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Abstract: Ground vehicles equipped with vision-based perception systems can provide a rich source
of information for precision agriculture tasks in orchards, including fruit detection and counting,
phenotyping, plant growth and health monitoring. This paper presents a semi-supervised deep
learning framework for automatic pomegranate detection using a farmer robot equipped with a
consumer-grade camera. In contrast to standard deep-learning methods that require time-consuming
and labor-intensive image labeling, the proposed system relies on a novel multi-stage transfer learning
approach, whereby a pre-trained network is fine-tuned for the target task using images of fruits
in controlled conditions, and then it is progressively extended to more complex scenarios towards
accurate and efficient segmentation of field images. Results of experimental tests, performed in a
commercial pomegranate orchard in southern Italy, are presented using the DeepLabv3+ (Resnet18)
architecture, and they are compared with those that were obtained based on conventional manual
image annotation. The proposed framework allows for accurate segmentation results, achieving an
F1-score of 86.42% and IoU of 97.94%, while relieving the burden of manual labeling.

Keywords: agricultural robotics; precision farming; deep learning; fruit detection; multi-stage
transfer learning

1. Introduction

Accurate and efficient in-field data gathering is a major requirement to increase crop
monitoring and management efficiency, and improving the sustainability of agricultural
processes. While manual survey and sampling by experts are currently adopted to get
information on crop growth and health, this process is labour intensive, expensive and
often destructive. Sampling is typically done on a limited number of plants, and mea-
sures can consequently be affected by sparsity as well as by human bias, resulting in
inaccurate estimations.

Unmanned ground vehicles (UGVs) equipped with visual sensors have been recently
proposed as a valuable technology to automate data acquisition over large farms, while
simultaneously increasing accuracy on a narrow scale as well as reducing execution time
and costs [1]. Related to this is the development of robust image segmentation techniques
in order to extract meaningful information from collected data. For images captured at
an orchard, this entails automatically labeling each pixel, or groups of pixels as repre-
senting fruits, trunks, branches or foliage. The parsed information can then be used in
higher-level tasks such as fruit counting, plant phenotyping or crop health and growth
monitoring, thus providing a rich source of information for the farmers. It can also enable
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further robotic operations such as automated harvesting, weeding, variable rate spraying,
etc. [2].

Early work in the field of image segmentation for agricultural applications is based on
hand-engineered visual features, mainly in color and texture spaces, that allow fruits to be
discriminated from non-fruit regions. For instance, in [3], color and texture characteristics
are used to identify green and red apples. Specifically, texture-based edge detection is
combined with redness measurements and area thresholding, followed by circular fitting,
in order to determine the positions of apples in the image plane. A similar approach was
carried out by [4]. Both papers point out the difference between color and texture properties
as means for extracting information. They show how color properties allow a pixel-by-pixel
analysis of the image, while texture properties, on the other hand, allow region-based
analysis. Combining feature analysis methods based on color, shape and size together, it
is possible to increase the accuracy of recognition. Methods that involve the extraction of
shape-based features have been also proposed to improve fruit detection [5]. Although
these approaches achieve accurate results for the specific crop/data set they are designed
for, they can not be easily adopted for different crops, nor can data be acquired under
different conditions.

More recently, deep learning methods have been proposed to increase image seg-
mentation accuracy and robustness for variable environmental conditions [2,6–8]. So far,
the main drawback of deep learning is the need for massive data sets in order to train
from scratch the large number of weights of the whole net. The quantity and quality of
labeled data remain another major limitation. Data must be properly annotated for the
network to learn its prediction task, and this is generally done manually using image
labeling tools. Manual labeling is particularly demanding, especially in the case of using
natural images where scenes may be highly cluttered and difficult to interpret even for
an expert user. Pre-trained networks and transfer learning strategies can mitigate this
problem, since they allow the knowledge from a similar domain to be transferred in order
to perform new tasks [9]. Transfer learning is based on the hypothesis that the first layers
of the nets similarly interpret the data, regardless of the specific goal. Hence, it is not
necessary to intensively train these first layers again, since the results would be close to the
initial conditions; meanwhile, only the final layers need to be retrained based on a smaller
target task data set. In [8], transfer learning is proposed for apple, mango and almond
recognition. Two main issues are addressed: which way is the best to initialize a network
for the task (due to the differences between data captured and those that were used to feed
the pre-trained network); how much training data is required to capture dataset variability.
Data augmentation and its benefits are also outlined. In [7], transfer learning is used to
train a network for image segmentation in vineyards, in order to identify different classes
of interest (i.e., grape, trunk, canopy, pole).

Pseudo-labeling has been proposed to reduce the need for labeled data, while main-
taining high network performance [10]. Pseudo-labeling employs a model that is trained
on a manually labeled data set, in order to make predictions in an unlabeled data set.
Then, it combines the manually and automatically-labeled data sets in order to train a
new model. In a previous work [11], pseudo-labeling has been shown to further boost the
performance of a pre-trained DeepLabv3+ architecture for detecting grapes in low-quality
natural images.

This paper further extends prior research by proposing a novel general-purpose frame-
work to segment pomegranate fruits in field images acquired by a ground robotic platform,
using multi-stage transfer learning and pseudo-labeling techniques. Pomegranates typ-
ically mature over quite a dilated time frame, and this consequently calls for constant
and long-term field monitoring, which would take great advantage of process automation
techniques. Nevertheless, only a few studies can be found in the literature that apply
sensor-based technologies to pomegranate orchards, and these systems mainly utilized
user-supplied high-resolution images and standard image processing approaches [12–15].



Sensors 2022, 22, 5821 3 of 16

Recently, [16] proposed a modified Faster R-CNN (FR-CNN) for fruit detection that was
tested on five types of fruits including pomegranates.

To the best of our knowledge, this is the first study that demonstrates a ground
robotic system and deep learning techniques for in-field data gathering and processing
in pomegranate orchards. Notable examples of agriculture robots for fields operations in
different cultivations can be found, for example, in [17–19].

Image acquisition is performed using a consumer-grade camera, namely an Intel
RealSense D435 camera (Santa Clara, CA, USA) that is mounted onboard a tracked farmer
robot that traverses the orchard. A deep learning segmentation framework is then ap-
plied for the separation of fruits from non-fruit regions using multi-stage transfer learning,
whereby a pre-trained network is initially tuned on pomegranate images acquired under
controlled conditions; this discrimination ability is progressively improved to segment field
images with increasingly complex scenarios. Specifically, images of fruits arranged on a flat
surface with a neutral background are first acquired both under controlled and natural light-
ing conditions. Images acquired under uniform lighting are automatically labeled, based
on color thresholds in RGB space followed by morphological operations, and then used for
transfer learning from a pre-trained architecture. The network is successively applied to
produce accurate labels for the images acquired under natural lighting disturbances, for
which standard filtering techniques do not prove effective, mainly due to the presence of
shadows. These labels are, in turn, included to retrain the network, which is finally applied
to segment field images. In order to further enhance the network’s performance, two
strategies are also proposed to minimize false negatives and false positives. In the first case,
the network is retrained after adding negative examples (i.e., images of non-fruit regions);
in the second case, field images that include both fruit and non-fruit regions are included.
The DeepLabv3+ [20] pre-trained architecture has been chosen for transfer learning, since it
has been demonstrated to be effective for the semantic segmentation of natural images [21].
However, the proposed approach is independent of the type of pre-trained architecture;
therefore, other architectures may be alternatively adopted without changing the overall
framework.

Experiments performed in a commercial pomegranate orchard in Apulia, southern
Italy, are presented. It is shown that the proposed approach allows for accurate segmen-
tation results, with an F1-score of 86.42% and IoU of 97.94%, leading to classification
performance that is comparable to those obtained using the same network trained by
conventional manual image annotation, while relieving the burden of the time-consuming
manual labeling process. When compared to other deep learning approaches using manual
data set annotation (e.g., [2,16]), the proposed system shows comparable results.

It is worth noting that, although the proposed system in this study is specifically tested
in pomegranate cultivations, it can be reasonably extended to other types of fruit crops
for which pre-existing databases are available [22], since it requires only a limited number
of labeled frames acquired from the field for refinement. It should be finally noted that
the proposed segmentation framework has been proven to be effective for color images
acquired by a consumer-grade RGB-D sensor. Therefore, 2D fruit detection could be used
as a preliminary step before extracting additional fruit morphology information based on
associated 3D data.

The research is presented in the paper as follows: the acquisition system and the image
segmentation framework are detailed in Section 2; experimental results are discussed in
Section 3; conclusions are drawn in Section 4.

2. Materials and Methods

Accurate and robust image segmentation to separate fruit from non-fruit regions is
fundamental to successful fruit detection and yield estimation. This paper proposes a
semi-supervised deep learning approach to automatically segment pomegranate fruits in
natural images, beginning with fruit images that are acquired under controlled environment
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conditions. Field images are captured by consumer-grade hardware from a farm robotic
vehicle, while processing is performed off-line at the end of the acquisitions.

In the rest of this section, the data acquisition platform and the experimental environ-
ment are initially described; then, the proposed segmentation method is detailed.

2.1. Testing Platform and Data Sets

The testing platform Polibot (Figure 1) is a research ground vehicle that was completely
custom-built at the Politecnico of Bari, with the aim of achieving high mobility over chal-
lenging terrain. It features an articulated suspension system that is controlled in a purely
passive manner, but can fulfill high-load capacity, vibration isolation and trafficability over
rough terrain, similarly to a multi-leg insect. Polibot has a footprint of 1.5 × 1 m and weighs
about 70 kg, ensuring a payload of up to 40 kg. The control and acquisition systems have
been implemented under ROS (Robot Operating System).
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Figure 1. The farmer robot, Polibot, used for experimentation, equipped with a multi-sensor suite.

The Polibot’s standard sensor suite includes sensors to measure the electrical currents
drawn by the two drive motors, in addition to an MTI 680 GNSS/INS that supports RTK
cm-accuracy. The aluminum frame attached to the top plate allows the robot to be outfitted
with various dedicated sensors such as laser range finders and monitoring cameras, among
which an Intel RealSense D435 imaging system is used for crop visual data gathering in this
study. It consists of a consumer-grade active InfraRed (IR) stereo sensor (~250 €), including
a left-right IR stereo pair that provides depth information and a color camera. The color
camera is a FullHD, Bayer-patterned, rolling shutter CMOS imager. Its nominal field of
view is 69 (H) × 42 (V) deg, and runs at 30 Hz at FullHD. The stream acquired by the
color camera is spatially-calibrated and time-synchronized with the stereo pair, so that
color-aligned depth images are also available for 3D crop characterization.

Data sets were acquired at a commercial pomegranate orchard in Apulia, southern
Italy, just before harvesting (October 2021). In order to collect the data sets, the vehicle was
tele-operated along both sides of one row of 15 trees that were located at an average distance
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of about 3 m from each other. The camera was mounted about 1 m above the ground, and
acquired lateral views of the tree rows from a distance of about 1.5 m. Acquisitions were
performed at an image resolution of 1280 × 720 and frame rate of 6 Hz, accounting for a
total of 1270 frames. Considering that the farmer robot drives at an average speed of about
0.5 m/s, a frame rate of 6 Hz was found to be a good trade-off between computational
burden and pomegranate shrub coverage.

Laboratory acquisitions of about 150 different pomegranates were performed with the
same camera as the one onboard the robot, using the following two different setups: the
first one, referred to as SET1, under uniform lighting conditions; the second one, referred to
as SET2, under intense and non-uniform sun exposure. In both cases, fruits were arranged
on a flat surface of neutral color, and spread well apart from each other. The reason
for this split in the acquisitions is to insert an intermediate stage between the algorithm
developed for indoor image labeling and the network that will be used for the segmentation
of acquisitions in the field, as will be shown in the next section. Sample images from the
different data sets are reported in Figure 2.
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2.2. Image Segmentation

In the context of this study, image segmentation refers to separating fruits from
non-fruit regions as a preliminary step before agricultural tasks such as fruit grading,
counting or harvesting. To this end, a multi-stage transfer learning approach is developed,
whereby a pre-trained network is initially tuned using fruit images that were acquired under
controlled acquisitions, and then progressively extendedto more complex scenarios. The
main advantage of the proposed approach is in automating the image annotation process
required for network training, hence relieving the burden of having to use conventional
manual labeling.

The overall image processing pipeline is shown in Figure 3. Firstly, fruit images
acquired on a neutral background under controlled lighting conditions (SET1) are auto-
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matically labeled based on color thresholding, followed by morphological operations, and
then fed to a pre-trained deep learning architecture (Stage 1). This process builds a new
network that is referred to as First Controlled Environment (CE) net. The First CE net is, in
turn, used to label additional fruit images that are still acquired from a neutral background
but under natural lighting conditions (SET2) that could not be straightforwardly labeled
based on color thresholds, mainly due to the presence of shadows. Labeled images from
SET2 are then used, along with labeled images from SET1, to retrain the network (Stage 2)
and deal with non-uniform lighting conditions, leading to the so-called Final CE net.

Finally, field images that were acquired by the robot are added to the training set
for a final training stage (Stage 3). Two different kinds of field images are considered:
images containing only non-fruit regions (i.e., leaves, branches and background), and
images containing both fruit and non-fruit regions. In the first case, image masks are
obtained directly by setting to 0 all the image pixels. For the labeling of field images,
instead, the Final CE net is employed, followed by the use of morphological operations
instead of classical manual annotation. This leads to two nets, referred respectively to as
True Negative Augmented (TNA) net and Field Image Augmented (FIA) net. As will be shown
in the experimental results section, the TNA helps to reduce false positives, whereas the
FIA network leads to a reduction in false negatives.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 15 
 

 

then fed to a pre-trained deep learning architecture (Stage 1). This process builds a new 
network that is referred to as First Controlled Environment (CE) net. The First CE net is, in 
turn, used to label additional fruit images that are still acquired from a neutral back-
ground but under natural lighting conditions (SET2) that could not be straightforwardly 
labeled based on color thresholds, mainly due to the presence of shadows. Labeled images 
from SET2 are then used, along with labeled images from SET1, to retrain the network 
(Stage 2) and deal with non-uniform lighting conditions, leading to the so-called Final CE 
net. 

Finally, field images that were acquired by the robot are added to the training set for 
a final training stage (Stage 3). Two different kinds of field images are considered: images 
containing only non-fruit regions (i.e., leaves, branches and background), and images con-
taining both fruit and non-fruit regions. In the first case, image masks are obtained directly 
by setting to 0 all the image pixels. For the labeling of field images, instead, the Final CE 
net is employed, followed by the use of morphological operations instead of classical man-
ual annotation. This leads to two nets, referred respectively to as True Negative Augmented 
(TNA) net and Field Image Augmented (FIA) net. As will be shown in the experimental re-
sults section, the TNA helps to reduce false positives, whereas the FIA network leads to a 
reduction in false negatives. 

 
Figure 3. Pipeline of the image segmentation approach. 

2.2.1. Network Architecture 
In this research, the DeepLabv3+ pre-trained deep neural network is used. In 

DeepLabv3+ [20], features are extracted from a backbone network, in this case a ResNet18; 
it processes the input image, along with a set of 18 consecutive convolutional layers, where 
a pre-trained version of the network trained on more than a million images from the 
ImageNet (http://www.image-net.org, accessed on 8 August 2022) database is adopted. 
The extracted features are input to an Atrous Spatial Pyramid Pooling (ASPP) network, 
which resamples the features at arbitrary resolutions in order to achieve the best pixel-by-
pixel classification. The output of the ASPP network is passed through a 1 × 1 convolution 
to rearrange the data and obtain the final segmentation mask. A schematic representation 
of the network is depicted in Figure 4, which also shows its complexity at a glance. The 
strategy of transfer learning is thus applied to the proposed networks. Since the required 
number of the target classes is equal to 2, the last fully-connected layer of every deep net-
work is downsized to output a binary classification. In this manner, the network is not 
initialized, and thus trained from the scratch. 

Figure 3. Pipeline of the image segmentation approach.

2.2.1. Network Architecture

In this research, the DeepLabv3+ pre-trained deep neural network is used. In DeepLabv3+ [20],
features are extracted from a backbone network, in this case a ResNet18; it processes
the input image, along with a set of 18 consecutive convolutional layers, where a pre-
trained version of the network trained on more than a million images from the ImageNet
(http://www.image-net.org, accessed on 8 August 2022) database is adopted. The extracted
features are input to an Atrous Spatial Pyramid Pooling (ASPP) network, which resamples
the features at arbitrary resolutions in order to achieve the best pixel-by-pixel classification.
The output of the ASPP network is passed through a 1 × 1 convolution to rearrange the
data and obtain the final segmentation mask. A schematic representation of the network is
depicted in Figure 4, which also shows its complexity at a glance. The strategy of transfer
learning is thus applied to the proposed networks. Since the required number of the target
classes is equal to 2, the last fully-connected layer of every deep network is downsized
to output a binary classification. In this manner, the network is not initialized, and thus
trained from the scratch.

http://www.image-net.org
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Figure 4. Block diagram of the DeepLabv3+ architecture using a set of 18 consecutive convolutional
layers.

2.2.2. Controlled Environment (CE) Net

RGB images of harvested pomegranates located on a neutral background and acquired
under uniform lighting conditions (SET1) are first fed to an algorithm using color-based
thresholding, in order to obtain ground-truth masks. Labels at this step have several noise
blobs in the background as well as some stems, which need to be removed. In order to
improve the labels, morphological operations are applied to automatically clean all masked
images. The following operations, based on the connected components, are applied to each
binary mask:

1. Noise removal: connected components with areas that are below a threshold were
eliminated.

2. Stem discarding: morphological erosion is used to separate the protruding stems of
each pomegranate from the rest of the fruit. The resulting connected components are
approximated by ellipses. Stems are thus removed by a thresholding operation on the
ellipse’s eccentricity. The mask is finally restored by a dilation operation.

3. Hole-filling: a hole-filling operation is used to make labels uniform, even in the shaded
areas.

An example of a labeled image from SET1 is shown in Figure 5.
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Figure 5. Sample image from SET1 (left) and the corresponding labeled image obtained by color
threshold and morphological operations (right).

During the training phase, the more data that are available, the better. In order to
satisfy this constraint, data augmentation is performed by rotating, reflecting and varying
contrast and exposure in such ways that from each original image of SET1, 20 new images
are obtained, as shown in Figure 6 for the sample case of Figure 5.

Labeled images are then used to tune a pre-trained network (Stage 1) and generate
the First Controlled Environment (CE) net. The First CE net is then applied to produce image



Sensors 2022, 22, 5821 8 of 16

labels for images from SET2. Images from SET2 provide poor results when segmented using
standard color-based filtering techniques, mainly as a result of the presence of shadows.
Segmentation results for four sample images from SET2 are shown in Figure 7. This process
facilitates the creation of labels that conventional color threshold tools are not able to obtain,
due to the strong contrasts and chromatic distortions of the images. Also in this case,
morphological operations are applied as previously described to improve the ground-truth
masks that are used for subsequent training (see Figure 8 as an example).
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Specifically, a new transfer learning stage (Stage 2) is performed using the full data set
that was obtained from all the controlled environment acquisitions (both SET1 and SET2),
resulting in the Final CE net. For simplicity’s sake, this net will be referred to as CE net
in the following. As will be shown in Section 3, this network has an excessive sensitivity
in RGB space when applied to field images, neglecting, in some cases, other parameters
such as shape. This behavior is primarily evident in the presence of dry and yellowed
leaves near the fruits, as is the case in Figure 9. The colors of those leaves tend to confuse
the network, consequently increasing the number of false positives exponentially. For this
reason, a further training stage is proposed (Stage 3), as described in the following.
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2.2.3. True Negative Augmented (TNA) Net

In order to enhance the network capability of reducing false positives, true negative
examples are added to labeled images from SET1 and SET2 as inputs for network training
(Stage 3). True negative examples are images that contain only background information,
such as fruitless images that were not necessarily acquired in the same crop type. In this
case, images taken from a vineyard during the post-harvesting stage are used, as shown
in the sample images in Figure 10. The resulting network is referred to as True Negative
Augmented (TNA) net. In Section 3, it will be shown that by applying the TNA net to the
segmentation of field images, false positives are drastically reduced, although at the cost of
a reduction in true positives, as can be seen for the sample case shown in Figure 11.
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2.2.4. Field Image Augmented Network (FIA) Net

As an alternative strategy, the data set can be augmented using in-field image examples.
Masks are generated from the frames of the first few seconds of field acquisition by applying
the CE net. No morphological finishing operations are applied to the obtained labels. A
new data set for training is then generated by adding these images to the labeled images
from SET1 and SET2 for retraining the network (Stage 3). The resulting net, referred to as
Field Image Augmented Network (FIA) net, leads to an improvement in system performance,
reducing both false negatives and false positives, as can be seen for the case shown in
Figure 12, and is discussed in detail in Section 3.
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3. Results and Discussion

This section reports on the field validation of the proposed multi-stage transfer learn-
ing approach using the experimental setup described in Section 2. Quantitative metrics
obtained from the CE, TNA and FIA networks are discussed. Results are also compared
with a conventional approach using manually labeled field frames for training.

Each network is trained using different data sets that increase in complexity. The data
sets used for training are summarized in Table 1. Specifically for the CE net, images from
controlled environments enclosed in SET 1 and SET 2 are used after augmentation. The
TNA network is trained by the addition of 100 true negative examples, including images
of leaves and other background parts (e.g., sky regions and branches). It is worth noting
that both the CE and the TNA net do not use images from the robot field acquisitions. A
relatively small number of field images (i.e., 100), including both positive and negative
examples of fruits acquired during the robot motion, are enclosed instead for the training
of the FIA network. The CE, TNA and FIA networks are trained without requiring any
manual labeling. Manually labeled field images are only used to compare the proposed
approach with a conventional training procedure.

Once trained, the generalization ability of the networks is evaluated by applying the
model to an independent (i.e., different from that used for training) data set that consists of
50 field images acquired during robot motion. Ground-truth labels for these images are
obtained via manual labeling.

Table 1. Data sets used for training.

SET 1 Images SET 2 Images True Negative
Images

Field Acquisition
Images

Training Images after
Augmentation

CE 174 136 - - 6200
TNA 174 136 100 - 8200
FIA 174 136 - 100 8200

Manual labeling - - - 410 8200
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3.1. Evaluation Metrics

Pixel-wise accuracy is measured by comparing ground truth and predicted informa-
tion. Specifically, having defined as TP the number of true positives (i.e., pixels correctly
classified as fruit), TN as the number of true negatives (i.e., pixels correctly classified as
non-fruit), FN as the number of false negatives (i.e., pixels incorrectly classified as non-fruit)
and FP as the number of false positives (i.e., pixels incorrectly classified as fruit), precision
(P), recall (R) and the F1-score are recovered as follows:

P =
TP

TP + FP
(1)

R =
TP

FN + TP
(2)

F1 − score = 2· P·R
P + R

(3)

In addition, the following metrics are computed:

• Global Accuracy, the ratio of correctly classified pixels, regardless of class, to the total
number of pixels. This metric allows for a quick and computationally inexpensive
estimate of the percentage of correctly classified pixels.

• Intersection over union (IoU), also known as the Jaccard similarity coefficient, is the most
commonly used metric. It provides a measure of statistical accuracy that penalizes
false positives. For each class, IoU is the ratio of correctly classified pixels to the total
number of true and predicted pixels in that class, as shown in the following:

IoU =
TP

TP + FP + FN
(4)

For each image, mean IoU is the average IoU score of all classes in that particular
image. For the aggregate data set, mean IoU is the average IoU score of all classes in all
images.

• Weighted IoU, is the average IoU of each class weighted by the number of pixels in that
class. This metric is used when images have disproportionally sized classes, in order
to reduce the impact of errors in the small classes on the aggregate quality score.

3.2. Segmentation Performance

The performance of the CE, TNA and FIA networks is reported in Table 2, in terms
of precision, recall and F1-scores. These metrics are computed for each image and then
averaged over the entire test set.

Table 2. Precision, recall and F1-scores for multi-stage transfer learning using DeepLabv3+ architec-
ture.

Networks Precision Recall F1-Score

CE 48.10% 79.06% 55.79%
TNA 96.87% 43.25% 56.97%
FIA 93.33% 81.49% 86.42%

These results show the performance of the segmentation algorithm using different
training sets. Referring to Table 2, the CE net shows reasonably good recall values amount-
ing to 79.06%, with a relatively low precision of 48.10%. These results were due to a high
number of false positives that mainly related to the misclassification of dry yellow leaves,
as shown in the sample case in Figure 8. Conversely, the TNA network shows an increment
in the precision that reached a value of 96.87%, thanks to the addition of true negative
examples to the training set, at the expense of recall, which dropped from 79.06% to 43.25%.
Thus, the network no longer confuses fruit with other elements in a scene; however, at
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the same time, it loses information by missing several fruits. Both CE and TNA nets show
comparable F1-score values of 55.79% and 56.97%, respectively. A significant improvement
was achieved with the FIA net, in which the training set was enriched with a few images
acquired in the field and directly labeled through the CE network, following the pseudo-
labeling learning strategy. The FIA net guarantees the best performance, with precision
and recall values of 93.33% and 81.49%, respectively, resulting in an F1-score of 86.42%.

Figure 13 shows the segmentation results obtained from the different networks for
some sample field images, with white pixels representing true positives, black pixels
representing true negatives, magenta pixels representing false negatives and green pixels
representing false positives. The progressive reduction in misclassification passing from
the CE to FIA net can be clearly seen.
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The proposed multi-stage approach was compared with a conventional manual label-
ing procedure. The results are collected in Table 3. The confusion matrices that summarize
the percentage of correct and incorrect predictions over the entire test set are also shown in
Figure 14. The proposed approach leads to comparable results to standard training with
manually labeled examples, with fairly consistent results in terms of accuracy and IoU, and
with a relatively low decrement of about 4.0% in the F1-score, but with the advantage of
relieving the manual labeling burden.
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Table 3. Comparison between FIA net and the manual labeling net (precision, recall, F1-score,
accuracy and IoU).

Precision Recall F1-Score Global
Accuracy

Mean
Accuracy Mean IoU Weighted

IoU

FIA Network 93.33% 81.49% 86.42% 98.93% 89.38% 86.16% 97.94%
Manual Labeling 91.36% 88.88% 89.91% 99.09% 93.36% 88.68% 98.29%
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The computational efficiency of the FIA network was also evaluated by segmenting
the entire field image data set, using an Nvidia RTX 2080 Ti GPU and an Intel (R) Core (TM)
i7-4790 CPU @ 3.60 GHz, showing that the processing time attests to about 0.15 s per frame
(less than the acquisition frame rate of 6 Hz) This would make it feasible the adoption of
the proposed approach for real-time processing onboard farm robots.

4. Conclusions

In this paper, a multi-stage transfer learning approach has been developed to segment
field images of pomegranate fruits acquired by an agricultural robot, without the need
for a time-consuming manual labeling process. Each learning stage leads to a different
network, ranging from a network that was trained using images acquired under controlled
conditions (CE network), up to a network (FIA network) that incorporates field images
as well. Results obtained from experimental tests have been presented, and show that
despite the low quality of the input images, the proposed methods can segment field images
achieving an F1-score of 86.42% and IoU of 97.94%, using the DeepLabv3+ architecture. The
obtained performance is comparable with those of a standard learning approach, without
the burden of having to use manual annotation.

Future Work

The methods discussed in the paper use a consumer-grade camera (worth a few
hundred Euros) as the only sensory input. This choice proved to be a good trade-off
between performance and cost-effectiveness. An obvious improvement would be to use
higher-end depth cameras available on the market. Future efforts will be devoted to further
improving the proposed framework, e.g., using other pre-trained nets, and to extend
the scope of the system to yield prediction or automatic size estimation of fruits. In this
respect, the use of 3D data will be specifically investigated in order to improve classification
results, and to recover further information on fruit morphology. In addition, the proposed
framework could be enhanced for fruit control by the farmer robot. Finally, the portability
of the system to different crops (e.g., vineyards), or for different fruit maturation stages,
will be evaluated.
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