the effectiveness of the hiding
(masking) itself, as well as the resistance of the steganocodec to audio container transcod-
ing. A fundamental understanding of the spectral features of audio signals [4] will allow
balancing between increasing the efficiency of hiding text information in an audio container
and resistance to various compression algorithms of a steganographic audio file.

Therefore, the question arises whether the secret text information will be preserved
without distortion when re-transcoding the steganographic audio file, and if so, what is
the maximum value of the compression ratio at which the secret information maintains
integrity? In particular, this question prompted the authors to write this article and develop
one of the methods for steganographic hiding of text information in an audio signal [5–7],
which will allow for answering the contradictions that have arisen using modern methods
of digital audio signal processing and spectral analysis methods.

1.1. Problem Statement

The developed method of steganographic hiding of text information in an audio signal
based on the wavelet transform [8] acquires a deep meaning in the conditions of the use by
an attacker of deliberate unauthorized manipulations with a steganocoded audio signal
to distort the text information embedded in it; that is, to make its semantic constructions
illegible. The main form of these manipulations is the use of various algorithms for
compressing the audio signal [9,10], but not to remove its uninformative components,
which, according to the human psychophysiological model of sound perception, are beyond
the threshold of audibility, and to remove the text information hidden in the audio signal
by deliberately introducing distortions by the compression algorithm.

Thus, increasing the robustness of the stego-system to compression (reducing redun-
dancy) of the steganocoded audio signal [11,12] subject to the preservation of the integrity
of text information (genuine semantic structures), taking into account the features of the
psychophysiological model of sound perception (hiding the very fact of text transmission
by masking in acoustic signals), is the main objective of this scientific research.

1.2. Analysis of Existing Research and Formation of a Scientific Hypothesis

The task of this scientific research is effectively solved using a multilevel discrete
wavelet transform [8,13] based on adaptive block normalization of text information with
subsequent recursive embedding in the low-frequency component of the audio signal and
further scalar product of the obtained coefficients with the Daubechies wavelet filters [14,15],
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which is a new approach in the field of steganography that makes the stego-system more
resistant to transcoding. The difference between the developed method and the existing
ones is that in existing steganographic methods of information hiding based on wavelet
transform [16–20], text information is usually embedded in the high-frequency wavelet
coefficients (HFWC) at the last level of the wavelet decomposition, and in the developed
method, it is proposed to use recursive embedding in the low-frequency wavelet coefficients
(LFWC) followed by scalar product with orthogonal Daubechies filters at each level of the
wavelet decomposition, which allows for increasing the average power of hidden data. This
will increase the critical compression threshold of the steganocoded audio signal, at which the
text will begin to distort (the transmitted message will be different from the received).

The formalization of the mentioned statements is as follows:
(1) An existing method that is used in many studies [16–20] in different configura-

tions, where for the most part, we may apply the idea of text integration according to the
expression T1...L → Yj in Formula (1):

A′k =
min(k, 2lZ−1)

∑
j=max(1, k+1−lF)

(
Zj
)
↑ 2 · Ri +

min(k, 2lZ−1)

∑
j=max(1, k+1−lF)

(
T1...L → Yj

)
↑ 2 ·Wi, k = 1, . . . , 2lZ − 1 + lF − 1, (1)

Zk =

 min(k, lA)

∑
j=max(1, k+1−lF)

AjDi

 ↓ 2, k = 1, . . . , lA + lF − 1, (2)

Yk =

 min(k, lA)

∑
j=max(1, k+1−lF)

AjVi

 ↓ 2, i = k + 1− j, (3)

(2) The proposed method differs significantly in the expression
(
T1...L−1 → Zj

)
Di in

Formula (5), which allows for increasing the average power of hidden text information due
to the scalar product with the coefficients of the low-frequency wavelet filter Di:

A′k =
min(k, 2lZ−1)

∑
j=max(1, k+1−lF)

(
Zj
)
↑ 2 · Ri +

min(k, 2lZ−1)

∑
j=max(1, k+1−lF)

(
Yj
)
↑ 2 ·Wi, k = 1, . . . , 2lZ − 1 + lF − 1, (4)

Zk =

 min(k, lZ)

∑
j=max(1, k+1−lF)

(
T1...L−1 → Zj

)
Di

 ↓ 2, k = 1, . . . , lZ + lF − 1, (5)

Yk =

 min(k, lZ)

∑
j=max(1, k+1−lF)

ZjVi

 ↓ 2, i = k + 1− j, (6)

where A, A′ are input and output audio signals with number of samples lA; T, T′ are
input and output texts divided into 1, 2, . . . , L blocks depending on the number of wavelet
decomposition levels L; Zk, Yk are wavelet coefficients of low and high frequencies in
quantity lZ; D,V,R,W are Daubechies filters of the N-th order low and high frequencies for
decomposition and reconstruction; ↓ 2, ↑ 2 are operations of double thinning and excess;
→ is a symbol used to logically explain the operation of integrating text information into
wavelet coefficients.

The expression
(
T1...L−1 → Zj

)
Di in Formula (5) shows that the integration→ of blocks

of text information T1...L−1 into wavelet coefficients Zj occurs at the levels of the wavelet
decomposition 1, . . . , L− 1 to their scalar product with a low-pass Daubechies filter Di, as
opposed to the expression T1...L → Yj in Formula (1), where integration→ into wavelet
coefficients Yj occurs after the scalar product with the high-pass Daubechies filter Vi (3).

Extraction of text information T′ from an audio signal A′ occurs recursively depending
on the number of levels of the wavelet decomposition L according to Formulas (2), (3), (5),
and (6) in the existing [16–20] and proposed approaches, respectively.
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Thus, using the developed method, it is possible to allow an attacker to re-encode the
audio signal with various lossy compression algorithms, but at the same time, the text infor-
mation embedded in the audio signal maintains integrity. This statement is based on the fact
that the current variety of existing compression algorithms [9–12] operates according to the
same principle, namely, the elimination of the uninformative redundant component of the
audio signal. Since the proposed method hides text information at medium frequencies and
amplitudes of wavelet coefficients, and because this is its main feature, it can significantly
increase the resistance of the stego-system to audio signal compression, taking into account
the features of the psychophysiological model of sound perception. The only exceptions
are those cases of completely deleting an audio file or applying critical compression with a
complete loss of meaningful audio information. A quantitative assessment of the boundary
values of critical compression occurrence will be obtained in an experimental study. Critical
compression should be understood as the degree of compression at which text information
is distorted or completely deleted (violation of semantic links) from the audio signal with a
significant reduction in redundancy (compression). Then the main evaluation for the effec-
tiveness of the proposed stego-system is the maximum degree of audio signal compression
and the integrity of text information; that is, the highest compression ratio that maintains
the full integrity of the semantic structures of the text.

Analysis of the literature [16–26] shows an almost complete absence of methods for
embedding compression-resistant audio signals. One of the transformations that allows for
such an embedding is the multilevel discrete wavelet transform, which has clear advantages
in representing the local characteristics of the signal and takes into account the features of
the psychophysiological model of sound perception. The proposed method increases the
robustness of the stego-system to deliberate compression (elimination of highly informative
features). We will show that the application of this approach in the development of the
steganography algorithm, which is designed to achieve maximum robustness, can solve the
main tasks of steganography, namely, minimization of introduced distortions and resistance
to attacks by a passive intruder.

The next section is devoted to the presentation of all the main theoretical aspects of
the proposed method, namely, (1) integrating text information into low-frequency wavelet
coefficients of an audio signal followed by their scalar product with low-frequency and
high-frequency orthogonal Daubechies wavelet filters for decomposition; (2) reconstructing
of the audio signal with the text integrated into it by low-frequency and high-frequency
wavelet coefficients; (3) extracting text information from low-frequency wavelet coefficients
of the audio signal.

2. Presentation of the Proposed Method

Structural diagrams of the developed method of steganographic protection of text
information based on the wavelet transform are shown in Figures 1 and 2. A detailed
explanation of all the blocks on the diagram and their formal presentation are given below.

Any text information in English can be represented as an ASCII encoding, where all
characters of the computer alphabet are numbered from 0 to 127, describing the ordinal
number of a character in the binary number system of a seven-digit code from 0000000 to
1111111. Thus, we will form a set of numbers S = {0, 1, 2, . . . , 127} that correspond to
each specific character according to the ASCII encoding. Then text information can be
represented as a set T = {Si, Si, . . . , Si}, which corresponds to a sequence of numbers Si
from the set S, where the occurrence of each Si in the set T is determined by the sequence
of characters in the text i.
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Figure 1. Structural diagram of the proposed method for integrating text information into an audio signal.

So, given some text information T1,...,l , where l is the total number of characters to be
hidden in the audio signal, it is necessary to perform an interleaving operation to remove
statistical dependencies between characters in the text. This operation is implemented
using a pseudo-random number generator (PRNG), which forms a sequence of l uniformly
distributed numbers in the range (0; 1).

Given a random variable, we often compute the expectation and variance, two im-
portant summary statistics. The expectation describes the average value, and the variance
describes the spread (amount of variability) around the expectation.

Then, the mathematical expectation mr and variance Dr of such a sequence, which
consists of l pseudo-random numbers ri, should tend→ to the following values

mr =

l
∑

i=1
ri

l
→ 0.5, (7)

Dr =

l
∑

i=1
(ri −mr)

2

l
→ 1

12
. (8)
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In order to shuffle the characters of the set T1,...,l in a pseudo-random way, it is
necessary that the pseudo-random numbers x1,...,l that are generated by the PRNG are in
the range (1; l), which is different from (0; 1). Numbers in the range (1; l) are equivalent to
the indexes of each character of text information T1,...,l .

To solve this problem, we can use the formula

x1,...,l = 1 + (l − 1) · r1,...,l , (9)

where r1,...,l—pseudo-random numbers from the range (0; 1).
The correctness of this transform is described as follows

r1,...,l − 0
1− 0

=
x1,...,l − 1

l − 1
⇔ r1,...,l =

x1,...,l − 1
l − 1

⇔ x1,...,l = 1 + (l − 1) · r1,...,l , (10)

and is demonstrated in Figure 3.
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Then x1,...,l are pseudo-random numbers uniformly distributed in the range from 1 to l.
Thus, we can form a set of non-repeating numbers

Key1 = {x1, x2, . . . , xl}, (11)

which will correspond to the new indexes of each character of text information T1,...,l. This set
of numbers Key1 will correspond to Key 1, which is used at the stage of integrating text into an
audio signal (Figure 1) and at the stage of extracting text from an audio signal (Figure 2).

Then, the operations of interleaving, which is used at the stage of integrating text into
an audio signal (Figure 1), and de-interleaving, which is used at the stage of extracting text
from an audio signal (Figure 2), can be represented as follows:

TKey1 = T1,...,l(Key11,...,l), (12)

T1,...,l = TKey1(Key11,...,l). (13)

Since the low-frequency wavelet coefficients will increase their absolute power with each
next level of decomposition, then the text information TKey1 must be sorted in such a way
that its integration into low-frequency wavelet coefficients occurs from the minimum min to
the maximum max values in accordance with the expression

{
min

(
TKey1

)
, . . . , max

(
TKey1

)}
;

this is the main task of applying the sorting operation.
So, having received text information TKey1 that was subject to the interleaving opera-

tion using Key1, it is necessary to perform a sorting operation from the minimum min to
the maximum max value of the set of characters TKey1.

We presented the input text information in the form of a set T = {Si, Si, . . . , Si},
where S = {0, 1, 2, . . . , 127} is a set of numbers that correspond to each specific character
according to the ASCII encoding, and i is determined by the initial sequence of characters
in the text. Therefore, the expression can be rewritten as TKey1 = {Si, Si, . . . , Si}, where i
defines a sequence of numbers in the range from 0 to 127 depending on Key1.

Then, the operations of sorting, which is used at the stage of integrating text into an
audio signal (Figure 1), and de-sorting, which is used at the stage of extracting text from an
audio signal (Figure 2), can be written as follows:

TKey2 = TKey1(Key21,...,l), (14)

TKey1 = TKey2(Key21,...,l), (15)

where Key21,...,l is the sequence of indexes of the set of characters TKey1 that was formed
according to the expression

{
min

(
TKey1

)
, . . . , max

(
TKey1

)}
, which corresponds to Key 2 in

Figures 1 and 2.
So, having text information TKey2 that has undergone a sorting operation according

to the condition
{

min
(
TKey1

)
, . . . , max

(
TKey1

)}
, it needs to be divided into L− 1 blocks,
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where L is a maximum number of levels of wavelet decomposition of the audio signal,
since there is no text integration at the last level of wavelet decomposition (Figure 1).

Then, the number of blocks b of text information TKey2 is determined by finding the maxi-
mum level of wavelet decomposition L of the audio signal, which can be expressed as follows:

b = L− 1, (16)

L ≈ log2

(
lA

lF − 1

)
. (17)

The correctness of this expression is confirmed by the fulfillment of the condition

(lF − 1) · 2L < lA, (18)

where lA is a number of samples of the audio signal, lF is a number of coefficients of the Daubechies
wavelet filter, and the symbol≈ characterizes the rounding down of a number L [27–29].

Then, the number of characters in one block lb of text information TKey2 is determined
according to the expression

lb =
lT
b

, (19)

where lT is a total number of characters of text information TKey2 that should be hidden in
the audio signal.

It should be noted that the number of characters of text information in one block lb
directly depends on the maximum level of wavelet decomposition L of the audio signal,
as can be seen from Formulas (16)–(19). Then, finding the maximum level of wavelet
decomposition L allows for uniformly integrating all blocks b of text information TKey2 at
all decomposition levels 1, . . . , L− 1 to increase the resistance to audio signal compression,
since with an increase in the decomposition level, the amplitude of the wavelet coefficients
will increase and, accordingly, the amplitude of the text information integrated into them,
due to the subsequent scalar product with a wavelet filter at each decomposition level
1, . . . , L− 1, which is a characteristic feature of the proposed method.

Thus text information TKey2, which is divided into b blocks, where the number of
characters in one block is lb, can be represented in the form of a set

Tb1,...,b =
{

T1,...,lb , Tlb+1,...,2lb , T2lb+1,...,3lb , . . . , T(b−1)lb+1,...,blb

}
, (20)

where T = TKey2, Tb1 = T1,...,lb , Tb2 = Tlb+1,...,2lb , Tb3 = T2lb+1,...,3lb , Tbb = T(b−1)lb+1,...,blb ,
which corresponds to the operation of dividing text information into blocks, which is used
at the stage of integrating text into an audio signal, according to Figure 1.

Then, the operation of combining blocks of text information Tb1,...,b, which is used at
the stage of extracting text from an audio signal, according to Figure 2, will look like this:

TKey2 =
b
∪

i=1
Tbi. (21)

At the final stage of preparing text information for integration into an audio signal, it
is necessary to perform the normalization operation

Tbn1,...,b =
Tb1,...,b

max(Tb1,...,b)
, (22)

An1,...,lA =
A1,...,lA

max
(

A1,...,lA

) , (23)

so that text information Tbn1,...,b and audio signal An1,...,lA are in the same normalization
scale, namely, so that values of ASCII codes of text characters Tb1,...,b and audio signal
samples A1,...,lA are in the range from 0 to 1.
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Then, the restoration of the normalized text information Tbn1,...,b and the audio signal
An1,...,lA to the original normalization (de-normalization) scale can be carried out according
to the expressions

Tb1,...,b = Tbn1,...,b ·max(Tb1,...,b), (24)

A1,...,lA = An1,...,lA ·max
(

A1,...,lA

)
, (25)

where this sequence of operations corresponds to the blocks of normalization and de-
normalization, which are used at the stage of integrating text into an audio signal (Figure 1)
and extracting text from an audio signal (Figure 2).

Thus, we get blocks of normalized text information Tbn1,...,b that are ready for inte-
gration into a normalized audio signal An1,...,lA . However, since the integration does not
take place in the audio signal An1,...,lA itself, but in its low-frequency wavelet coefficients
(LFWC) followed by their scalar product with low-frequency (LPF-D) and high-frequency
(HPF-D) orthogonal Daubechies wavelet filters at each 1, . . . , L− 1 level of the wavelet
decomposition, it is necessary to perform a wavelet transform of the audio signal An1,...,lA
and find the low-frequency (LFWC) and high-frequency (HFWC) wavelet coefficients for
each 1, . . . , L level of the wavelet decomposition [30,31]. It should be noted that not only
Daubechies filters can be used, but also other orthogonal wavelet filters, such as Coiflets,
Symlets, or Meyer.

Then, the discrete wavelet transform is the scalar product of the values of the studied
audio signal An1,...,lA , with the coefficients of the orthogonal Daubechies wavelet filters of
low D (LPF-D) and high V (HPF-D) frequencies for decomposition, followed by a double
thinning ↓ 2 of the obtained coefficients

Z(1)1,...,K ↓ 2 = {Z(1)2, Z(1)4, Z(1)6, . . . , Z(1)K}1,...,K/2, (26)

Y(1)1,...,K ↓ 2 = {Y(1)2, Y(1)4, Y(1)6, . . . , Y(1)K}1,...,K/2, (27)

which can be formalized as follows:

Z(1)1,...,K/2 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An1,...,lA

)
jDi


1,...,K

↓ 2, (28)

Y(1)1,...,K/2 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An1,...,lA

)
jVi


1,...,K

↓ 2, (29)

where K = lA + lF − 1, k = 1, . . . , K, i = k + 1− j, and Z(1)1,...,K/2, Y(1)1,...,K/2 are low-
frequency (LFWC) and high-frequency (HFWC) wavelet coefficients for the 1st level of
audio signal An1,...,lA decomposition [32,33].

Since the text information Tbn1,...,b has been sorted from minimum min to maximum
max values according to the expression

{
min

(
TKey1

)
, . . . , max

(
TKey1

)}
, to find the indexes

of values (Key 3) of low-frequency wavelet coefficients Z(1)1,...,K/2, which should be re-
placed→ with the corresponding block of text information Tbn1, it is also necessary to sort
the low-frequency wavelet coefficients Z(1)1,...,K/2 from the minimum min to the maximum
max values according to the expression

{
min

(∣∣Z(1)1,...,K/2
∣∣), . . . , max

(∣∣Z(1)1,...,K/2
∣∣)} and

determine the indexes Key31,...,lb of absolute minimum values 1, . . . , lb, which can be written
as follows:

Key31,...,lb =
{

min
(∣∣Z(1)1,...,K/2

∣∣), . . . , max
(∣∣Z(1)1,...,K/2

∣∣)}
1,...,lb

, (30)

where lb is the number of characters in one block of text information Tbn1,...,b.
Then, the operations of integrating → text information Tbn1 into low-frequency

wavelet coefficients Z(1)1,...,K/2 (Figure 1) and extracting text information Tbn1 from low-
frequency wavelet coefficients Z(1)Tbn1 (Figure 2) can be written as follows

Z(1)Tbn1 = Tbn1 → Z(1)1,...,K/2
(
Key31,...,lb

)
, (31)
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Tbn1 = Z(1)Tbn1

(
Key31,...,lb

)
, (32)

where Key31,...,lb is a sequence of indexes of the absolute minimum values of low-frequency wavelet
coefficients Z(1)1,...,K/2, which was formed according to the condition{

min
(∣∣Z(1)1,...,K/2

∣∣), . . . , max
(∣∣Z(1)1,...,K/2

∣∣)}
1,...,lb

, and corresponds to Key 3 in Figures 1 and 2.
This operation is needed in order to replace→ the absolute minimum values of low-

frequency wavelet coefficients Z(1)1,...,lb with the minimum values of text information
Tbn1,...,lb , which can be formalized by the following relation:

Z(1)Tbn1 =
{

Tbn1,...,lb → Z(1)1,...,lb , Z(1)lb+1, . . . , Z(1)K/2
}

, (33)

where Z(1)1,...,K/2 =
{

min
(∣∣Z(1)1,...,K/2

∣∣), . . . , max
(∣∣Z(1)1,...,K/2

∣∣)}
1,...,K/2.

This approach will provide less distortion of the audio signal An1,...,lA during its
inverse recovery An′1,...,lA by wavelet coefficients Z(1)1,...,K/2 and Y(1)1,...,K/2, since both
the audio signal An1,...,lA and text information Tbn1,...,lb are in the same normalization scale,
namely from 0 to 1, which allows us to correlate their absolute power [34,35].

Then, the operation of recursive integrating→ of all blocks of text information Tbn1,...,b
into low-frequency wavelet coefficients Z(1, . . . , L− 1)1,...,K/2 at all 1, . . . , L− 1 levels of the
wavelet decomposition of the audio signal An1,...,lA followed by their scalar product with
low-frequency Di (LPF-D) and high-frequency Vi (HPF-D) orthogonal Daubechies wavelet
filters for decomposition (Figure 1) can be written as follows:

Z(1)1,...,K/2 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An1,...,lA

)
jDi


1,...,K

↓ 2 (34)

Y(1)1,...,K/2 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An1,...,lA

)
jVi


1,...,K

↓ 2 (35)

Z(1)Tbn1 = Tbn1 → Z(1)1,...,K/2(Key31) (36)

where K = lA + lF − 1, k = 1, . . . , K, i = k + 1 − j, Key31 = {min
(∣∣Z(1)1,...,K/2

∣∣) , . . . ,
max

(∣∣Z(1)1,...,K/2
∣∣)}1,...,lb , and

Z(2)1,...,K/2 =

 min(k, lZ(1))

∑
j=max(1, k+1−lF)

(
Z(1)Tbn1

)
jDi


1,...,K

↓ 2, (37)

Y(2)1,...,K/2 =

 min(k, lZ(1))

∑
j=max(1, k+1−lF)

(
Z(1)Tbn1

)
jVi


1,...,K

↓ 2, (38)

Z(2)Tbn2 = Tbn2 → Z(2)1,...,K/2(Key32), (39)

where K = lZ(1) + lF − 1, k = 1, . . . , K, i = k + 1− j, Key32 = {min
(∣∣Z(2)1,...,K/2

∣∣) , . . . ,
max

(∣∣Z(2)1,...,K/2
∣∣)}1,...,lb , and

Z(L− 1)1,...,K/2 =

 min(k, lZ(2))

∑
j=max(1, k+1−lF)

(
Z(2)Tbn2

)
jDi


1,...,K

↓ 2, (40)

Y(L− 1)1,...,K/2 =

 min(k, lZ(2))

∑
j=max(1, k+1−lF)

(
Z(2)Tbn2

)
jVi


1,...,K

↓ 2, (41)

Z(L− 1)Tbnb
= Tbnb → Z(L− 1)1,...,K/2(Key3b), (42)
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where K = lZ(2) + lF − 1, k = 1, . . . , K, i = k + 1− j, Key3b = {min
(∣∣∣Z(L− 1)1,...,K/2

∣∣∣) , . . . ,

max
(∣∣∣Z(L− 1)1,...,K/2

∣∣∣)}1,...,lb , and

Z(L)1,...,K/2 =

 min(k, lZ(L−1))

∑
j=max(1, k+1−lF)

(
Z(L− 1)Tbnb

)
j
Di


1,...,K

↓ 2, (43)

Y(L)1,...,K/2 =

 min(k, lZ(L−1))

∑
j=max(1, k+1−lF)

(
Z(L− 1)Tbnb

)
j
Vi


1,...,K

↓ 2, (44)

where K = lZ(L−1) + lF − 1, k = 1, . . . , K, i = k + 1 − j, and Z(1, . . . , L)1,...,K/2,
Y(1, . . . , L)1,...,K/2 are low-frequency and high-frequency wavelet coefficients for 1, . . . , L, the
levels of audio signal An1,...,lA and decomposition Z(1, . . . , L− 1)Tbn1,...,b

are low-frequency
wavelet coefficients of decomposition levels 1, . . . , L− 1 with integrated→ blocks of text
information Tbn1,...,b in accordance with Key31,...,b = {Key31, Key32, . . . , Key3b}1,...,blb

.
If we shorten expressions (34)–(44), we obtain the operation of recursive integrating→

of text information Tbn1,...,b into low-frequency wavelet coefficients Z(1, . . . , L− 1)1,...,K/2
of the audio signal An1,...,lA (Figure 1), according to the following formulas:

Z(1)1,...,K/2 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An1,...,lA

)
jDi


1,...,K

↓ 2, (45)

Y(1)1,...,K/2 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An1,...,lA

)
jVi


1,...,K

↓ 2, (46)

where K = lA + lF − 1, k = 1, . . . , K, i = k + 1− j;

Z(1, . . . , L− 1)Tbn1,...,b
= Tbn1,...,b → Z(1, . . . , L− 1)1,...,K/2(Key31,...,b), (47)

Z(2, . . . , L)1,...,K/2 =

min(k, lZ(1,...,L−1))

∑
j=max(1, k+1−lF)

(
Z(1, . . . , L− 1)Tbn1,...,b

)
j
Di


1,...,K

↓ 2, (48)

Y(2, . . . , L)1,...,K/2 =

min(k, lZ(1,...,L−1))

∑
j=max(1, k+1−lF)

(
Z(1, . . . , L− 1)Tbn1,...,b

)
j
Vi


1,...,K

↓ 2, (49)

where K = lZ(1,...,L−1) + lF − 1, k = 1, . . . , K, i = k + 1 − j, Key31,...,b =

{min
(∣∣∣Z(1, . . . , L− 1)1,...,K/2

∣∣∣) , . . . , max
(∣∣∣Z(1, . . . , L− 1)1,...,K/2

∣∣∣)}1,...,blb .

Then, to reconstruct the audio signal An′1,...,lA with the text Tbn1,...,b integrated →
into it (Figure 1), it is required to perform the operation of doubling ↑ 2 the low-frequency
Z(1, . . . , L− 1)Tbn1,...,b

, Z(L)1,...,K/2

Z(1, . . . , L− 1)Tbn1,...,b
↑ 2 =


(

Z(1, . . . , L− 1)Tbn1,...,b

)
1
, 0,
(

Z(1, . . . , L− 1)Tbn1,...,b

)
2
, 0, . . .

. . . , 0,
(

Z(1, . . . , L− 1)Tbn1,...,b

)
K/2


1,...,K

, (50)

Z(L)1,...,K/2 ↑ 2 = {Z(L)1, 0, Z(L)2, 0, . . . , 0, Z(L)K/2}1,...,K, (51)

and high-frequency Y(1, . . . , L)1,...,K/2

Y(1, . . . , L)1,...,K/2 ↑ 2 =
{

Y(1, . . . , L)1, 0, Y(1, . . . , L)2, 0, . . . , 0, Y(1, . . . , L)K/2
}

1,...,K, (52)
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wavelet coefficients followed by the sum of the results of their scalar products with the
coefficients of the orthogonal Daubechies wavelet filters of low R (LPF-R) and high W
(HPF-R) frequencies for reconstruction at each 1, . . . , L level of the wavelet decomposition,
according to the expression

An
′
1,...,lA

=

((
min(k,2lZ(1,...,L−1)−1)

∑
j=max(1, k+1−lF)

(
Z(1,...,L−1)Tbn1,...,b

↑2
)

j
Ri

)
1,...,K

+

(
min(k,2lZ(1,...,L−1)−1)

∑
j=max(1, k+1−lF)

(
Y(1,...,L−1)

1,..., K
2
↑2
)

j
Wi

)
1,...,K

)
+

+

((
min(k,2lZ(L)−1)

∑
j=max(1, k+1−lF)

(
Z(L)

1,..., K
2
↑2
)

j
Ri

)
1,...,K

+

(
min(k,2lZ(L)−1)

∑
j=max(1, k+1−lF)

(
Y(L)

1,..., K
2
↑2
)

j
Wi

)
1,...,K

)
,

(53)

where K = 2lZ(1,...,L) − 1 + lF − 1, k = 1, . . . , K, i = k + 1− j.
Then, the operation of recursively extracting all blocks of text information Tbn1,...,b from

low-frequency wavelet coefficients Z(1, . . . , L− 1)Tbn1,...,b
at all 1, . . . , L− 1 levels of the wavelet

decomposition of the audio signal An′1,...,lA (Figure 2) can be represented as follows:

Z(1)Tbn1 =

 min(k, lA)

∑
j=max(1, k+1−lF)

(
An′1,...,lA

)
jDi


1,...,K

↓ 2, (54)

where K = lA + lF − 1, k = 1, . . . , K, i = k + 1− j,

Tbn1,...,b = Z(1, . . . , L− 1)Tbn1,...,b
(Key31,...,b), (55)

Z(2, . . . , L− 1)Tbn2,...,b
=

min(k, lZ(1,...,L−2))

∑
j=max(1, k+1−lF)

(
Z(1, . . . , L− 2)Tbn1,...,b−1

)
j
Di


1,...,K

↓ 2, (56)

where K = lZ(1,...,L−2) + lF − 1, k = 1, . . . , K, i = k + 1 − j,
Key31,...,b = {Key31, Key32, . . . , Key3b}1,...,blb

.
Thus, we have the following operations:
(1) integrating→ text information Tbn1,...,b into low-frequency wavelet coefficients

Z(1, . . . , L− 1)1,...,K/2 of an audio signal An1,...,lA followed by their scalar product with
low-frequency Di (LPF-D) and high-frequency Vi (HPF-D) orthogonal Daubechies wavelet
filters for decomposition (45)–(49) (Table A1 in Appendix A);

(2) reconstructing the audio signal An′1,...,lA with the text Tbn1,...,b integrated→ into it
by low-frequency Z(1, . . . , L− 1)Tbn1,...,b

, Z(L)1,...,K/2 and high-frequency Y(1, . . . , L)1,...,K/2
wavelet coefficients (53) (Table A2 in Appendix A);

(3) extracting text information Tbn1,...,b from low-frequency wavelet coefficients
Z(1, . . . , L− 1)Tbn1,...,b

of the audio signal An′1,...,lA (54)–(56) (Table A3 in Appendix A).
These are the main scientific results of the proposed method of steganographic hiding

of text information in an audio signal based on the wavelet transform.

3. Results of Scientific Experimental Research

A computer model of the method of steganographic protection of text information
based on the wavelet transform was modeled and studied in the MATLAB R2021b software
and mathematical complex using a set of the following libraries: Signal Processing Toolbox,
Wavelet Toolbox, Audio Toolbox, Text Analytics Toolbox, Filter Design HDL Coder, DSP
System Toolbox, Communications Toolbox, Statistics and Machine Learning Toolbox.

In the experimental study, the initial audio signal for the proposed method of stegano-
graphic hiding of text information is a mono recording of the announcer in a male voice.
The duration of mono recording is 91 s of the poem The Road Not Taken, by Robert Frost,
in audio format WAV with a sampling rate of 44.1 kHz and a quantization bit depth of
16 bits per sample. Therefore, the stream of the bit sequence of audio data at the input of
the computer model of the developed method will be—705.6 Kbps, and the total amount of
audio data will be—7.8 MB.
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The audio signal was recorded using a sound card with a maximum sampling rate of
192 kHz, number of bits per sample of 24 bits/sample, and a signal-to-noise ratio of 116 dB
using a unidirectional 16-bit condenser microphone with an audio sensitivity of 110 dB.

Figure 4 shows the original audio signal before steganographic processing to embed
secret text information, and Figure 5 shows the wavelet coefficients of the 17th level of
decomposition, where the Daubechies function of the 12th order was used as a generating
wavelet function. It should be noted that the optimal choice of the generating wavelet
function and the number of decomposition levels are not trivial tasks, since the speech
signal is a non-stationary process, and it is not possible to predict changes in its spectral
component over time. Therefore, in practice, it is recommended to use the smoothest
wavelet functions with a large number of zero moments (function order) and maximum
number of possible levels of decomposition, which is determined through the energy of the
signal under study and the wavelet function. This will make the wavelet spectrum of the
speech signal most suitable for integrating text information.
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As the initial text information (to be hidden) in the method under study, the poem The
Road Not Taken by Robert Frost was used in text format TXT in the amount of 740 characters
according to the rules of ASCII encoding, where 8 bits are allocated per character, from
which it follows that the total amount of text information at the input of the computer
model of the developed method will be 740 bytes.

Figure 6 shows the original text information in symbolic form before steganographic
embedding in order to hide it in the audio signal, taking into account the psychophysiolog-
ical features of human hearing. Figure 7 also shows text information, but already encoded
according to the ASCII encoding rules. It is the normalized values of ASCII codes that we
must mask as best as possible in a highly redundant audio data stream, to hide the very
fact of text transmission.
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Table 1 presents the results of an experimental study, namely, quantitative estimates of
the effectiveness of the existing stego-system based on wavelet transform under conditions
of passive or deliberate distortion of text information hidden in the audio signal were
obtained by applying redundancy reduction methods (compression).
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Table 1. The efficiency indicators of the stego-system based on the wavelet transform before the
implementation of the developed method.

Audio Audio Text

CR CC NRMSE SNR PSNR CC NRMSE SNR PSNR

1 0.9999 0.0060 36.7794 63.0616 1 0 ∞ ∞
2 0.9978 0.0161 34.5934 59.8903 1 0 ∞ ∞
4 0.9915 0.0373 32.1520 55.4112 1 0 ∞ ∞
6 0.9861 0.0681 30.2330 51.6068 1 0 ∞ ∞
8 0.9778 0.0986 28.6479 47.9976 0.9999 0.0032 39.2855 64.1399

10 0.9676 0.1091 26.2088 43.5677 0.9792 0.1132 35.2855 58.1399
12 0.9564 0.1212 24.3915 40.6508 0.9596 0.1823 29.9880 47.8424
14 0.9407 0.1478 22.3410 37.6270 0.9378 0.2488 25.3163 40.1707
16 0.9335 0.2238 20.8485 33.2192 0.9176 0.3345 21.4123 34.2864
18 0.9215 0.2510 18.2160 31.4752 0.8958 0.3919 17.2365 30.0909
20 0.9147 0.2931 16.8701 28.2139 0.8739 0.4931 14.6098 28.4592
22 0.9032 0.3535 14.3410 26.6270 0.8524 0.4711 12.0487 24.4780
24 0.8945 0.3923 12.8485 23.2192 0.8343 0.5194 10.9584 21.0584
26 0.8874 0.4194 10.2160 19.4752 0.8130 0.5943 8.1075 17.0493
28 0.8773 0.4583 8.8701 15.2139 0.7855 0.6109 6.8347 14.7563
30 0.8632 0.4984 6.8333 11.8327 0.7453 0.6893 4.0383 10.958

The main task formulated earlier is to increase the robustness of the stego-system to
compression algorithms, so that when compressing a steganocoded audio signal, the text
information that is hidden inside it remains as complete as possible. Objective metrics
are used to automate the processes of evaluating the effectiveness of embedding text
information in an audio signal, which allow evaluating the distortions introduced by the
stego-system into the original audio signal. As such, criteria for evaluating the effectiveness
of the stego-system include objective metrics such as compression ratio (CR), correlation
coefficient (CC), normalized root mean square error (NRMSE), and signal-to-noise ratio
(SNR), peak signal-to-noise ratio (PSNR). It should be noted that CC, NRMSE, SNR, and
PSNR are very sensitive to changes in the amplitude of the audio signal. Since it is the
change in the amplitude of the audio signal that characterizes the degree of its distortion,
this is exactly what we need to evaluate the quality of masking text information in an
audio container, since this process entails signal distortion (amplitude distortion). Also, in
this experimental study, Daubechies wavelet filters of the 12th order were used. This fact
should be taken into account when interpreting the results obtained in CR, CC, NRMSE,
SNR, and PSNR, which directly depend on the specific implementation of the audio signal,
text information, and the selected wavelet filter, which will result in changes in the critical
compression threshold in different versions of the experiment.

The obtained values of performance indicators should be interpreted as follows: with
CR = 1, the steganocoded audio signal is not subjected to distortions introduced by the com-
pression algorithm; at the same time, a very high psychophysiological model of sound percep-
tion (masking) is observed, which is confirmed by indicators CC = 0.9999, NRMSE = 0.0060,
SNR = 36.7794, and PSNR = 63.0616. In this case, text information, when extracted from the
audio signal, has ideal performance CC = 1, NRMSE = 0, SNR = ∞, and PSNR = ∞, and
this means that text information has not been subjected to the slightest distortion and is
completely integral. The infinity symbol ∞ in this case means an infinitely high value of
the criterion. According to Table 1, the parsed text information will match the full copy of
the input text; that is, at the output of the transformations, we will have a text of the form
as in Figure 6.

Figure 8 shows the wavelet coefficients after the audio signal is compressed by six
times, but the integrity of the text information remains unchanged, which is ideal.
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Figure 8. Wavelet coefficients of compressed steganocoded audio signal by six times with full integrity
of text information (existing method).

It should be noted that in the existing method, the indicator CR = 6 is the boundary
value at which text information is not subjected to distortions of the compression algorithm;
this can be seen by analyzing the values CC = 1, NRMSE = 0, SNR = ∞, and PSNR = ∞ while
maintaining a sufficient quality indicator in terms of masking according to CC = 0.9861,
NRMSE = 0.0681, SNR = 30.2330, and PSNR = 51.6068. In other words, at a compression
level of six times, there are no audible differences between the original and steganocoded
audio signals. This is the so-called ‘critical level of compression’, at which there is no
distortion of text information, by raising the threshold above the critical compression level,
distortion occurs.

For clarity, we present the values of the wavelet coefficients of the compressed steganocoded
audio signal by a factor of 30 in Figure 9. From CC = 0.8632, NRMSE = 0.4984, SNR = 6.8333,
and PSNR = 11.8327, it can be seen that under such conditions, it is not necessary to talk
about the good sound quality of the audio signal. Also, due to the fact that there is a signifi-
cant reduction in the redundancy of the steganocoded audio signal, it becomes problematic
to maintain the integrity of text information in it.
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Consider what happens to text information with such compression. Figure 10 shows
the recovered text information when the steganocoded audio signal is compressed by
30 times. According to the indicators from Table 1, with CR = 30, we have text distortion in
proportion to the values CC = 0.7453, NRMSE = 0.6893, SNR = 4.0383, and PSNR = 10.958,
which are sufficiently large distortions, the result of which is clearly visible in Figure 10.

As can be seen from the above, the existing method of steganographic hiding of text
information in an audio signal based on the wavelet transform shows rather mediocre
results in terms of compression resistance.

Let conduct an experimental study of the developed method and clearly see its advan-
tage over the existing one.

Table 2 presents the results of an experimental study of the developed method for
hiding text information in an audio signal based on the wavelet transform, and as will be
seen below, the proposed approach significantly increases the robustness of stego-system
to the deliberate and passive elimination of redundancy to distort text information.
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Table 2. The efficiency indicators of the stego-system based on the wavelet transform after the
implementation of the developed method.

Audio Audio Text

CR CC NRMSE SNR PSNR CC NRMSE SNR PSNR

1 0.9999 0.0059 36.7274 63.7437 1 0 ∞ ∞
2 0.9988 0.0134 34.9352 59.5324 1 0 ∞ ∞
4 0.9924 0.0296 32.3301 55.1235 1 0 ∞ ∞
6 0.9832 0.0891 30.0373 51.0843 1 0 ∞ ∞
8 0.9771 0.1001 28.1047 47.4433 1 0 ∞ ∞

10 0.9601 0.1389 26.4402 43.5682 1 0 ∞ ∞
12 0.9543 0.1720 24.0921 40.8519 1 0 ∞ ∞
14 0.9471 0.1923 22.3241 37.8226 1 0 ∞ ∞
16 0.9332 0.2332 20.7392 33.5203 1 0 ∞ ∞
18 0.9211 0.2720 18.2974 31.2651 1 0 ∞ ∞
20 0.9109 0.2990 16.3873 28.3405 1 0 ∞ ∞
22 0.9033 0.3568 14.5520 26.3673 0.9999 0.0023 39.7464 64.9473
24 0.8912 0.3803 12.3082 23.4577 0.9734 0.1035 35.4436 58.7293
26 0.8866 0.4528 10.1325 19.3594 0.9554 0.1692 29.5677 47.2895
28 0.8723 0.4933 8.0376 15.4857 0.9307 0.2312 25.5643 40.1043
30 0.8611 0.5383 6.3243 11.5476 0.9133 0.3433 21.3553 34.3475

In doing so CR = 1, we have CC = 0.9999, NRMSE = 0.0059, SNR = 36.7274, and
PSNR = 63.7437, which corresponds to the high performance of the psychophysiological
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model of audio signal perception (masking efficiency), and CC = 1, NRMSE = 0, SNR = ∞, and
PSNR = ∞ characterizes the integrity of text information extracted from the audio signal.

Very close attention should be paid to the results shown in Table 2 for CR = 20, namely
CC = 0.9109, NRMSE = 0.2990, SNR = 16.3873, and PSNR = 28.3405: they characterize a
strong distortion of the steganographic audio signal, but according to CC = 1, NRMSE = 0.
SNR = ∞, PSNR = ∞ text information remains integrity. These results are quite remarkable,
since when compressed by 20 times, the integrity of the text is preserved in full: it is this
result that is significant in our study.

It should be remembered that, by analyzing the existing method, we obtained the
boundary value CR = 6, and in the developed, CR = 20, with full integrity of text information
in both cases. Then, we can make reasonable conclusions that by applying the developed
method of steganographic hiding of text information in an audio signal, we will get a gain
of 3.3 times compared to the existing method, thereby increasing the robustness of the
stego-system to deliberate or passive compression of the audio signal in order to distort the
embedded text information.

The wavelet coefficients of the steganocoded audio signal after 20-times compression
are shown in Figure 11. According to Table 2, CR = 20 is a borderline result, above which
text information will be distorted.
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Figure 11. Wavelet coefficients of compressed steganocoded audio signal by 20 times with full
integrity of text information (developed method).

Figure 12 shows the wavelet coefficients of the steganocoded audio signal after com-
pression by 30 times. Given such compression, according to the values of the metrics
CC = 0.9133, NRMSE = 0.3433, SNR = 21.3553, and PSNR = 34.3475, it can be concluded that
text information is distorted, but comparing them with the indicators in Table 1 at the same
compression level CC = 0.7453, NRMSE = 0.6893, SNR = 4.0383, and PSNR = 10.958, we
will come to the conclusion that objectively, we have many times gain in the fight against
distortions, all other things being equal, using the developed method of steganographic
hiding of text information in an audio signal.
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Figure 13 shows text information with 30-fold compression of a steganocoded audio
signal using the developed method. It is clearly seen that distortion occurs, but in compari-
son with the existing concealment method, the results of which are shown in Figure 10, we
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have a significant increase in the effective steganographic processing of audio signals to
embed text information.
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According to the results obtained in the experimental study, it is possible to draw
reasonable conclusions that the proposed method of steganographic protection of text
information is promising in this area and requires further research.

4. Conclusions

The developed method of steganographic hiding of text information in audio signal
based on the wavelet transform increases the robustness of the stego-system to compression
of the steganocoded audio signal, while maintaining the integrity of text information, taking
into account the features of the psychophysiological model of sound perception.

The results of the obtained experimental studies confirm the hypothesis; namely, the
proposal to use recursive embedding in the low-frequency region (approximating wavelet
coefficients) followed by scalar product with wavelet function, which will increase the
average power of hidden data. The results are given in Table 2 for CR = 20; namely,
CC = 0.9109, NRMSE = 0.2990, SNR = 16.3873, and PSNR = 28.3405: they characterize a
strong distortion of the steganographic audio signal, but according to CC = 1, NRMSE = 0,
SNR = ∞, and PSNR = ∞, text information remains integrity. These results are quite
remarkable, since when compressed by 20 times, the integrity of the text is preserved
completely; this result is most significant in our study.

It should be noted that upon analyzing the existing method, which is based on em-
bedding text information in the high-frequency component (detailed wavelet coefficients)
we obtained the limit CR = 6, and in the developed, CR = 20, with full integrity of the text
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information in both cases. Thus, we can make reasonable conclusions that by applying the
developed method of steganographic hiding of text information in audio signal, we will
get a gain of 3.3 times compared to the existing method. Therefore, the resistance of the
stego-system is increased by 3.3 times to deliberate or passive compression of the audio
signal in order to distort the embedded text information.

The results obtained in this scientific study can be used to build systems for hiding
text information in an audio file, but unlike existing methods, the developed method
implements the proposed approach of the scalar product of the low-pass Daubechies filter
with wavelet coefficients, where blocks of text information are already integrated. Therefore,
there is an increase in the average power of low-frequency wavelet coefficients and an
increase in the power of normalized ASCII codes of text information. At the same time, the
developed method introduces more distortions into the signal than the existing methods,
but in case of usage of audio signal with a high bitrate, we will get at the output a signal
with indistinguishable quality. Because of this, we will increase by 3.3 times the resistance to
intentional or unintentional compression of the output audio signal. Another disadvantage
of the proposed method is that the amount of information that can be integrated into audio
signal with equal measures of quality will be significantly less than in existing approaches,
given the fact that the error will grow with each successive level of wavelet decomposition.
Therefore, it must be emphasized that this approach will be very effective if not a large
amount of data is hidden in the audio container; that is, with an increase in the amount
of textual information that must be integrated into the audio signal, the effectiveness of
this approach will decrease. In case of a need to hide a small amount of data, this approach
will be many times more efficient than existing methods. The authors plan to consider
specific quantitative assessments, at which this method will not be effective, in following
scientific studies. Currently, we can conclude that when integrating text information with a
volume of 740 bytes into audio signal with a volume of 7.8 MB, we get very decent results:
an increase in the critical compression threshold of 3.3 times.
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Appendix A

Listing A1. MATLAB Code for Integrating Text Information into Wavelet Coefficients of an Audio Signal.

function [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname)
% Integrating text information into wavelet coefficients of an audio signal
% Input parameters:
% x_in - input audio signal
% T_in - input text information
% wname - wavelet filter
% Output parameters:
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% c_in - wavelet coefficients with text information
% l_in - levels of wavelet decomposition for reconstruction
% Key1 - key for de-interleaving
% Key2 - key for de-sorting
% Key3 - key for extracting
% Example 1
% x_in = audioread('audio_input.wav');
% T_in = fileread('text_input.txt');
% wname = 'db12';
% [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname);
% Example 2
% x_in = randperm(1000);
% T_in = 'Text information';
% wname = 'db6';
% [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname);
%
% O. Lavrynenko 08-December-2021.

% Characters in ASCII codes
ASCII = double(unicode2native(T_in));
% Interleaving
k = randperm(length(ASCII));
ASCII_rand = ASCII(k);
% Key 1 for de-interleaving
[~,Key1] = sort(k);
% Sorting
[ASCII_sort,k] = sort(ASCII_rand);
% Key 2 for de-sorting
[~,Key2] = sort(k);
% Normalization
ASCII_norm = ASCII_sort/127;
% Wavelet filters for decomposition
[Lo_D,Hi_D] = wfilters(wname,'d');
% Maximum level of wavelet decomposition
lev = fix(log2(length(x_in)/(length(Lo_D)-1)));
% Maximum level of integration
lev_int = fix(log2(length(x_in)/length(ASCII_norm)));
% Division into blocks
lb = ceil(length(ASCII_norm)/(lev_int));
ASCII_zer = [ASCII_norm,zeros(1,lb*(lev_int)-length(ASCII_norm))];
ASCII_blocks = reshape(ASCII_zer,[lb,lev_int]);
% Initialization
s = size(x_in);
x_in = x_in(:).';
Key3 = [];
c_in = [];
l_in = zeros(1,lev+2,'like',real(x_in([])));
l_in(end) = length(x_in);
% Wavelet decomposition
for k = 1:lev

% Single-level 1-D discrete wavelet transform
[x_in,d_in] = dwt(x_in,Lo_D,Hi_D);
% Integration
if k<=lev_int

[d_sort,i] = sort(abs(d_in));
i = find(d_sort>mean(d_sort)/2 & d_sort<mean(d_sort)*2);
i = i(1:lb);

d_in(i) = ASCII_blocks(1:lb,k);
% Key 3 for extraction
Key3 = [Key3 i'];

end
c_in = [d_in c_in];
l_in(lev+2-k) = length(d_in);

end
% Wavelet coefficients of the last level of decomposition
c_in = [x_in c_in];
l_in(1) = length(x_in);
% Transpose
if s(1)>1

c_in = c_in.';
l_in = l_in.';

end
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Listing A2. MATLAB Code for Reconstructing an Audio Signal from Wavelet Coefficients with Text Information.

function x_out = wavaudiorec(c_in,l_in,wname)
% Reconstructing an audio signal from wavelet coefficients with text
information
% Input parameters:
% c_in - wavelet coefficients with text information
% l_in - levels of wavelet decomposition for reconstruction
% wname - wavelet filter
% Output parameters:
% x_out - audio signal with text information
% Example 1
% x_in = audioread('audio_input.wav');
% T_in = fileread('text_input.txt');
% wname = 'db12';
% [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname);
% x_out = wavaudiorec(c_in,l_in,wname);
% Example 2
% x_in = randperm(1000);
% T_in = 'Text information';
% wname = 'db6';
% [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname);
% x_out = wavaudiorec(c_in,l_in,wname);
%
% O. Lavrynenko 08-December-2021.

% Determine whether input is column vector
IsColumn = iscolumn(c_in);
% Transpose
if IsColumn

c_in = c_in.';
l_in = l_in.';

end
% Wavelet filters for reconstruction
[Lo_R,Hi_R] = wfilters(wname,'r');
% Initialization
x_out = c_in(1:l_in(1));
% Wavelet reconstruction
for p = length(l_in)-2:-1:1

% Detail coefficients
d_out = detcoef(c_in,l_in,p);
% Single-level inverse discrete 1-D wavelet transform
x_out = idwt(x_out,d_out,Lo_R,Hi_R,l_in((length(l_in)+1)-p));

end
% Transpose
if IsColumn

x_out = x_out.';
end

Listing A3. MATLAB Code for Extracting Text Information from Wavelet Coefficients of an Audio Signal.

function [T_out,c_out,l_out] = wavtextext(x_out,wname,Key1,Key2,Key3)
% Extracting text information from wavelet coefficients of an audio
signal
% Input parameters:
% x_out - audio signal with text information
% wname - wavelet filter
% Key1 - key for de-interleaving
% Key2 - key for de-sorting
% Key3 - key for extracting
% Output parameters:
% T_out - output text information
% c_out - wavelet coefficients with text information
% l_out - levels of wavelet decomposition for reconstruction
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% Example 1
% x_in = audioread('audio_input.wav');
% T_in = fileread('text_input.txt');
% wname = 'db12';
% [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname);
% x_out = wavaudiorec(c_in,l_in,wname);
% [T_out,c_out,l_out] = wavtextext(x_out,wname,Key1,Key2,Key3);
% Example 2
% x_in = randperm(1000);
% T_in = 'Text information';
% wname = 'db6';
% [c_in,l_in,Key1,Key2,Key3] = wavtextint(x_in,T_in,wname);
% x_out = wavaudiorec(c_in,l_in,wname);
% [T_out,c_out,l_out] = wavtextext(x_out,wname,Key1,Key2,Key3);
%
% O. Lavrynenko 08-December-2021.

% Wavelet filters for decomposition
[Lo_D,Hi_D] = wfilters(wname,'d');
% Maximum level of wavelet decomposition
lev = fix(log2(length(x_out)/(length(Lo_D)-1)));
% Initialization
s = size(x_out);
x_out = x_out(:).';
[numRows,numCols] = size(Key3);
ASCII_ext = [];
c_out = [];
l_out = zeros(1,lev+2,'like',real(x_out([])));
l_out(end) = length(x_out);
% Wavelet decomposition
for k = 1:lev

% Single-level 1-D discrete wavelet transform
[x_out,d_out] = dwt(x_out,Lo_D,Hi_D);
% Extraction
if k<=numCols

i = d_out(Key3(1:numRows,k));
% ASCII codes
ASCII_ext = [ASCII_ext i'];

end
c_out = [d_out c_out];
l_out(lev+2-k) = length(d_out);

end
% Wavelet coefficients of the last level of decomposition
c_out = [x_out c_out];
l_out(1) = length(x_out);
% Transpose
if s(1)>1

c_out = c_out.';
l_out = l_out.';

end
% Combining blocks
ASCII_deblocks = reshape(ASCII_ext,[1,numRows*numCols]);
ASCII_deblocks(ASCII_deblocks==0) = [];
% De-normalization
ASCII_denorm = round(ASCII_deblocks*127);
% De-sorting
ASCII_desort = ASCII_denorm(Key2);
% De-interleaving
ASCII_derand = ASCII_desort(Key1);
% ASCII codes to characters
T_out = native2unicode(ASCII_derand);
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