
Citation: Bertoni, M.; Michieletto, S.;

Oboe, R.; Michieletto, G. Indoor

Visual-Based Localization System for

Multi-Rotor UAVs. Sensors 2022, 22,

5798. https://doi.org/10.3390/

s22155798

Academic Editor: Petros Daras

Received: 8 July 2022

Accepted: 1 August 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Indoor Visual-Based Localization System for Multi-Rotor UAVs
Massimiliano Bertoni * , Stefano Michieletto , Roberto Oboe and Giulia Michieletto

Department of Management and Engineering, University of Padova, Stradella S. Nicola, 3, 36100 Vicenza, Italy;
stefano.michieletto@unipd.it (S.M.); roberto.oboe@unipd.it (R.O.); giulia.michieletto@unipd.it (G.M.)
* Correspondence: massimiliano.bertoni@phd.unipd.it

Abstract: Industry 4.0, smart homes, and the Internet of Things are boosting the employment of
autonomous aerial vehicles in indoor environments, where localization is still challenging, especially
in the case of close and cluttered areas. In this paper, we propose a Visual Inertial Odometry
localization method based on fiducial markers. Our approach enables multi-rotor aerial vehicle
navigation in indoor environments and tackles the most challenging aspects of image-based indoor
localization. In particular, we focus on a proper and continuous pose estimation, working from
take-off to landing, at several different flying altitudes. With this aim, we designed a map of fiducial
markers that produces results that are both dense and heterogeneous. Narrowly placed tags lead
to minimal information loss during rapid aerial movements while four different classes of marker
size provide consistency when the camera zooms in or out according to the vehicle distance from
the ground. We have validated our approach by comparing the output of the localization algorithm
with the ground-truth information collected through an optoelectronic motion capture system, using
two different platforms in different flying conditions. The results show that error mean and standard
deviation can remain constantly lower than 0.11 m, so not degrading when the aerial vehicle increases
its altitude and, therefore, strongly improving similar state-of-the-art solutions.

Keywords: indoor localization; aerial vehicles; visual inertial odometry; fiducial markers

1. Introduction

A multi-rotor platform is a rotary wing Unmanned Aerial Vehicle (UAV), generally
consisting of a rigid body, actuated by a set of spinning propellers, whose configuration
determines the vehicle actuation properties [1]. In recent decades marked by the advent of
Industry 4.0, smart homes, and Internet of Things (IoT), multi-rotor UAVs have emerged
as a leading and promising technology in civil, rural, and industrial contexts [2–5], where
they are used in several applications, ranging from traditional surveillance and monitoring
tasks [6,7] to modern contact-aware inspection and manipulation [8,9].

In most of the application scenarios, the multi-rotor platforms are required to localize
themselves in the environment, namely to estimate their position with respect to an a
priori fixed reference frame. Due to its high pervasiveness, such an issue constitutes a
well-studied problem within the aerial robotic community and several solutions have been
proposed in the literature. Most of the existing works focus on the outdoor localization of
UAV, where the principal challenge rests on the global navigation satellite system (GNSS)
signal (temporary) loss and/or degradation (see, e.g., [10–12]). Localization in indoor
environments is, instead, less investigated, as it turns out to be a difficult issue per se, which
contributes to hindering the spread of UAVs indoor applications. The indoor environment
represents one of the main cases of GNSS-denied areas, mainly because the satellite signals
are blocked or corrupted by physical barriers. As a consequence, multi-rotor UAVs are
required to rely on a different data source to compute a position estimation, and thus they
need to be equipped with other alternative (and possibly lightweight) sensors. In addition,
a higher level of accuracy is generally required for position estimation when flying in
physically limited and possibly cluttered areas. Despite these challenging aspects, recent
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IoT-inspired technological trends boost the employment of autonomous aerial vehicles to
perform different tasks in indoor scenarios, especially in the emerging smart domestic and
industrial contexts. These include, for instance, cooperative monitoring [13], ground robots
tracking [14], infrastructures contact inspection [15], people and objects detection [16],
items transportation [17].

In light of these facts, this work focuses on the indoor localization problem. We outline
a UAV positioning strategy based on the design of a customized map of visual fiducial
markers (namely AprilTag), which turns out to be capable of ensuring the position retrieval
for different multi-rotor UAVs while flying at various altitudes.

1.1. Related Works

Since communication with the satellite network is partially or completely impractical
in any indoor environment, for the UAVs acting in these contexts, other sources of position
information are necessary, such as acoustic [18], radio frequency [19] signals, visible light
communication [20], vision systems [21].

Vision systems, and in particular cameras, represent the most widely used technology
when dealing with indoor localization [22,23], due to their robustness and the level of
accuracy they can ensure. Along this line, several academic realities employ motion capture
systems or other high-performance camera networks to track UAV movements [24]. These
localization methods are very precise and typically can provide position data in real time;
however, they represent very expensive and invasive solutions, not suitable, for instance,
for industrial scenarios. For these reasons, hereafter, attention is focused on localization
solutions, which rely on on-board vision systems, namely lightweight cameras mounted
on the UAVs.

In this direction, most existing image-based positioning strategies are based on the
detection and identification of some fiducial markers [25]. Taking into account the existing
literature, this approach is principally exploited when coping with the (outdoor) precise
autonomous landing: this maneuver, in fact, requires fairly accurate position data and thus
cannot be fulfilled by resting only on GNSS signals when available. In this application
scenario, the employed fiducial markers can be custom as, for example, in [26–28]. Alterna-
tively, they can belong to some standardized families, namely sets of fiducials consisting
of patterns artificially designed to simplify detection by using a camera. Adopting this
approach, a visual-servo UAV landing control strategy is proposed and validated through
simulation results in [29] and then tested on a real aerial platform in [30]. Beyond the pre-
cise landing, several state-of-the-art solutions take advantage of the vision-based approach
to deal with target identification. For example, in [31,32] UAV landing is preceded by the
localization of a target associated with a certain fiducial tag. Similarly, in [33,34], the UAV
detection of (and eventually the reaction to) multiple targets is taken into account, based on
the exploitation of different fiducial markers. Furthermore, in [35], the tracking of a ground
robot by a UAV is performed through tag detection. Likewise, the tracking of another flying
UAV is considered in [36].

Visual information is frequently combined with the data gathered by other onboard
sensors. In [37,38], for instance, both Inertial Measurement Unit (IMU) and GNSS signals
are also taken into account to cope with UAV landing on a moving surface, and a similar
sensor fusion approach is described in [39] for landing on a static pad. Both cameras
and IMUs are often already mounted on all kinds of mobile robots since they are cheap
all-purpose sensors. In such context, visual input and inertial information are used to
estimate pose and velocity in real time. The process of localizing something by considering
the camera and IMU sensors only is usually called Visual Inertial Odometry (VIO) [40].
VIO enables accurate localization without using systems based on GNSS or Laser Imaging,
Detection, and Ranging (LIDAR) solutions. Thus, it turns out to be a viable strategy
in scenarios where satellite signals are unreliable or not available and/or LIDAR is not
accessible due to costs or payload limits. In light of these facts, VIO constitutes the ideal
candidate for indoor localization for the majority of aerial vehicles.



Sensors 2022, 22, 5798 3 of 19

A notable issue, generally affecting the fiducial marker-based solutions, concerns the
need to properly see such markers. This implies some constraints on UAV altitude which
determine the distance between the camera and the markers but also affects the field of
view of the camera, thus conditioning the overall quality of the detection. This drawback
is faced in [41] by combining the IMU data and the information retrieved by a simplified
marker when the vehicle altitude drops below a certain threshold. Other possible strategies
consist of including multiple smaller and complete markers within a larger one [42,43],
or using distinct fiducial markers of different sizes [44,45].

On the other hand, the literature related to UAVs navigation based on the detection and
identification of tags belonging to standardized families is very poor. This is probably due to
the need to find the suitable selection and placement of fiducial markers depending both on
the considered aerial platform and the required task (determining the flying conditions in
terms of maneuver dynamism and altitude level). In this direction, a ground map generated
from a simple and repetitive pattern composed of equally sized tags is proposed in [46]
to navigate a Bebop2 quadrotor equipped with a monocular camera. The experimental
results show that by processing the position data collected by the vision-based system
through a Kalman Filter (KF), the error in the pose estimation is very small (±0.02 m in
the x and y position component when flying in a 2 × 2 m2 area) as compared with the
output of a motion capture system; nevertheless, the investigated flying maneuvers are
characterized by constant altitude. A similar framework is discussed in [47], replacing
the ground map with a scattered set of markers placed at some points in the environment
whose location is known. In this case, focusing on planar movements, the experimental
tests reveal that the position estimation error increases concurrently with the distance of the
UAV from a marker. To mitigate this fact, in [48] the acquired position data is fused with
the IMU measurements using an Extended Kalman Filter (EKF) approach: on the (x, y)
plane, the error range reduces from [−1.0, 0.6] m to [−0.2, 0.6] m, and localization accuracy
increases as the UAV gets closer to the tags.

1.2. Contributions

From the existing literature, it emerges that the most challenging aspects of image-
based indoor localization are related to the need to ensure the proper and continuous
detection and identification of (at least) a fiducial marker, (possibly) independently of its
distance. In the case of UAVs navigation, such a requirement results in being particularly
demanding due to the intrinsic unstable nature of the dynamics of aerial platforms, also
characterized by a high sensibility to external noise and unexpected events.

Taking into account these facts, in this work we describe a VIO localization method
based on fiducial markers, which aims at ensuring the navigation of any multi-rotor UAV
vehicle in an indoor environment. In particular, motivated by the increasing number of
industrial applications involving aerial platforms, we account for a quasi-static context
whose topology allows the presence of a wide planar map placed either on the ground
or on the ceiling. One of the original aspects of the proposed navigation solution, indeed,
consists in the design of a map of fiducial markers having the following features:

• Density—the map counts a high number of narrowly placed tags;
• Size heterogeneity—the map is made up of fiducials belonging to four different classes

in terms of size.

The first feature is justified by the intent of limiting as much as possible the loss of
updated position information during UAV flight to cope with the complex dynamics of the
aerial platforms and to ensure a certain level of safety. The employment of markers with
different sizes is, instead, motivated by the purpose of proposing a localization method
valid for (different) multi-rotor platforms flying at various altitudes , guaranteeing high
estimation quality. In this sense, the designed positioning method also allows us to cope
with take-off and landing maneuvers during which the UAV altitude changes quite rapidly.
In this sense, as compared to most of the state-of-the-art works, we provide a localization
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system that turns out to be suitable for the whole UAV navigation task, ensuring the same
level of positioning accuracy for the take off, landing and more complex maneuvers.

Inspired by [48] and similar solutions, we adopt an EKF approach to fusing the position
data derived by the marker-based localization method and the inertial measurements
acquired by some onboard IMU sensors. We access the performance of such an indoor
localization solution through an experimental testing campaign wherein the output of a
VICON motion capture system is assumed as ground truth. In particular, overcoming
the results of [48], we focus on both planar and vertical movements, thus discussing the
performance of the outlined strategy as a function of the distance from the tags but also
in the case of rapid longitudinal maneuvers between two different points. Moreover, we
test the outlined strategy on both a small-medium size custom quadrotor and a medium-
large size custom hexarotor, sharing the same flight controller and sensing system. This
represents another original aspect with respect to the existing literature, wherein typically
the tests are conducted on a single aerial platform. Finally, we highlight that the entire
experimental setup is based on a cutting-edge ROS2 architecture.

1.3. Paper Structure

The rest of the paper is organized as follows. Section 2 is devoted to the problem
statement: we provide an overview on the considered UAV vehicles and on the EKF-based
sensor fusion. Section 3 presents the outlined VIO localization method, describing its ROS2
implementation and focusing on the design of the fiducial map. The performance of the
outlined localization solution is discussed in Section 4 which is devoted to the conducted
experimental campaign. The main conclusions are drawn in Section 5.

2. Problem Statement

In this work, mainly motivated by the emerging trend of integrating the UAV presence
within industrial productive processes, we aim at proposing an efficient solution for the
localization of the popular star-shaped multi-rotor platforms. In the rest of this section, we
provide an insight into the modeling and control of such aerial vehicles (Section 2.1) and
then we briefly describe the rationale that guides the sensor fusion process based on the
EKF approach (Section 2.2).

2.1. Star-Shaped Multi-Rotor Modeling And Control

Due to their high maneuverability and simple structure, quadrotors represent the
most popular and currently used aerial platforms. Nevertheless, very recently, the robotic
community has focused its attention towards the design and exploitation of new aerial
platforms having more than four rotors, with the purpose of improving the actuation
properties (we refer the reader to [1] for a proper and complete taxonomy of multi-rotor
platforms). Both standard quadrotors and most of the studied hexarotor and octorotor
platforms are characterized by a star-shaped configuration, where the rotors are evenly
spaced on a circumference centered in the vehicle center of mass (CoM) and spin about
parallel axes in opposite direction with respect to their neighbors [49].

Independently of their number, while spinning the propellers of any star-shaped multi-
rotor generate some thrust forces and a drag torques. The combination of those quantities then
results in the total control force and control torque exerted on the vehicle CoM. More formally,
taking into account a global fixed reference frame (world frame FW) and a local frame
centered in the vehicle CoM (body frame FB), the dynamics of any star-shaped multi-rotor
can be described through the Newton-Euler approach. Thus, we have the following model:

mp̈W = mgzW +W RB f c
BzB, (1a)

mω̇B = −ωB × JωB + τc
B, (1b)

where m, g ∈ R+ denote the vehicle mass and the gravity constant, respectively, the (posi-
tive definite) matrix J ∈ R3×3 represents the inertia of the vehicle calculated in FB, and the
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versors zW , zB ∈ R3 identify the direction of the z-axis of the world frame and of the body
frame, respectively. The vector τc

B ∈ R3 in (1) denotes the control torque expressed in FB,
while the scalar f c

B ∈ R represents the intensity of the control force, also expressed in FB.
Finally, pW ∈ R3 identifies the position of the vehicle in FW and ωB ∈ R3 is its angular
velocity expressed in the body frame, and the rotation matrix WRB ∈ SO(3) describes the
orientation of FB with respect to FW , namely the attitude of the UAV in the world frame.
Hereafter, we refer to the pair (pW ,W RB) as the UAV state.

We remark that the star-shaped multi-rotor platforms are characterized by four con-
trollable degrees of freedom (consisting in f c

B and τc
B), thus they are under-actuated systems.

Furthermore, the presence of WRB in (1a) also implies the existence of a strong coupling
between the translational and rotational dynamics of the platform. For these reasons,
the dynamics of any star-shaped multi-rotor can be regulated by exploiting the well-known
cascaded control approach (see, e.g., [50,51]). Such a motion regulation strategy entails the
presence of two control loops: an outer and slower position control loop and an inner and
faster attitude control loop (Figure 1). Both the position and attitude controllers generally
consist of one or more suitably tuned PID regulators whose gains need to be selected by
considering the specific multi-rotor platforms. However, we draw attention to the fact
that the effectiveness of a cascaded control scheme is highly dependent on the accuracy of
the feedback information; in particular, it is necessary to retrieve a good estimation of the
current position and attitude of the vehicle.

position

controller

attitude

controller

wrench

mapper

p∗, ṗ∗
f∗

Rd

R∗ τ ∗
{ω1 . . . ωn}

R̂, ω̂

p̂, ˆ̇p

Figure 1. Typical cascaded controller structure: subscripts indicating the reference frames have been
removed for sake of clarity .

2.2. Kalman-Based Sensor Fusion

Aerial platforms account for some limitations in terms of transportable payloads and
also computational capabilities. Hence, the estimation of the UAV position and attitude
is often performed by exploiting the redundancy of the noisy information collected by
different lightweight sensors. Along this line, several well-stated techniques for indoor
and outdoor UAV localization take advantage of using IMU measurements. Typically, IMU
sensors consist of a 3-axes gyroscope and a 3-axes accelerometer, and often also a 3-axes
magnetometer is included. We underline that IMU devices turn out to be particularly
advantageous in aerial robotic navigation due to their compact design and robustness
against malicious attacks due to the fact that the gathered measurements are retrieved in
a local (body) frame without relying on external sources (as in the GNSS case). However,
the recorded angular velocity and linear acceleration data are usually noisy and affected by
constant bias; thus, the state estimation that can be derived by exploiting the IMU data is
usually affected by a high level of inaccuracy and is also characterized by drifts.

To deal with these drawbacks, IMU measurements are often combined with other
position data, gathered by various sensing devices, and in most cases, the information
fusion is performed using a Kalman approach. This filtering technique, in fact, allows
one to properly integrate all available position and attitude measurements by accounting
for vehicle dynamics (1). In this work, we account for an EKF able to provide a suitable
estimate of the state (pose) of the vehicle and also its linear velocity, jointly also with
the IMU measurement bias and the wind velocity. We emphasize that the adopted EKF
is capable of combining sensor data with different delays and rates in a mathematically
consistent way. In detail, hereafter, we assume that the considered star-shaped multi-rotor
is equipped with a camera that provides information at a certain rate, lower with respect to
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the IMU data acquisition frequency. The data gathered by both the IMU and the camera
constitute the inputs of the EKF.

3. VIO Localization

We propose a VIO localization solution based on an EKF merging information from
visual fiducial marker detection and relative motion obtained through two IMUs redundant
systems. The UAV state is estimated at a high frame rate (∼60 fps) by using the last
information from the considered sensors. We highlight the fact that visual fiducial markers,
also called fiducials, are artificial patterns designed to simplify the detection of data bits
by using peculiar shapes, usually black or white squares. Fiducial families consist of
several tags that correspond to different patterns. Each tag represents a coordinate frame
in the world that is used to easily identify the pose of the camera on board the vehicle,
and therefore its state. The algorithm relies on a set of geometric constraints such as tag
shape, dimension, and flatness to compute the 3D pose of all visible fiducials with respect
to the camera based on the information within the image plane (Figure 2).

Figure 2. Tag-based localization: this localization method is based on the identification of the roto-
translation between the reference frame associated with the detected fiducial marker (AprilTag-frame)
and the reference frame in-built with the camera mounted on the aerial platform (camera_color_optimal-
frame) having known roto-translation with respect to the UAV body frame.

The localization system is designed to (i) collect images from the camera, (ii) detect all
the available fiducials in the scene, (iii) interpret the data bits in each marker, and (iv) com-
pute the UAV state relating the data to the map information. Among the wide variety of
fiducial markers [25], we select AprilTag [52] for three main reasons: the good performance
at a higher distance (or smaller tags), the larger bit pitch at the same physical size, meaning
families with many more possible tags, and finally the robustness to detection errors due to
a wide hamming distance between tags.

3.1. Map Definition

We develop a method to create fiducial maps composed of a large set of tags. The
tag positioning is defined to maximize the number of visible markers in the scene under
various camera characteristics and flying conditions. Consequently, this corresponds to
maximizing localization capabilities on different aerial platforms. The actual localization
space depends on the UAV features. In particular, the flying height is strongly affected by
camera characteristics since they influence the tag detecting range.

In this work, we account for the camera impact minimization by selecting a set of
four physical dimensions for tags, namely S (5.75 cm2), M (11.5 cm2), L (23 cm2), XL (46 cm2).
We remark that there does not exist a standardization for tag dimensions which instead
depends on the application context; hence, we select these sizes by an iterative experimental
process to guarantee clear tag visibility of at least one tag size at different camera heights.
In detail, the three main camera factors that guide size selection are field of view, resolution,
and focus.
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Then, given that we account for a dense map, the fiducial family derives directly from
the number of tags necessary to fill the vehicle working area. More in detail, we identify
the pattern in Figure 3 where markers of different sizes are suitably alternated in order to
cover all the available space guaranteeing good tag detection at different heights. This basic
design repeats after roto-translation and mirroring operations to compose the generated
map. Note that, in this way, a nominal map area of 5 m× 7 m requires 772 S tags, 526 M
tags, 212 L tags and 35 XL tags, for a total amount of 1545 tags. This implies the use of the
fiducial family TagStandard41h12 composed of 2115 tags.

Any tag in the map is associated with a reference frame (AprilTag frame) placed in the
tag center and has the z-axis pointing downward (as depicted in Figure 2) likewise the body
frame FB in-build with the UAV. All the tag frames result to be aligned among them. We
also assume that the world frame FW is located in a corner of the map and it is oriented so
that it’s z-axis points upward, while the y-axis is concordant with those of the tags reference
frame. Tag-based localization entails the identification of the roto-translation between the
reference frame associated with the bigger detected tag and the reference frame in-built
with the camera mounted on the aerial platform whose pose (position and orientation) in
FB is known from the UAV structural model.

Figure 3. Basic tag design: this pattern has been used to generate the fiducial map by applying
roto-translation and mirroring operations.

3.2. Ros2 Implementation

Practical implementation of the outlined positioning method exploits the ROS2 mid-
dleware. The core VIO localization is made up of three nodes: (i) a camera driver, (ii) a
fiducial marker detector, and (iii) a visual odometry estimator. The specific implementation
of each node depends on the actual hardware mounted on the UAV platform, but all nodes
share standardized input/output messages plus their peculiar interface.

The camera driver is the node controlling the camera settings and providing the camera
information and the images collected by the sensor. Each node implementation is required
to publish a sensor_msgs/msg/CameraInfo message to convey camera information and
a sensor_msgs/msg/Image message containing image data. The fiducial marker detector
subscribes to the camera driver output to identify the pose of the tags in the scene. The de-
tection process looks for each tag according to fiducial family, id, and size. The main output
is an array of apriltag_msgs/msg/AprilTagDetection messages. Optionally, the node
can broadcast a transformation frame (tf2_msgs/msg/TFMessage) for each detected tag as
part of the tf topic. The visual odometry estimator computes the vehicle position and
attitude starting from the detected tags. Localization can consider a standalone marker
or a tag bundle depending on the node policy and the detection accuracy. The output
is a px4_msgs/msg/VehicleVisualOdometry message delivering the visual component of
the VIO localization system. EKF will merge this result with the data recorded by IMUs.
Figure 4 reports a schematic representation of the described architecture.
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fiducial marker
detectorcamera driver

visual odometry
estimator

sensor msgs/msg/CameraInfo

sensor msgs/msg/Image

apriltag msgs/msg/AprilTagDetectiontf2 msgs/msg/TFMessage

px4 msgs/msg/VehicleVisualOdometry

Figure 4. ROS2 architecture: ROS2 implementation of the proposed VIO localization strategy involves
three principal nodes: camera driver, fiducial marker detector, visual odometry estimator.

4. Validation

To assess the performances of the VIO localization method introduced in Section 3,
we conduct an experimental campaign involving two different aerial platforms which
fly in a 5 m× 7 m× 3 m indoor flight arena whose floor is covered with a 3.5 m× 3.5 m
AprilTag map structured as described in Section 3.1. In detail, the UAVs operative space is
restricted to the map area, where no obstacle is present.

4.1. Experimental Setup

As far as the aerial platforms are concerned, we account for two star-shaped multi-
rotor UAVs, a small-size quadrotor (QR01, in Figure 5a, having a diameter of ∼0.3 m) and
a medium-size hexarotor (HR01 in Figure 5b, having a diameter of ∼0.8 m), both of them
designed at the C-square lab of the University of Padova. In addition, the experimental
setup involves a ground working station used for data logging and visualization, and a
VICON motion capture system made of 10 cameras which provides the ground truth data
for the UAVs localization working at 100Hz and having submillimeter accuracy.

(a) QR01: Holybro 250 QAV frame, Holybro 2206
2300 kV motors, BLHeli S ESC (20 A), 5′′ plas-
tic propellers, Pixhawk 4 mini, Raspberry Pi 4B,
Raspberry Pi Camera Module v2.1.

(b) HR01: Tarot 680 pro frame, Tarot 6S 380 kV
4008 motors, Holybro Tekko32 ESC (35 A), Tarot
1355 carbon propellers, Pixhawk 4, Raspberry Pi
4B, Intel RealSense Depth Camera D435.

Figure 5. Star-shaped multi-rotor UAVs used for validation: (a) a small-size quadrotor having mass
approximately 0.5 kg and (b) a medium size hexarotor having mass approximately 3.5 kg .

Both HR01 and QR01 are equipped with a Pixhawk 4 flight controller and a Raspberry
Pi 4B held in a light aluminum case with embedded fans. The former includes two
redundant STMicroelectronics Flight Management Units (FMUs) based on an ARM Cortex
M7 32 bit with the NuttX real-time operating system (RTOS), SI2MB Flash Memory and
512 kB RAM. The latter, instead, involves a quad-core ARM Cortex-A72 having 8 GB RAM.
The choice of using a Raspberry Pi 4B as on-board companion computer is motivated by
its small size (56× 85× 15 mm), low-power consumption (3.8–4.0 W), and affordable price
(≤$100) [53].

The Raspberry is responsible for handling the tag detection and identification process,
the resulting output is then passed to the flight controller through serial communication.
Based on PX4 Autopilot software, the flight controller elaborates the motor commands in
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light of the UAV state estimated via VIO localization approach (Figure 6). In particular,
the position and attitude data extracted by fiducials are combined with the measurements
recorded by the Pixhawk sensor set, which includes a couple of 6-axes IMU sensor and
a barometric sensor, by means of a suitable EKF (Figure 7) whose working principles are
detailed in [54].

Figure 6. PX4 Autopilot internal control architecture: the inputs of the whole control block are the
estimated position and yaw angle of the vehicle, the output is the set of duty cycles to impose to
the actuators for realizing the computed normalized force commands, expressed as aileron, elevator,
rudder and thrust. Note that the attitude is modeled adopting the quaternion convention.

State 
Prediction

INS
IMU FIFO 

Buffer
Down 

sample

Other 
Sensors

Data 
Fusion

Covariance 
Prediction

Output 
Prediction

INS
FIFO 
Buffer

Corrector
Algorithm+

-

+
+

states at delayed time horizon

states at current time horizon

FIFO 
Buffer

downsample 
to 12msec

buffer corrections

IMU corrections

Output Predictor

EKF

delta angles 
and velocities kinematic 

states
IMU bias 

states

-

Figure 7. PX4 Autopilot EKF and Output Predictor internal architecture: Output Predictor guarantees
the state prediction without delays and the concurrent EKF estimation is exploited to correct the
resulting prediction. When accounting for the measurements of both the IMU sensors in the flight
controller, two EKF instances run in parallel, and a selector compares the internal coherence of each
one and determines the best sensors mix in terms of data consistency.

Since we account for an image-based positioning strategy, the considered multi-rotor
UAVs is also equipped with a camera, placed in front of the platform and pointing to the
ground. In detail, QR01 mounts a 8-megapixel Raspberry Pi Camera module v2.1, whose
resolution is up to 1920 p× 1080 p ensuring a maximum frame rate of 30 fps and Field of
View (FOV) of 62◦ × 49◦. An Intel Realsense Depth Camera D435 is, instead, on-board
on HR01: this is characterized by RGB images acquisition with maximum resolution of
1920 p× 1080 p, frame rate of 30 fps and Field of View (FOV) of 69◦ × 42◦. In both cases, we
use a camera resolution of 320 p× 240 p at maximum framerate during the experimental
campaign. These framerate choices guarantee that frequency of the output of the VIO
localization procedure is approximately 4 Hz, in accordance with the typical rate of GNSS
system.

4.2. Experiments Design

We conduct two sets of experiments on both the UAVs described in Section 4.1. These
two sets distinguish the trajectories that the vehicles are required to follow resting on
the PX4 off-board control flight mode. The selection of this autonomous flight mode is
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motivated by the possibility of realizing multiple trials in a replicable way, since it envisages
the imposition of some way-points in terms of both position and yaw angle. In detail, each
set of experiments accounts for five trials in order to have statistical consistency in the
collected data.

The two considered trajectories consist of a planar square path along which the vehicle
is required to keep a constant height from the ground (T1), and a sequence of vertical steps
while maintaining the same position on the horizontal plane (T2).

4.2.1. T1: Planar Square Trajectory

When T1 is taken into account, the UAV has first to execute the take-off maneuver in
order to reach the starting position located at the height of 0.8 m from the ground. Then, it
is successively required to

• Move forward (F phase - movement along the negative direction of y-axis of world
frame);

• Translate along the orthogonal direction on the right (R phase - movement along the
negative direction of x-axis of world frame);

• Move backward (B phase - movement along the positive direction of y-axis of world
frame);

• and finally, translate along the orthogonal direction on the left (L phase - movement
along the positive direction of x-axis of world frame) returning to the starting point.

Since T1 consists of a planar square trajectory, the traveled distance during each phase
is the same and it is equal to 1.8 m. A static hovering phase is imposed at each corner of
the square: the vehicle is required to maintain a fixed position and orientation for 10 s. The
yaw reference, instead, is kept constant to zero during the whole path.

We consider the described trajectory because of two reasons. We aim at investigating
the position information loss during rapid longitudinal and latitudinal movements (and
the introduction of the hovering phases allows us to better distinguish each motion phase
during the analysis). On the other side, T1 represents a path that can be executed by an
aerial platform employed in a surveillance task of an indoor production area: the UAV can
be in charge of monitoring different spatially distributed production stages while flying at
a constant height because of safety constraints.

4.2.2. T2: Vertical Steps Trajectory

In correspondence to T2, the UAV position on the (x, y)-plane of the world frame is
required to remain the same during all the experiments. On the other side, after the take-off
maneuver and a hovering phase of 10 s, a sequence of reference steps is imposed along the
z-axis of the world frame: the vehicle is, thus, required to translate only along the vertical
direction. The complete movement involves two main parts:

• An ascent phase (A phase—movement along the positive direction of z-axis of world
frame) consisting of three consecutive steps of amplitude 0.3 m, starting from the
initial height of 0.7 m from the ground;

• A following descent phase (D phase - movement along the negative direction of z-axis
of world frame) consisting of three consecutive steps of amplitude 0.3 m, starting from
1.6 m.

In correspondence to both A and D phase, after any step execution, the vehicle is
required to realize the static hovering condition for 5 s.

We took into account path T2 with the intent of analyzing the localization performance
by increasing the distance from the AprilTag map. For this reason, in the following, the at-
tention is focused on the positioning error during the hovering phases. In particular, we
distinguish between the hovering phase following the take-off maneuver (S0), the hovering
phases following each ascent step (A1–A3) and the hovering phases following each descent
step (D1–D3). Note that the height imposed on the platform during S0/D3, A1/D2 and
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A2/D1 is, respectively, the same; while, in correspondence to A3, the UAV is supposed to
reach the maximum height of 1.6 m.

4.3. Experimental Results

Hereafter, the attention is focused on the error between the position estimation pro-
vided by VIO method and the localization output of the VICON motion capture system,
meant as ground truth. We discuss the results of the two sets of experiments described in
the previous section. In details, in correspondence to both T1 and T2, we investigate the
behavior of both QR01 and HR01 during the different flight phases.

4.3.1. T1: Planar Square Trajectory

In order to first provide a qualitative intuition, without loss of generality, we account
for a single trial of T1. Figures 8 and 9 report the trend of the UAV position components in
world frame and the 3D path of QR01 and HR01, respectively, comparing the output of
VIO localization (vio) and VICON motion capture system (vcn). In Figures 8a,b and 9a,b
the principal motion phases (R and L, F and B, respectively) are highlighted (green colored
areas). Focusing on these figures, we observe that the outputs of the two compared localiza-
tion systems are almost overlapped both for QR01 and HR01, validating the goodness of the
proposed VIO method in correspondence to rapid longitudinal and latitudinal movements.
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Figure 8. T1-QR01: trend of the UAV position components (a–c) and 3D path (d), comparing the
output of VIO localization (vio) and VICON motion capture system (vcn).

For the purpose of also discussing the performance from a quantitative point of view,
we introduce the error e =

[
ex ey ez

]> ∈ R3 defined as the difference between the output
pvio ∈ R3 of the VIO localization and the output pvcn ∈ R3 of the VICON motion capture
system. Table 1 reports the mean and standard deviation of such an error computed
by taking into account all the trials. We note that the error mean is always included
in the interval [−0.11, 0.08]m for the quadrotor platform, and smaller values appear in
correspondence to the hexarotor platform for which the interval reduces to [−0.05, 0.05]m.
This is probably due to bigger dimensions (and mass) of the hexarotor UAV which entail
higher inertia and thus less vibrations. The performance of HR01 results to also be better in
terms of standard deviation, which is not higher than 0.08 m, while the QR01 increases to
0.11 m. Then, we observe that for the QR01 the error component ex is higher during the R
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and L phases, namely when the movement is performed along the x-axis. The same fact
occurs for the HR01 in correspondence to the movement along the y-axis. Such a fact can be
justified by different distributions of the payload onboard the platforms. Indeed, observing,
for instance, Figure 5a, it can be noted that the quadrotor payload is more concentrated
along the longitudinal direction. Such a direction is orthogonal to the movement direction
during R and L phases, thus the inertia turns on to be smaller causing higher vibrations in
the UAV dynamics. A similar reasoning can be carried out for the HR01.
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Figure 9. T1-HR01: trend of the UAV position components (a–c) and 3D path (d), comparing the
output of VIO localization (vio) and VICON motion capture system (vcn).

Table 1. T1-QR01 & HR01: error mean and standard deviation of the components of the error e
(in cm).

Phase

F R B L

QR01
ex 2.313± 4.351 7.228± 10.728 −3.115± 6.399 −4.572± 9.183
ey −0.994± 5.458 0.802± 5.155 −10.996± 9.928 −3.948± 7.108
ez 4.193± 2.487 6.115± 2.673 7.369± 7.813 4.940± 6.453

HR01
ex 3.178± 4.654 0.498± 2.707 −1.653± 4.701 −4.622± 4.192
ey 1.902± 4.718 0.172± 4.854 −4.321± 4.997 −1.332± 6.114
ez 4.443± 2.864 0.148± 6.617 1.877± 7.589 2.532± 6.482

To provide a better insight on the performance of VIO localization method,
Figures 10 and 11 report the statistical description of e ∈ R defined as

e =

{
ex for R and L phases
ey for F and B phases

(2)

accounting for the cumulative results of all the trials wherein T1 is executed by QR01
(Figure 10) and HR01 (Figure 11). For the hexarotor platform, we observe that for all
the phases the error does not exceed 0.2 m in terms of absolute value (as confirmed by
the amplitude of the total range), and it is generally less than 0.1 m (as confirmed by the
amplitude of the interquartile range). We remark that this last value corresponds to the
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5% of the total traveled distance during each phase since it is equal to 1.8 m. We also note
that the error mean (red point) and median (blue line) approximately correspond and their
value is very low in correspondence to the R phase: this can be justified by the payload
distribution which can determine a preferential movement in terms of vibration. On the
other side, for the quadrotor platform, the boxplots reveal both higher total range and
interquartile range which are under 0.3 m and 0.18 m, respectively. The highest error occurs
in correspondence to the R phase: this behavior is opposite to the one observed before and
it highlights the mechanical differences between the two platforms. We also observe that
the gap between the error mean and median is higher, confirming the presence of higher
peaks in the signal trend, coherent with the vibrating QR01 dynamics.
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Figure 10. T1-QR01: statistical description of error e.
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Figure 11. T1-HR01: statistical description of error e.

To conclude, we focus on the whole 3D path and we emphasize that the discrepancy
between VIO and VICON localization is limited to roughly ±0.1 m along all the three axes
of the world frame. The T1 results thus highlight the advantages deriving from the density
of the designed AprilTag map: the high number of tags allows the UAVs to strongly limit
the losses of a position reference, encouraging the employment of the proposed localization
method in a real-world application scenario.

4.3.2. T2: Vertical Steps Trajectory

As for T1, Figures 12 and 13 depict the trend of the position components in FW and
the path followed in the 3D space by the QR01 and HR01, respectively, accounting for a
single trial of the T2 set of experiments. Again, we aim at analyzing the performance of VIO
localization method (vio) as compared to VICON motion capture system (vcn). In detail, in
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Figures 12 and 13c, we highlight the different hovering phases taken into consideration
(green colored areas, identified sequentially as S0, A1-3 and D1-3), reporting the trend of
the position component related to the vertical axis of the world frame (i.e., pz). In this case,
indeed, the main focus of the analysis is the obtained positioning error in the function of
the distance from the ground, namely from the tags.
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Figure 12. T2-QR01: trend of the UAV position components (a–c) and 3D path (d), comparing the
output of VIO localization (vio) and VICON motion capture system (vcn).
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output of VIO localization (vio) and VICON motion capture system (vcn).
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First, focusing on Figures 12d and 13d, one can observe that for both the aerial
platforms all the hovering phases envisaged in the considered trajectory are characterized
by some drifts on the (x, y)-plane of the world frame. This is confirmed by the trend of
the position components px and py in Figure 12a,b (for QR01) and Figure 13a,b (for HR01).
In particular, such oscillations with respect to the imposed way-points are wider for the
quadrotor platform that drifts till 0.4 m from the desired position, both along the x- and
y-axis of the world frame. This fact is still attributable to its light mass (and inertia) making
this platform more prone to vibrations during flight. However, note that the outputs of
VIO and VICON system are very closed besides the presence of this oscillatory behavior of
the UAVs.

Table 2. T2-QR01 & HR01: error mean and standard deviation of the components of the error e
(in cm).

Phase

S0 A1 A2 A3 D1 D2 D3

ex
−0.836±

3.402
2.621±

5.704
1.787±

6.474
6.328±

7.917
2.025±

5.546
0.381±

8.554
−2.304±

3.949

QR01 ey
−2.285±

4.251
−1.245±

6.080
−2.832±

6.525
−4.645±

6.835
−1.348±

5.094
−0.127±

7.979
−0.005±

4.045

ez
3.186±

2.076
2.631±

2.697
4.157±

4.173
3.187±

2.859
3.622±

3.143
3.305±

4.000
3.402±

2.413

ex
−5.655±

2.789
−0.704±

3.811
1.930±
1.974

2.975±
2.824

1.700±
4.338

−0.158±
3.876

−4.079±
4.122

HR01 ey
1.968±

3.378
−1.516±

4.789
−1.985±

3.380
−1.508±

2.757
0.539±

4.692
0.543±

4.474
1.024±

3.655

ez
−0.075±

2.399
1.299±
1.815

0.477±
1.664

0.084±
1.635

0.592±
2.910

0.157±
1.763

0.161±
1.736

Accounting for a more quantitative analysis perspective, Table 2 reports the mean and
standard deviation of the error e ∈ R3 (introduced in the previous section) for the cumu-
lative trials in each hovering phase. We observe that for QR01, the error mean is always
included in the range [−0.05, 0.07] m. For HR01, instead, the range is [−0.06, 0.03] m. These
results are almost consistent with the T1 case, confirming the observations in Section 4.3.1
and highlight the better performance of the proposed VIO approach with respect to the
strategy outlined in [48] where the reported error range is [−0.6, 0.7] m. Furthermore, focus-
ing on the error along the z-axis of the world frame , i.e., on ez, for both the UAVs we note
that the error mean and its standard deviation remain almost inside limited boundaries,
meaning that the performance of the proposed localization method do not downgrade
in relation to distance from the map, contrarily to the results given in [47,48]. In detail,
for QR01 the mean of ez is in the range [0.027, 0.042] m and the maximum standard devia-
tion is 0.042 m, while for the HR01 the range of error mean results [−0.008, 0.013] m and
the maximum standard deviation turns out to be 0.03 m.

This valuable aspect also emerges from the statistical description of the error e = ez ∈ R,
reported in Figures 14 and 15 for QR01 and HR01, respectively. The boxplots show that the
maximum value of the error is smaller than 0.12 m for QR01 and 0.08 m for HR01; more-
over, the interquartile range is smaller than 0.05 m for both the platforms. We remark that
the maximum height reached is approximately 1.6 m, meaning that the error is generally
smaller than 5% of the total distance from the ground.

To conclude, we emphasize the independence of the quality of the proposed VIO
position estimation from the UAV altitude by evaluating the mean and standard deviation of
the error e with respect to the AprilTag map distance. In detail, we distinguish between the
A and D phase for both QR01 (Figure 16a,b) and HR01 (Figure 16c,d). For both platforms, we
observe that the mean of the error e is smaller than 0.09 m, during the A and D phases. One
can also note that the drops in value of standard deviation are associated with the hovering
phases, where more estimates are naturally available for the statistical computation.
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The T2 results highlight the advantages deriving from the size heterogeneity of the
designed AprilTag map: the different dimensions of the tags allows the UAVs to stably fly
at different altitudes in the range [0, 1.6]m which represents significant value for indoor
industrial applications.
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Figure 14. T2-QR01: statistical description of error e.
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Figure 15. T2-HR01: statistical description of error e.
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Figure 16. Cont.
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Figure 16. T2-QR01& HR01: mean and standard deviation of error e with respect to the April-
Tag map distance.

5. Conclusions

Motivated by the recent advances in aerial robotics, this work focuses on multi-rotor
UAVs involved in indoor applications, proposing an effective localization method based
on the VIO approach. The main contribution consists of the definition of an AprilTag map
characterized by a high number of narrowly placed tags belonging to four different classes
in terms of size. The goal, indeed, is to design a positioning strategy that turns out to be
effective for a large number of aerial platform capable of operating at different height from
the ground.

From this perspective, the performance of the introduced VIO localization method
has been assessed by accounting for a small size quadrotor (QR01 in Figure 5a) and a
medium size hexatoror (HR01 in Figure 5b). The results of the conducted experimental tests
demonstrate the validity of the outlined solution as compared to the localization output of a
motion capture system: the resulting position error is included in [−0.06, 0.11]m accounting
for translational movement in any direction of the world frame. In addition, the error turns
out to be approximately constant by increasing the distance from the tags.

In the future, we plan to improve the AprilTag-based position reconstruction by
merging the information deriving from multiple tags suitably weighted according to the
view quality of any marker. Moreover, we intend to investigate the VIO localization
performance in the presence of occlusions.
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