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Abstract: During extreme events such as tropical cyclones, the precision of sensors used to sam-
ple the meteorological data is vital to feed weather and climate models for storm path forecasting,
quantitative precipitation estimation, and other atmospheric parameters. For this reason, periodic
data comparison between several sensors used to monitor these phenomena such as ground-based
and satellite instruments, must maintain a high degree of correlation in order to issue alerts with
an accuracy that allows for timely decision making. This study presents a cross-evaluation of the
radar reflectivity from the dual-frequency precipitation radar (DPR) onboard the Global Precipitation
Measurement Mission (GPM) and the U.S. National Weather Service (NWS) Next-Generation Radar
(NEXRAD) ground-based instrument located in the Caribbean island of Puerto Rico, USA, to deter-
mine the correlation degree between these two sensors’ measurements during extreme weather events
and normal precipitation events during 2015-2019. GPM at Ku-band and Ka-band and NEXRAD
at S-band overlapping scanning regions data of normal precipitation events during 2015-2019, and
the spiral rain bands of four extreme weather events, Irma (Category 5 Hurricane), Beryl (Tropical
Storm), Dorian (Category 1 hurricane), and Karen (Tropical Storm), were processed using the GPM
Ground Validation System (GVS). In both cases, data were classified and analyzed statistically, paying
particular attention to variables such as elevation angle mode and precipitation type (stratiform and
convective). Given that ground-based radar (GR) has better spatial and temporal resolution, the
NEXRAD was used as ground-truth. The results revealed that the correlation coefficient between
the data of both instruments during the analyzed extreme weather events was moderate to low;
for normal precipitation events, the correlation is lower than that of studies that compared GPM
and NEXRAD reflectivity located in other regions of the USA. Only Tropical Storm Karen obtained
similar results to other comparative studies in terms of the correlation coefficient. Furthermore, the
GR elevation angle and precipitation type have a substantial impact on how well the rain reflectivity
correlates between the two sensors. It was found that the Ku-band channel possesses the least bias
and variability when compared to the NEXRAD instrument’s reflectivity and should therefore be
considered more reliable for future tropical storm tracking and tropical region precipitation estimates
in regions with no NEXRAD coverage.

Keywords: cross-evaluation; reflectivity; NEXRAD; GPM; hurricane; ground validation system;
ground radar

1. Introduction

Hurricanes, or tropical cyclones (TC), are characterized by high-speed winds, heavy
precipitation, and low atmospheric pressure, that transform into natural disasters as they
reach land [1]. The major devastation occurs as a result of flooding [2,3]; therefore, rainfall
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estimation is very important for emergency evacuation planning. When a hurricane
makes landfall, the most intense precipitation tends to occur in the vicinity of coastlines;
predicting this event is a significant operational challenge [4,5]. However, flooding due to
precipitation is not limited to coastlines, as seen in recent hurricanes where deadly floods
reached well inland.

The storm’s progression and resulting hazard effects on land are often highly uncertain.
Since the ensemble of forecasts changes during a TC, the uncertainty becomes dynamic,
and it only ends when the storm’s evolution is known completely [6,7]. In order to generate
a timely early warning system before and after the severe precipitation event, it is necessary
to have instruments with high accuracy for detection, measurement, and tracking of
storms [8].

A powerful instrument to monitor severe events such as tropical cyclones is the Global
Precipitation Measurement (GPM) mission, an international network of satellites used to
provide accurate and timely information. GPM is an international partnership sponsored by
NASA and the Japan Aerospace Exploration Agency (JAXA) that launched on 27 February
2014 [9]. This network can provide valuable information needed to monitor the evolution
of devastating storms, and helps scientists study their fast-moving and rapidly evolving
nature [10]. GPM carries two instruments: a passive microwave radiometer GMI and
a dual-frequency precipitation radar (DPR) [11]. The DPR consists of Ku-band (KuPR)
and Ka-band (KaPR) radars on the GPM spacecraft bus, which are capable of measuring
precipitation simultaneously [12]. These radars operate at frequencies of 13.91 GHz and
35.56 GHz, respectively, and provide a three-dimensional observation of rain with an
accurate estimation of rainfall rate. They are co-aligned and provide the same footprint
location on the earth of 5 km. KuPR is suitable for heavy rainfall in the tropical region, and
KaPR suitable for light rainfall in the higher latitude region [13]. DPR lower and upper
thresholds for rain rate measurements are 0.22 and 110.00 mm/h, respectively [14].

Ground-based weather radars, which provide a spatial resolution of 1 km or less, are
also used worldwide to detect and analyze rapidly moving severe storms, and to send
timely alerts to the community [15]. However, during severe and hazardous weather events,
these instruments can be damaged and consequently stop providing valid information; this
occurred when Hurricane Maria made landfall in Puerto Rico in 2017 and destroyed the
only NEXRAD on the island. Therefore, during severe weather events, it is vital to have
redundancy provided by satellite instruments in order to detect and monitor the events,
while ensuring the uninterrupted transmission of timely information [16].

When there are several instruments monitoring a weather event in the same region,
the information must be consistent between the instruments, especially for large areas
where hydrologic applications need information from multiple radar data. This information
is susceptible to radar measurement differences in the overlapping zones, due to radar
calibration, range effect, or both [16]. In order to mitigate this problem, NASA developed an
algorithm to match reflectivity from DPR and NEXRAD over different sampling volumes,
and this effort has been of great importance for evaluating and improving algorithm
performance [17].

One of the most affected U.S. territories during hurricane season in the Atlantic Ocean
is the island of Puerto Rico [18,19]. The most devastating hurricane that has impacted the
island was Hurricane Maria in September 2017; however, Hurricane Irma also impacted
Puerto Rico during that same month only 10 days earlier. Hurricane Irma was a category
5 hurricane with approximately 175-mile-per-hour winds, and was the strongest observed
in the Atlantic in terms of maximum sustained wind [20]. It lasted as a hurricane from 31
August until 11 September, and skirted the northeast region of Puerto Rico on 6 September
2017. This hurricane left more than 1 million people without electricity, some regions
without potable water, and damaged roads and communication system infrastructure in
Puerto Rico [21].

During Hurricane Irma, the NWS in Puerto Rico used weather satellites and a NEXRAD
radar to monitor the severe weather conditions. This radar is located in Cayey (18.12° N,
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66.08° W, 886.63 m elevation), is identified as TJUA, and operates at a frequency of 2.7 GHz
(S-Band). It has a maximum horizontal range of 462.5 km, and scans the entire island every
6 min with a spatial resolution of 1 km [22].

In 2018, the remnants of Tropical Storm Beryl affected Puerto Rico and the U.S. Virgin
Islands on 9 July. Strong winds and heavy rainfall affected Puerto Rico, where the average
rainfall ranged from 1 to 6 inches. Several locations reported flash flooding. As a conse-
quence of this tropical storm, at least 24,000 homes and businesses were without electricity,
there were several fallen trees, and rivers rose over their banks; however, no injuries were
reported [1].

In September 2019, two extreme weather events hit Puerto Rico, Hurricane Dorian
in 6 September, and Tropical Storm Karen in 24-25 September. Dorian was the first major
hurricane of the 2019 Atlantic hurricane season. Although Dorian was less powerful
than Hurricanes Irma and Maria, people from Puerto Rico prepared for the worst since
they were still recovering from Maria. Fortunately, Hurricane Dorian’s projected path
unexpectedly swerved northward and left only some residents without electricity, and
some areas flooded.

Tropical Storm Karen became downgraded to a tropical depression when it hit Puerto
Rico. On its way through the island, flooding occurred and power outages affected less
than 10% of the total population.

This study presents an evaluation of GPM-DPR rainfall reflectivity against NEXRAD
TJUA radar reflectivity during four extreme weather events and during normal precipita-
tion events, in order to determine the degree of correlation between these two instruments.
Measurement data from the extreme weather events in 2015-2019 were statistically ana-
lyzed, and reflectivity differences were broken down by precipitation type (stratiform and
convective) and radar elevation angle, comparing KaPR and KuPR with NEXRAD TJUA
separately.

The study results identified that the correlation coefficient between the data of both
instruments during the extreme weather events was moderate to low, and for normal
precipitation events the correlation is lower than that for other studies that compared GPM
and NEXRAD reflectivity located at other sites in the USA.

However, Tropical Storm Karen had a better correlation coefficient for its four angles
compared to the other extreme weather events. Likewise, the ground radar elevation
angle and precipitation type have a substantial impact on how well the reflectivities match,
and Ku-band possesses the least bias and variability when compared to ground radar
reflectivity.

Since extreme weather events are frequent in this area, it highlights the importance of
periodically conducting comparative studies to ensure consistency between instruments, in
order to provide high accuracy information that allows timely decision making.

The structure of this article is as follows: Section 2 presents a literature review of studies
that compare matched data from satellite-based radars and ground radars in different
regions of the globe. Section 3 describes the methodology, data, and procedures used to
carry out the cross-evaluation. Then, Section 4 presents the results and the discussion of
the cross-evaluation. Finally, Section 5 shows the conclusions of this research.

2. Literature Review

There have been multiple studies that compared that matched data between satellite-
based radars and ground radars in different regions of the globe. The study developed
by [23] used space-borne precipitation radar information to quantitatively calibrate ground-
based weather radar networks across China. Likewise, researchers from Colorado State Uni-
versity performed ground validation of GPM-DPR observations using an S-band NEXRAD
over the Dallas Fort Worth region in Texas, and reported that the reflectivities were well
matched. The intercomparison of reflectivity measurements between GPM-DPR and
NEXRAD radars carried out by researchers from NASA [24] found that taking samples
with narrow temporal gaps helps to reduce sample variability. Likewise, in order to reduce



Sensors 2022, 22,5773

4 0f 21

the reflectivity differences among GRs in a similar environment, they suggest applying a
bias correction against the DPR. However, more studies are necessary in tropical regions,
and it is also necessary to identify possible beam blockages that can affect patterns in the
GR intercomparison results from before.

K. R. Morris and M. R. Schwaller from NASA performed a study of the sensitivity
of PR-GR measurements for constraints such as range from GR, minimum reflectivity
threshold, PR-GR time differences, and other variables. They found that there is a significant
difference between PR and GR reflectivities in convective cases, particularly in convective
samples from the lower part of the atmosphere [25].

These studies have been deployed all over the world; nevertheless, there are relatively
few that have been done for Latin America, especially the Caribbean. 1. Arias and V.
Chandrasekar performed a cross-validation of GPM with three GR radars from Colombia;
two C-band weather radars close to Bogota DC; and another one in San Andres Island
(Caribbean Ocean). The results showed that the Colombian radar and GPM observations
have a high correlation within 90%, and bias within 1 dBZ [26].

3. Methodology

In order to obtain the matched data between GPM-DPR and NEXRAD during four
extreme weather events and during normal precipitation events, the data products available
from the GPM ground validation system (GVS) validation network (VIN) were used.

The VN performs a direct match-up of DPR and GR data using the geometry-matching
algorithm developed by NASA from the GPM terrestrial validation system (GVS) [27].

The algorithm determines the intersection of individual DPR rays with each of the
elevation sweeps of the circular scanning ground-based radar, and the data outputs are
stored as netCDF files. Due to the randomness of the beam-to-sweep intersections, the
horizontal and vertical locations as well as the number of data points in the geometry
matching technique are different; moreover, this algorithm allows for the identification of
biases between ground observations and satellite recoveries. Figure 1 shows the geometric
intersections of DPR gates and GR sweeps at two different elevation angles.

Common
resolution volume

DPR gates intersecting the
GR sweeps at different
elevation angles

J

Figure 1. GPM-DPR and ground radar geometric matching.

The VN match-up data sets begins on 4 March 2014 (GMI) and 8 March 2014 (DPR,
Ka, Ku, DPRGMI), but the matched data with NEXRAD TJUA began in 2015.

In order to select the match-ups, only those gates at or above a specified rain rate or re-
flectivity threshold are included in the DPR and GR gate averages (variables DPR_dBZ_min,
GR_dBZ_min, and rain_min). These results are stored in netCDF variables [9].
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NEXRAD TJUA data and GPM Ku-band and Ka-band data for 2015 to 2019, in addition
to four extreme weather events that occurred in this same period of time, are compared in
terms of reflectivity differences for the first four matching elevation angles for the three
scanning modes for the GR, and categorized by precipitation type.

The events for typical cases and for included extreme weather events cases do not
surpass the DPR upper threshold sensitivity rain rate of 110.00 mm/h. On average, cross-
matching between DPR and GR over NEXRAD TJUA occurs every four days; occasionally,
there can be two consecutive days with match data, and up to a week for a match to occur.
The average matching duration for GR and DPR is around 40 s, and DPR produces a swath
scan every 300 milliseconds. For this reason, DPR is not a good substitute for GR in terms
of continuous local weather monitoring; however, it is a useful instrument for GR data
calibration and validation, and is also useful in the absence of local GR, as was the case in
Puerto Rico after the damages suffered during Hurricane Maria.

GR has multiple scanning modes with different elevation angles, as Figure 2 shows.
Between 2015 and 2019, 165 cases with sufficient precipitation were selected for analysis, as
well as the four extreme weather events. Table 1 shows the selected elevation angles and
their corresponding beam heights.

angle1=0.48

(a) (b) ()

Figure 2. NEXRAD elevation angle scanning modes of operation for (a) seven elevations, (b) eight
elevations and (c) nine elevations.

Table 1. Elevation angles and their maximum beam heights.

Angle Maximum Beam Height (Km)
1 0.48° 0.8377
2 1.31-1.45° 2.53
3 2.42° 422
4 3.125-3.39° 591

The algorithm for the files used is VO5A version 1.3, and data within 100 km of the GR
are used with a minimum threshold of 15 dBZ and a 7-km distance away from the GR.

Each elevation angle is subcategorized by precipitation type, stratiform and convective;
then, the bias is calculated, in addition to the variance, mean absolute error (MAE), mean
square error (MSE), and root mean square (RMS), in order to determine variability in
reflectivity differences under the different categorizations and subcategorizations, number
of samples, and Pearson correlation coefficients (CC).

3.1. Extreme Weather Events
3.1.1. Hurricane Irma Data

Hurricane Irma’s eye passed north of Puerto Rico on 6 September by 8 p.m. as a
category 5 storm. By 4 a.m. on 7 September, it passed north of the Dominican Repub-
lic; consequently, this is a single event comparison between NEXRAD and GPM on 7
September 2017.
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Figure 3a presents GOES East satellite image of the Caribbean at the moment when
Irma and GPM passed over PR on 7 September 2017; Figure 3b shows the map of Puerto
Rico with the ascending orbit of GPM over PR on 7 September 2017.

British
Virgin
Islands.

US Virgin
Islands

2017/09/07 GPM Obs Time ONOF)

TRMM Obs Trme ONOJ

Figure 3. (a) GOES East satellite (7 September 2017); (b) map of Puerto Rico (7 September 2017).

3.1.2. Tropical Storm Beryl

Hurricane Beryl weakened to a tropical storm on Saturday, 7 July 2018 as it approached
islands in the eastern Caribbean. In Puerto Rico, between 9 and 10 July strong winds were
reported; moreover, up to 8 inches of rain fell in some areas. Figure 4 shows Tropical Storm
Beryl over Puerto Rico.

Dominican Republic

% 40 s RN
iPM Precipitation mm/hr (GMI/DPR)
18 1241Z_Hurricane Beryl Remnants (Over GOES-EAST IR)

Figure 4. Tropical Storm Beryl over Puerto Rico [28].

3.1.3. Hurricane Dorian

In Puerto Rico, along the east and southeast, between the 28th and 29th of August,
Hurricane Dorian left rainfall accumulations of between 4 and 6 inches, and generated
flash flooding especially across the eastern end of Puerto Rico. Figure 5 shows the closest
point between GPM and GR on 29 August at 7:01 pm local time (11:01 UTC).
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Figure 5. Hurricane Dorian over Puerto Rico [29].

3.1.4. Tropical Storm Karen

Tropical Storm Karen is the weakest event compared to the other three. Figure 6 shows
the image captured by the GPM’s core satellite when it passed over Tropical Storm Karen
on 25 September 2019 at 11:16 p.m. The most significant damages were heavy rains that led
to flooded roads, flash flood warnings, and hazardous marine conditions.

0%,/25/1
08,/25/1
nsﬁzs}“

Figure 6. Tropical Storm Karen [30].

The cross-evaluation of the four extreme weather events (Irma, Beryl, Dorian, and
Karen) follow the same categorization and analysis as the normal weather conditions cases
from the previous section; the biases were obtained, along with variances, mean absolute
errors (MAE), mean square errors (MSE), root mean square (RMS), and the correlation
coefficients for each GR elevation angle and subcategorized by precipitation type.

4. Results and Discussion

Data were analyzed and classified into normal weather conditions, which were the
data for 2015-2019 along with the four included extreme weather cases. Likewise, the
results were subcategorized by precipitation type for both cases, and calculated for bias,
variance, mean absolute error (MAE), mean square error (MSE), root mean square (RMS),
and the correlation coefficient between KuPR vs. NEXRAD TJUA and between KaPR vs.
NEXRAD TJUA.
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4.1. Normal Weather Conditions

Table 2 shows the statistical results for normal weather conditions.

Table 2. Statistical results for normal weather conditions.

Normal Weather Conditions

KuPR KaPR

Angle Stratiform Convective Stratiform Convective

Bias —0.792329193  —1.928060201  —0.8233397  —2.147966575

Variance 19.05459973 33.65576683 18.24078643 30.70512149

MAE 3.198405797 4.698553872 3.122685476 4.571603734

1 RMS 4.435640543 6.112789433 4.348742085 5.942434021
Samples 2548 4816 2563 4828

CcC 0.707132246 0.695508443 0.701784846 0.690715355

Bias —0.643999145 —1.959468715 —0.771038608 —2.230547626

Variance 19.95418399 32.30120898 19.10399729 29.52500261

MAE 3.224176468 4.611003214 3.163506815 4.510469111

2 RMS 4.512430194 6.01102083 4.437559084 5.873053157
Samples 2895 3866 2909 3889

CC 0.686310925 0.72902739 0.677008897 0.724902355

Bias —0.26332424  —1.307805767 —1.672383595 —2.154162215

Variance 19.48338376 33.30169215 23.58685517 31.67090546

MAE 3.2547436 4.615509813 4.000603845 4.723886572

3 RMS 4.421061512 5.915974923 5.135681587 6.024842945
Samples 2808 2506 2776 2516

CcC 0.671654104 0.704138687 0.570034514 0.680690284

Bias —0.26332424  —1.307805767 —1.852530874  —2.493749553

Variance 19.48338376 33.30169215 20.68760321 30.70949712

MAE 3.2547436 4.615509813 3.842132901 4.788769913

4 RMS 4.421061512 5.915974923 4.910250175 6.075513292
Samples 2808 2506 2320 1870

CcC 0.671654104 0.704138687 0.591936883 0.672371389

4.1.1. Angle 1 (0.4843°)

Figures 7-10 represent the scatter density plots for this case for GR angle 1 elevation

and the precipitation type.
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Figure 7. GPM-Ka vs. NEXRAD TJUA for stratiform precipitation (angle 1).
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Figure 8. GPM-Ku vs. NEXRAD TJUA for stratiform precipitation (angle 1).
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Figure 9. GPM-Ka vs. NEXRAD TJUA for convective precipitation (angle 1).
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Figure 10. GPM-Ku vs. NEXRAD TJUA for convective precipitation (angle 1).

According to the statistical results for GR elevation angle 1 (0.4843°) for normal
weather conditions, 77.5% of the samples correspond to convective precipitation, 22.5%
correspond to stratiform, and around 0.16% of the samples are categorized as other (their
precipitation types do not correspond to stratiform or convective). The means for KuPR
and KaPR show that there is better matching with GR data during stratiform precipitation.
However, the variance from KuPR is slightly more significant than KaPR. For both con-
vective and stratiform precipitation, KuPR has better matching with GR data, as can be
compared with the scatter plots of Figures 8 and 10.

4.1.2. Angle 2 (1.45°)
Figures 11-14 represent the scatter density plots for this case for GR angle 2 elevation
and the precipitation type.
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Figure 11. GPM-Ka vs. NEXRAD TJUA for stratiform precipitation (angle 2).
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Figure 12. GPM-Ku vs. NEXRAD TJUA for stratiform precipitation (angle 2).
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Figure 13. GPM-Ka vs. NEXRAD TJUA for convective precipitation (angle 2).
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Figure 14. GPM-Ku vs. NEXRAD TJUA for convective precipitation (angle 2).

For angle 2, the composition of the precipitation type is around 30% stratiform, 69.6%
convective, and 0.4% classified as other. The mean reflectivity difference for angle 2 has the
same behavior as angle 1, where KuPR has better matching for convective and stratiform
precipitation, although the mean reflectivity difference is lower for angle 1. Likewise, for
angle 2 the KuPR variance is more significant than it is for KaPR. Figures 12 and 14 illustrate
that KuPR has better matching for convective and stratiform precipitation.

4.1.3. Angle 3 (2.4219°)
Figures 15-18 represent the scatter density plots for this case for GR angle 3 elevation
and the precipitation type.
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Figure 15. GPM-Ka vs. NEXRAD TJUA for stratiform precipitation (angle 3).
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Figure 16. GPM-Ku vs. NEXRAD TJUA for stratiform precipitation (angle 3).



Sensors 2022, 22,5773

12 of 21

TJUA Reflc [dBZ] denscatter plot ElevAngle3 Conv. preci, 2015-2019

20 25 30 35 40 45

GR-TJUA Reflectivity [dBZ]

s
=

w
o

GPM-Reflectivity [dBZ]
] [

h
=]

Figure 17. GPM-Ka vs. NEXRAD TJUA for convective precipitation (angle 3).
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Figure 18. GPM-Ku vs. NEXRAD TJUA for convective precipitation (angle 3).

The composition of the precipitation type for angle 3 is around 37.76% stratiform,
60.81% convective, and approximately 0.14% is classified as other. For GR angle 3, KuPR has
better matching for convective and stratiform precipitation, as shown in Figures 16 and 18.
Likewise, the variance is lower in KuPR for stratiform precipitation than it is for KaPR;
however, for convective precipitation it is the opposite, where KaPR has lower variance.

4.14. Angle 4 (3.125°)

Figures 19-22 represent the scatter density plots for this case for GR angle 4 elevation

and the precipitation type.
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Figure 19. GPM-Ka vs. NEXRAD TJUA for stratiform precipitation (angle 4).
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Figure 20. GPM-Ku vs. NEXRAD TJUA for stratiform precipitation (angle 4).
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Figure 21. GPM-Ka vs. NEXRAD TJUA for stratiform precipitation (angle 4).
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Figure 22. GPM-Ku vs. NEXRAD TJUA for convective precipitation (angle 4).

Finally, for normal weather conditions, the composition of the precipitation type
for angle 4 is around 42.54% stratiform, 53.71% convective, and approximately 3.75%
classified as other. The mean reflectivity difference from angle 4 shows that KuPR has
better correspondence with GR and lower variance than KaPR. For this angle, the stratiform

precipitation data are biased to GPM.
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4.2. Extreme Weather Conditions

This section presents the statistical results of the four extreme weather events, Hurri-
cane Irma, Tropical Strom Beryl, Hurricane Dorian, and Tropical Storm Karen.

4.2.1. Hurricane Irma

Table 3 shows the statistical results for Hurricane Irma comparing the elevations angles

and the precipitation type.

Table 3. Statistical results for Hurricane Irma.

KuPR KaPR
Angle Statistics Stratiform Convective Stratiform Convective
Bias —2.94313838  —2.821463626 —2.952524082 —2.850856449
Variance 47.79819374 17.01252891 46.04521328 16.73380946
samples 37 46 37 46
1 CC 0.489350541 0.816860184 0.48798682 0.819952168
MAE 5.571226223 3.859934019 5.591467213 3.824566883
MSE 55.16841419 24.60334832 53.51814651 24.49741349
RMS 7.42754429 4.960176239 7.315609784  4.949486184
Bias —2.555253983  —4.662028296  —2.508374166 —4.876060921
Variance 49.33313154  43.57828099  47.92946176  42.50447784
Samples 40 57 40 57
2 CC 0.491266891 0.632773129 0.490170722 0.616068108
MAE 5.765949059 5.779512272 5.725718832 6.06207774
MSE 54.62912617  64.54825758 53.02316618 65.53475535
RMS 7.391151884 8.034193026 7.281700775 8.095353936
Bias —3.442076715 —4.692876602  —3.55133187  —5.081425375
Variance 63.05476463 55.53031483 58.85108141 51.8369617
Samples 30 49 30 49
3 CC 0.47654745 0.530448225 0.499089749 0.501101383
MAE 6.71135931 6.653468521 6.684085687  6.683443537
MSE 72.80083126 76.4201339 69.50133675 76.59994836
RMS 8.532340315 8.741861009 8.336746173 8.752139645
Bias —3.487401009 —4.942844187 —4.157013245 —5.503968988
Variance 52.35617101 49.08833575 44.4351132 41.66927182
Samples 26 42 25 42
4 CC 0.51742935 0.494104255 0.569439427 0.49362148
MAE 6.236443079 6.576980069 6.208148499 6.529815061
MSE 62.50443792 72.3512745 59.93846779 70.97082093
RMS 7.905974824 8.505955237 7.741993786 8.424418136

For GR angle 1 (0.4843°) during Hurricane Irma, the precipitation type samples
are 44.58% stratiform and 55.42% convective, with no precipitation classified as other.
Comparing the biases for KuPR and KaPR, they are marginally better for convective
precipitation, while the variance for convective is less than half the values obtained for
the stratiform types. All precipitation types in angle 1 are also biased toward the GR;
in addition, convective type precipitation for Hurricane Irma has the best CC of all the
elevation angles.

For GR elevation angle 2 (1.31°) for both Ku and Ka, the precipitation type samples
are 41.24% stratiform and 58.76% convective. In terms of the variance, angle 2 shows the
same behavior as angle 1, with the convective precipitation type being less than half the
values obtained for the stratiform types; in addition, angle 2 is biased toward GR. The bias
was better for the stratiform types, with Ka having less bias.

The statistical results for GR elevation angle 3 (2.42°) for both Ku and Ka show that
the precipitation type samples are 37.97% stratiform and 62.03% convective, with no
precipitation classified as other. In terms of the bias, the behavior of angle 3 is similar to
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that of angle 2, in which Ka stratiform type has the least bias, followed by Ku convective;
however, only Ku convective type has a low variance compared to the other cases. All
precipitation types are biased toward GR.

For GR elevation angle 4 (3.125°) for both Ku and Ka, the precipitation type samples
are 38.24% stratiform and 61.76% convective, with no precipitation classified as other. In
terms of the bias, the behavior is similar to that for angle 3; Ka stratiform type has the
least bias followed by Ku convective, with Ku convective type having the lowest variance
compared to the other cases. Overall, the bias values are worse for angle 4 than they are for

angle 3, and they are also all biased toward GR.

4.2.2. Tropical Storm Beryl

Table 4 presents the statistical results for Tropical Storm Beryl.

Table 4. Statistical results for Tropical Storm Beryl.

KuPR KaPR
Angle Statistics Stratiform Convective Stratiform Convective
Bias —4.188757324 —1.611068541 —4.119752185 —2.023071303
Variance 29.69152265 27.74995273 27.92358558 27.5691715
Samples 30 67 30 67
1 CC 0.417403818 0.855086534 0.416934835 0.860353451
MAE 4995158386  4.309867275  4.804879443  4.595677347
MSE 46.24749315 29.93131618  43.96515745  31.25050883
RMS 6.800550944 5.470952036 6.630622705  5.590215455
Bias —3.96698755  —3.094893278 —3.785002589  —3.461226754
Variance 30.06729915 27.45351222 28.70518371 25.46765433
Samples 32 59 32 59
2 CC 0.44173825 0.82912417 0.432862925 0.82865775
MAE 4918266118  4.777979673 4.6668787 5.012819953
MSE 4486468627  36.56656286  42.13439132 37.01608981
RMS 6.698110649 6.047029259 6.491100933 6.084084961
Bias —2.309407976  —3.509221013 —2.604671902  —4.84570752
Variance 28.40046399 2728209017  30.59790247  28.18860375
Samples 27 45 27 46
3 CC 0.529551794 0.793626593 0.49425288 0.77078715
MAE 4.490690726 5.018928274  4.659091243 6.173538332
MSE 32.68196015 38.99045362 36.24896254  51.05668939
RMS 5.716813811 6.24423363 6.020711132 7.145396377
Bias —0.975679831 —3.669306331 —1.153117085 —6.505941709
Variance 24.80327233 11.49199802 32.2660198 15.71218863
Samples 22 36 20 36
4 CC 0.58487078 0.875244005 0.455514283 0.760631905
MAE 4100157218  4.201406161 4.469336605 6.817758348
MSE 24.62780199 24.63658481 31.98239782 57.60301647
RMS 4.962640627  4.963525441 5.655298208 7.589665109

For GR angle 1 (0.4843°) during Beryl, the precipitation type samples are 30% strati-
form and 67% convective, with 3% classified as other. As in the Hurricane Irma case, the
bias for KuPR and KaPR are better for convective precipitation. Likewise, convective type
precipitation has better CC than stratiform type, and it is also biased toward the GR [23].

For GR elevation angle 2 (1.31°) for both Ku and Ka, the precipitation type samples
are 35% stratiform, 64% convective, and 1% for other types. Considering the bias, angle 2 is
biased toward GR. For this angle, the bias was better for the stratiform types, with the bias
for Ka being less, similar to the case for Hurricane Irma.

For the results of elevation angle 3 (2.42°), the precipitation type sample distributions
are 36% stratiform and 61% convective, with 3% classified as other types. In terms of the
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bias, angle 3 is similar to angle 2 in which Ka stratiform type has the least bias followed by
Ku convective,

For GR elevation angle 4 (3.125°), the precipitation type samples are 34% stratiform,
56% convective, and 8% classified as other, for Ku. For Ka, precipitation type samples are
34% stratiform, 62% convective, and 4% classified as other. In this angle, Ka stratiform type
has the least bias, followed by Ku convective; Ku convective type has the lowest variance
compared to the other cases.

4.2.3. Hurricane Dorian

Table 5 presents the statistical results for Hurricane Dorian.

Table 5. Statistical results for Hurricane Dorian.

KuPR KaPR
Angle Statistics Stratiform Convective Stratiform Convective
Bias —2.38389152 —4.20767755  —2.304239854 —4.658222198
Variance 40.15040336 68.38312472 38.81483751 62.83222884
Samples 23 36 23 36
1 CC 0.538710059 0.473353709 0.527199554 0.443717362
MAE 5.168910773 7.117181645 5.199398704 7.266365634
MSE 44.08767243 84.18814384 42.43675718 82.7859232
RMS 6.63985485 9.175409737 6.514350096 9.098677003
Bias —2.28582089  —4.071136222 —2.137696407 —4.642113489
Variance 30.76966538 57.16153013 30.67199076 50.49311839
Samples 27 34 27 34
2 CcC 0.683052459 0.565677187 0.679931993 0.548841922
MAE 4.381723439 6.167973939 4.437851553 6.237545939
MSE 34.85502529 72.05445879 34.10573703 70.55724432
RMS 5.903814469 8.488489783 5.840011732 8.39983597
Bias —0.990524754  —2.85947046  —1.592194641 —3.820850403
Variance 27.46570967 56.70861986 30.14648051 47.42463277
Samples 33 31 34 31
3 CC 0.614723621 0.552030308 0.538029026 0.5260822
MAE 3.912260345 5.906849984 4325223951 5.536262543
MSE 27.61455473 63.05588085 31.79490309 60.49370371
RMS 5.254955255 7.940773316 5.638696932 7.777769842
Bias —0.813496431 —1.351946259  —1.90059691  —3.129214325
Variance 22.36567372 60.37829684 25.97597365 54.17977911
Samples 36 25 36 25
4 CC 0.62558895 0.403635626 0.523370099 0.348124607
MAE 3.372445424 5.858706818 3.999924898 5.634678345
MSE 22.40618145 59.79092365 28.86668744 61.80457024
RMS 4.733516817 7.732459095 5.372772789 7.861588277

For GR angle 1 (0.4843°) during Hurricane Dorian, the precipitation type samples are
39% stratiform and 61% convective, with no precipitation classified as other. The results for
this angle are similar to those for Hurricane Irma and Tropical Storm Beryl, in that both
precipitation types are biased toward the GR, and the convective type precipitation has a
better CC than stratiform type.

Similarly, angle 2 is biased toward GR like angle 1, but the bias was better for the
stratiform types. For both Ku and Ka, the precipitation type samples are 44.26% stratiform
and 58.76% convective.

The statistical results of GR elevation angle 3 (2.42°) show that for both Ku and
Ka, the precipitation type samples are 37.97% stratiform and 55.73% convective, with no
precipitation classified as other. In terms of the bias, Ka stratiform type has the least bias
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followed by Ku convective; however, only Ku convective type has a low variance compared
to the other cases.

For GR elevation angle 4 (3.125°) for both Ku and Ka, the precipitation type samples
are 59% stratiform and 41% convective, with no precipitation classified as other. The
variance is high for the four angles, but angle 4 presents a lower variance for the convective
precipitation. Likewise, the correlation coefficients are low, where KaPR has worse results,
especially for angle 4.

4.2.4. Tropical Storm Karen
Table 6 shows the statistical results for Tropical Storm Karen.

Table 6. Statistical results for Tropical Storm Karen.

KuPR KaPR
Angle Statistics Stratiform Convective Stratiform Convective
Bias —1.5556556 1.706651317  —1.806369029 —0.793639024
Variance 8.672564753 8.106865581 9.316739678 2.46326481
samples 71 36 71 36
1 CC 0.86673526 0.937141932 0.837512015 0.934651891
MAE 2.370126778 2.555990166 2.527218563 1.31192202
MSE 10.9704803 10.79433359 12.44848706 3.024703688
RMS 3.312171539 3.285473115 3.528241356 1.739167527
Bias —0.602297948  1.480800735 —0.815835025 —0.150544167
Variance 5.857037297 6.640760467 6.034862038 2.335265974
Samples 75 36 75 36
2 CcC 0.903787903 0.930935096 0.876159423 0.946492355
MAE 1.889265315 2.223025746 1.974323667 1.189369731
MSE 6.141706285 8.649065714 6.619983998 2.293061021
RMS 2.478246615 2.940929396 2.572932956 1.514285647
Bias 0.801119123 2.871341123 —2.132589764 0.06831736
Variance 6.242063048 6.562596797 5.661498234 4.379294642
Samples 84 36 81 36
3 CC 0.874454055 0.877279437 0.844826152 0.887496647
MAE 2.126662118 3.117811468 2.542521371 1.659194893
MSE 6.809544623 14.62490228 10.1395423 4.26231483
RMS 2.609510418 3.824251859 3.184264797 2.064537437
Bias 2.092964198 2.910401053 —1.220398197 —1.353463411
Variance 2.919875752 5.280831345 4.885140215 3.443681709
Samples 75 36 73 36
4 CC 0.891335296 0.89085389 0.795730659 0.908970434
MAE 2.362140477 3.095258633 1.825778844 1.951402744
MSE 7.261443209 13.60457587 6.307592247 5.17988709
RMS 2.694706516 3.688438135 2.511492036 2.27593653

Tropical storm Karen is the weakest of the previous extreme events, and unlike the
others with similar behaviors for the first three angles, the results obtained for this event
are different. The first place for the convective type of KuPR in all four angles is biased to
GPM. On the other hand, for stratiform precipitation, angles 1 and 2 of KuPR are biased to
GR, while angles 3 and 4 are biased to GPM. Considering the CCs for angles 1 and 2, the
CCs are higher for KuPR; however, for angles 3 and 4 the CCs are slightly better for KaPR.

Comparing the results of normal weather cases with the four extreme weather events,
there is better correspondence in the results obtained for cases between 2015 and 2019,
this in part due to the fact that there are many more samples. According to the statistical
analysis and scatter density plots, for normal weather cases the reflectivity difference for
every case is biased toward the GR except for angle 4 Ku-band and the stratiform case.
Likewise, Ku-band has the best matching in every case for the stratiform and convective
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cases. For the Hurricane Irma case, the mean reflectivity difference is biased toward the GR
(negative bias) for each elevation angle of the GR, and also for each GPM band. The first
elevation angles (0.48 and 1.31 degrees) show better matching than the values obtained
for angles 3 and 4 (2.42 and 3.125 degrees) in terms of the mean reflectivity difference
and variance.

Concerning the precipitation type, convective precipitation shows less variability
compared to the stratiform precipitation in Ku-band and Ka-band. For the elevation angle,
Ku-band shows substantially less variability in the higher elevation angles when compared
to Ka-band. On the other hand, during normal weather conditions, an elevation angle for
GR of around 3.39 degrees gives the best matching in terms of bias, variability, and CC; for
the case of Hurricane Irma, an elevation angle of 0.48 degrees offers better results.

Of significance is that Hurricane Irma, Tropical Storm Beryl, and Hurricane Dorian
showed lower biases and variances for precipitation classified as convective when com-
pared to stratiform for DPR-Ku; likewise, most cases exceeded 5 dBZ and were highly
variable except for convective type precipitation. For the cases in 20152019, stratiform
precipitation generally showed lower values of bias than the convective type.

Regarding the correlation coefficient (CC), for normal weather cases and stratiform
precipitation, the CCs for KuPR are between 0.67 and 0.70, and for KaPR they are 0.57-0.70.
Likewise, for convective precipitation, the CCs for KuPR are 0.69-0.70 and for KaPR they
are 0.67-0.72. These CCs are much lower compared to the results obtained in the study
carried out by [20], which quantitatively compared GPM's observations of reflectivity with
instantaneous rainfall products of five NEXRAD ground radars located in the southeastern
plains of the U.S.A. Table 7 shows the correlation coefficients obtained by [20] classified
into precipitation type.

Table 7. Correlation coefficients for DPR Ku-band and Ka-band reflectivity vs. NEXRAD S-band
reflectivity [20].

Nexrad Radar

KuPR KaPR
Stratiform (CC) Convective (CC) Stratiform (CC) Convective (CC)

KFWS (Dallas/Ft. Worth, TX, USA) 0.89 0.88 0.82 0.82
KHGX (Houston/Galveston, TX, USA) 0.88 0.89 0.78 0.83
KSHYV (Shreveport, LA, USA) 0.90 0.85 0.82 0.80
KLIX(New Orleans, LA, USA) 0.89 0.84 0.79 0.76
KMLB (Melbourne, FL, USA) 0.83 0.86 0.66 0.71

For the Hurricane Irma case, the CCs for stratiform precipitation are between 0.4765
and 0.5174 for KuPR and between 0.4880 and 0.5807 for KaPR. For convective precipitation,
the CCs for KuPR range from 0.4941 to 0.8169 and for KaPR the CCs are 0.4936-0.8200,
where the higher values are from angle 1.

The CC range for Tropical Storm Beryl related to stratiform precipitation is between
0.417 and 0.584 for KuPR, and 0.416-0.494 for KaPR. For convective precipitation, the CCs
are significantly higher than those for stratiform type, since the CCs for KuPR range from
0.79 to 0.87, while for KaPR they are 0.76-0.86, where the higher values are from angle 1.

On the other hand, Hurricane Dorian exhibited similar behavior to Hurricane Irma.
The CCs for stratiform precipitation are between 0.53 and 0.68 for KuPR, and between
0.52 and 0.67 for KaPR; these values are slightly better than those for Hurricane Irma. For
convective precipitation, the CCs for KuPR range from 0.40 to 0.55, and for KaPR are from
0.34 to 0.54; they are significantly lower than the corresponding CCs for Hurricane Irma
and Tropical Storm Beryl.

Finally, the CCs for Tropical Storm Karen are the greatest of the four extreme weather
events for both cases, stratiform and convective precipitation types. The CCs for stratiform
precipitation are between 0.86 and 0.90 for KuPR, and between 0.79 and 0.94 for KaPR;
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these values are slightly better than those corresponding to Hurricane Irma. For convective
precipitation, the CCs for KuPR range from 0.87 to 0.93, and for KaPR are from 0.88 to 0.94.

These results indicate that it is necessary to apply corrective algorithms in order to
improve the calibration of the GR located in Puerto Rico, and to increase the correlation
of the data between GR and GPM. As the event becomes more extreme, the correlation
coefficient decreases. Implementing corrective algorithms is a necessary action, considering
that the GR is the main instrument used by the government of this country to design
forecasts and issue alerts to the community.

5. Conclusions

This study performed a cross-evaluation of reflectivity from GPM-DPRs for both Ku-
and Ka-band against the ground-based radar NEXRAD located in Puerto Rico (TJUA),
for two cases: during normal weather precipitation events and during four extreme
weather events.

Data from TJUA in 2015-2019 (normal precipitation cases) and from the extreme
weather events were compared in terms of biases and correlation coefficients, and used
the first four matching elevation angles for the three scanning modes of the GR, and
subsequently categorized by the type of precipitation (stratiform and convective).

The statistical analysis shows that Ku-band possesses the least bias and variability
when compared to ground radar reflectivity; for this reason, DPR-Ku is better suited for
reflectivity measurements in normal to moderate weather conditions in the Caribbean
Region close to Puerto Rico.

Furthermore, the results showed that the elevation angle of the GR has a strong impact
in how well the reflectivities match. Likewise, an elevation angle of 3.39 degrees was
determined as the best to use for DPR-Ku in normal weather conditions, while for a severe
event such as Hurricane Irma, a lower elevation angle such as 0.4843 degrees has the best
matching for DPR-Ku and Ka.

The precipitation type also has a significant impact on how well matched the GR and
DPR data are. For normal weather precipitation conditions, the stratiform type is statisti-
cally better for every GR elevation angle in comparison to the convective type. Similarly,
when there are a lower number of convective types samples, the matching is improved, as
is the case when the GR elevation angle is higher. Similarly, for Hurricane Irma, Tropical
Storm Beryl, and Hurricane Dorian, the precipitation type also had a substantial impact
on DPR-GR matching, with a lower GR elevation angle and convective type offering the
best match.

However, in terms of the correlation coefficients for both cases, normal weather
precipitation conditions and three of the extreme events (Hurricane Irma, Tropical Strom
Beryl, and Hurricane Dorian), the results are lower than those from other studies that
compared GPM-DPR observations with different NEXRAD locations in the U.S.A; therefore,
it is necessary to apply corrective algorithms in order to improve the calibration of the GR
located in Puerto Rico. It is necessary to increase the correlation of the data between GR
and GPM so that they can provide accurate information for both rain events under normal
conditions, and for severe events such as during tropical cyclones.
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