
Citation: Garrote, L.; Perdiz, J.;

da Silva Cruz, L.A.; Nunes, U.J. Point

Cloud Compression: Impact on

Object Detection in Outdoor

Contexts. Sensors 2022, 22, 5767.

https://doi.org/10.3390/s22155767

Academic Editors: Manuel F. Silva

and Marcelo Petry

Received: 26 May 2022

Accepted: 29 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Point Cloud Compression: Impact on Object Detection in
Outdoor Contexts
Luís Garrote 1,2,† , João Perdiz 1,2,† , Luís A. da Silva Cruz 1,3 and Urbano J. Nunes 1,2,*

1 Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal;
garrote@isr.uc.pt (L.G.); joao.perdiz@isr.uc.pt (J.P.); lcruz@deec.uc.pt (L.A.d.S.C.)

2 Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal
3 Instituto de Telecomunicações, University of Coimbra, 3030-290 Coimbra, Portugal
* Correspondence: urbano@deec.uc.pt
† These authors contributed equally to this work.

Abstract: Increasing demand for more reliable and safe autonomous driving means that data involved
in the various aspects of perception, such as object detection, will become more granular as the
number and resolution of sensors progress. Using these data for on-the-fly object detection causes
problems related to the computational complexity of onboard processing in autonomous vehicles,
leading to a desire to offload computation to roadside infrastructure using vehicle-to-infrastructure
communication links. The need to transmit sensor data also arises in the context of vehicle fleets
exchanging sensor data, over vehicle-to-vehicle communication links. Some types of sensor data
modalities, such as Light Detection and Ranging (LiDAR) point clouds, are so voluminous that their
transmission is impractical without data compression. With most emerging autonomous driving
implementations being anchored on point cloud data, we propose to evaluate the impact of point
cloud compression on object detection. To that end, two different object detection architectures are
evaluated using point clouds from the KITTI object dataset: raw point clouds and point clouds
compressed with a state-of-the-art encoder and three different compression levels. The analysis
is extended to the impact of compression on depth maps generated from images projected from
the point clouds, with two conversion methods tested. Results show that low-to-medium levels
of compression do not have a major impact on object detection performance, especially for larger
objects. Results also show that the impact of point cloud compression is lower when detecting objects
using depth maps, placing this particular method of point cloud data representation on a competitive
footing compared to raw point cloud data.

Keywords: point cloud; lossy compression; object detection; depth maps; depth filtering; machine
learning

1. Introduction

The increasing availability of ever more spatially detailed Light Detection and Ranging
(LiDAR) data has both driven, and been the driver of, increasingly complex methods for
the acquisition, processing, and subsequent information extraction from 3D point clouds.
Due to their ability to represent virtually the physical world, they are especially useful in
applications such as video gaming, virtual reality and robotic navigation, and within these
the subset of autonomous driving applications poses specific challenges. However, the
large amount of data generated when creating these representations causes problems in
transmission, manipulation, and storage, especially in the scope of vehicular navigation
and vehicle-to-vehicle or vehicle-to-infrastructure communication. Therefore it is necessary
to reduce the amount of data transmitted between processing devices; a plausible solution
might be attained by compressing the LiDAR point clouds.

The main purpose of this work is to analyze the impact of point cloud compression on
object detection. Uncompressed point cloud data from the KITTI dataset as well as point

Sensors 2022, 22, 5767. https://doi.org/10.3390/s22155767 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3833-3794
https://orcid.org/0000-0002-6589-141X
https://orcid.org/0000-0003-1141-4404
https://orcid.org/0000-0002-7750-5221
https://doi.org/10.3390/s22155767
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155767?type=check_update&version=1

Sensors 2022, 22, 5767 2 of 12

clouds compressed at three compression ratios were used in the object detection study.
Results were obtained using two different publicly available detection and classification
architectures for point cloud data. Performance metrics were also computed for image-
based object detection that uses depth data generated from the raw and compressed
point clouds. Two common point cloud interpolation methods [1,2] were used with the
YOLOv5m and YOLOv5l [3] image-based detection architectures.

Detection metrics obtained from using these architectures were used to analyze the
robustness of the methods to lossy compression of the LiDAR data with three degrees of
compression. Specifically, higher robustness in object detection was obtained on depth
map-based data when using compressed point cloud data in the training set, compared to
results obtained using other object detection methods. Object detection was affected by
the compression of point cloud data in the testing set, with a degradation in the detection
metrics when testing with lossily compressed point clouds. This empirical evaluation of the
influence of lossy LiDAR point cloud compression on the performance of object detection
methods is the main contribution of this work.

This paper is organized as follows. In Section 2, we briefly describe some background
work relevant to the point cloud compression and projection and the depth-mapping
methods used in the tests further ahead. Section 3 describes in more detail the compression
algorithms, system architecture and object detection methods that were used, while the
test results are shown in Section 4. Section 5 concludes the paper with remarks about the
impact of compression on object detection from point clouds, with a final highlight on the
pertinence of implementing and testing methods using intermediate representations (depth
maps) for object detection.

2. Background
2.1. Point Cloud Compression

Over the years, several algorithms for point clouds and mesh compression have been
proposed. Some of them operate at capture time in the sensor as described in [4] in the case
of LiDAR point clouds, generally with low compression rates. The 3D Mesh method [5],
which converts a 3D model into a set of polygons, is an extensively studied method,
often used as a starting point for the development of others. Pauly and Gross [6] have
proposed a method that converts a point cloud into a diversity of images—a height map—
and, employing solely information on points and normals, discards vertex connection
information. A self-similarity method developed by Hubo et al. [7] allows storage of
additional point parameters by grouping them into clusters of surface patches. The Shape-
Adaptive Wavelet Coding compression method introduced in [8] and the use of geometric
primitives proposed by Schnabel et al. [9] show that high-quality renderings can be achieved
through compression.

Real-time compression of point clouds has been achieved through voxelization and
the incremental updating of 2D patches inside each voxel [10]. In [11], compression was
attained through the use of Random Sample Consensus (RANSAC) to extract planes
from a point cloud with the planes subsequently transformed into surfaces by Delaunay
triangulation. There are also 2D representation methods, which alternatively propose
mapping the point cloud into panoramic images [12] or, using additional laser scanner
information, into 2D pixels [13]. A deep learning approach to compression can be seen
in [14], where the authors propose employing a recurrent neural network to compress
LiDAR data that had previously been converted to 2D images, while using a network with
a residual block to decompress it.

Tree-based methods, in turn, make use of a tree structure to represent the point cloud.
Octree structures for octant-based tree mapping of the point cloud were proposed by
R. Schnabel et al. [15], J. Elseberg et al. [16], and Kammerl et al. [17]. In [15] prediction
techniques were applied achieving high compression rates. In [16] an octree algorithm is
proposed with high efficiency in storage and compression of a large volume of 3D data,
without any loss of precision. In [17] a real-time compression algorithm is proposed to per-

Sensors 2022, 22, 5767 3 of 12

form spatial decomposition based on octree data structures. This method also encodes point
attributes using a range coder and removes temporal redundancy in dynamic point clouds.
Hubo et al. [18] used kd-trees, reducing the memory footprint and preserving performance,
while Gumhold et al. [19] used prediction trees that improved compression rates in bits
per point. The compression method implemented in [20] uses quad-trees and binary tree
partitions to reduce the complexity of the bounding boxes relative to those that would be
created by using solely octree partition, thus saving memory. Recently, to address requests
from the industry sector, the MPEG standardization group developed two 3D point cloud
coding algorithms that are at the moment the top-performing solutions for compression of
3D point clouds [21,22]. One of them, Geometry-based Point Cloud Compression (G-PCC),
is geared towards the efficient compression of sparse and very sparse point clouds like those
typical of LiDAR. G-PCC is based on octree decompositions of the point cloud geometrical
information and the transform coding of the point-attribute information. The other point
cloud encoder proposed by MPEG, Video-based Point Cloud Compression (V-PCC), is a
better fit for compressing dense point clouds but poorer for sparser ones. V-PCC follows a
much more complex coding paradigm involving the projection of the 3D points onto 2D
planes to form 2D images representing both the geometry (depth) information and attribute
information. These 2D images are then encoded using legacy video encoders like High
Efficiency Video Coding (HEVC/H.265) [23] or VersatileVideo Coding (VVC/H.266) [24],
which achieve very high coding efficiency when applied to dense point clouds. Both of
these two encoders have been designed to achieve high efficiency point cloud encoding
while ensuring low processing complexity and ease of hardware implementation. Due
to the very good performance reported when encoding sparse point clouds and very low
complexity and small memory footprint, the G-PCC encoder was chosen to compress the
LiDAR data used in this research study.

2.2. Depth-Mapping Point Clouds into 2D Images

Some methods make use of point cloud data indirectly, not for representation in 3D
space but through conversion into depth information, which can then be mapped into a
2D image to be used for object detection and classification. In [1] several up-sampling
methods for such a purpose are presented and evaluated, and compared with the novel
approach proposed in [1], which consists of a modified bilateral filter that has a weighing
function dependent on the range dispersion found in the mask, such that points in the same
plane can be clustered together. The method obtained good edge preservation between
surfaces in different planes when projecting a point cloud and its depth information onto a
2D image, needing no more data than that provided by a single-point LiDAR.

3. Methods
3.1. Point Cloud Compression

The LiDAR data used in this work, represented as 3D point clouds, were compressed
using the MPEG G-PCC coder in octree geometry-only intracoding mode. While G-PCC
supports a second geometry encoding method, trisoup, some preliminary tests done using
LiDAR point clouds showed that the encoding performance of trisoup mode on those test
point clouds was lower than that of octree mode, perhaps due to the high sparsity of that
data. Since the trisoup mode is also more complex than the octree mode it was decided to
use the latter. The implementation used was MPEG’s TMC13 version 11 [25], and three
quality/compression operating points were chosen to produce three levels of fidelity of the
decompressed LiDAR geometry information. Since G-PCC can compress only point clouds
with coordinates expressed in a regular voxelized grid, prior to compression the point
clouds were voxelized to a discrete grid with 20-bit precision in each coordinate. While it is
unusual to use voxelization depths so large (more common values range from 10 to 12 bits)
it was decided to use 20-bit precision to make sure that any loss in the representation of
the LiDAR point clouds was due only to the compression process, not to the voxelization.
After decompression/reconstruction, all point clouds were converted back to the original

Sensors 2022, 22, 5767 4 of 12

coordinate system. The compression ratio—hence the quality of the decoded point cloud—
was controlled through adjustment of the MPEG G-PCC positionQuantizationScale parameter
where the three values chosen were 1/1024, 1/512 and 1/256 corresponding to high-,
medium- and low-compression degrees, henceforth represented by G3, G2 and G1. It was
verified empirically that varying other encoder parameters had no significant effect on
the encoding performance of G-PCC when applied to the LiDAR point clouds selected
for use in this empirical study. The G-PCC configuration parameters used for each of the
three coding qualities are listed in Table 1, where positionQuantizationScale controls the
compression degree and disableAttributeCoding=0 enforces encoding of only the geometry
information of the point cloud. These three quality settings resulted in LiDAR point
clouds compressed with bitrates, compression factors and associated compression-related
distortions as listed in Table 2.

Table 1. MPEG G-PCC coder parameters used for qualities G1, G2 and G3.

G-PCC Parameters
Quality

G1 G2 G3

mode 0 0 0

mergeDuplicatedPoints 1 1 1

neighbourAvailBoundaryLog2 8 8 8

intra_pred_max_node_size_log2 6 6 6

positionQuantizationScale 1/256 1/512 1/1024

disableAttributeCoding 1 1 1

Table 2. Average bitrates, compression factors and point-to-point distances (D1 PSNR) of compressed
point clouds.

Quality Bits per Point (bpip) Compression Factor D1 PSNR (dB)

G1 4.859 39.51 83.04
G2 2.775 69.19 77.02
G3 1.373 139.84 71.00

Following common practice, the bitrates are expressed as the ratio of the number of
bits in the compressed representation (bitstream) to the number of points in the input point
cloud. The compression factors reported are the ratio of the number of bits per point before
compression i.e., 192 bits for the case of 3 coordinates per point and 64 bits per coordinate,
to the number of bits per point after compression (second column of Table 2). The listed D1
Peak Signal to Noise Ratio (D1 PSNR) distortion values measure the symmetrical distance
between the uncompressed and reconstructed point cloud (after compression) computed
as the logarithm of the inverse of the squared minimum distance between points of both
point clouds, as defined e.g., in Annex C of [26] or in [27].

Examples of the effect of compression on point clouds representing objects from differ-
ent classes can be seen in Figure 1. In this and subsequent images, a colored representation
of either point clouds or depth maps was used in which objects or planes closer to the
sensor are colored in blue tones, with tones warming to green and then yellow for objects
and planes further away from the sensor.

3.2. Object Detection Methods
3.2.1. Complex-YOLO

The Complex-YOLO [28] method is an expansion of the YOLOv2 method, a fast 2D
object detector for RGB images. It converts the point cloud into a Bird’s-Eye-View RGB-map
and, using an angular regression strategy and an Euler-Region Proposal Network (E-RPN),
estimates and localizes 3D multiclass bounding boxes.

Sensors 2022, 22, 5767 5 of 12

Car:

Pedestrian: Cyclist:

Raw G1 G2 G3

Raw G1 G2 G3 Raw G1 G2 G3

Figure 1. Examples of point cloud representations for each of the three classes of objects in the KITTI
dataset. From left to right in each image we can see the RGB image, a representation of the raw point
cloud, and point cloud representations at compression degrees G1, G2 and G3.

3.2.2. PointNet++

PointNet [29] is one of the pioneer methods that operates directly on a set of points,
learning a spatial coding for each one and clustering all individual point features to a global
point cloud signature. PointNet++ presents an architecture for point set segmentation and
classification that consists of a hierarchical neural network using PointNet recursively in
small point sets. By exploiting metric space distances, local features are extracted from
small neighborhoods and such features are further grouped in larger point sets until the
features of the whole point set are reached. With those final features, segmentation and
classification are then done.

3.2.3. Point Cloud to Image

The use of point cloud to image conversion in object detection was explored in [1,2]. In
our work, the object detection pipeline illustrated in Figure 2 was deployed. Based on the
aforementioned works, it used as input an image obtained after applying a custom bilateral
filter interpolation [1] or an image obtained after applying Delaunay triangulation.

For object detection, the YOLOv5 architecture family [3] was used. Both interpolation
methods allow up-sampling of the sparse representation obtained after projecting the
point cloud points into the image frame (see Figure 3). The bilateral filter uses a sliding
window mask and clustering strategy. The depth values found in the mask are clustered
according to their belonging to a foreground or background plane in the mask. Finally,
a weighting function was used to compute the new depth value of the mask’s central
point, considering foreground and background categorization and distance of the points.
The Delaunay triangulation interpolation computed the depth values using the triangle
mesh obtained after it was appplied to all non-empty pixels in the image. Each pixel’s
depth value corresponds to the depth obtained for the pixel’s coordinates in an overlapping
triangle. Figure 4 shows examples of how objects in KITTI are represented as depth maps
using the bilateral filter method for interpolation, while Figure 5 shows the same examples
after transformation with Delaunay triangulation.

Point Cloud to Image
Projection Interpolation Detection

(YOLOv5)

Car
Pedestrian
Cyclist

Result using Bilateral Interpolation

Result using Delaunay Interpolation

Raw/Decompressed 3D Point cloud

Figure 2. Pipeline of the object detection process for images projected from input 3D point clouds
(raw or decompressed). Interpolation can be carried out either with Delaunay triangulation or
the customized bilateral filter—the grayscale images show an example of that interpolation for
either process.

Sensors 2022, 22, 5767 6 of 12

Figure 3. An example of an image from KITTI and its corresponding representations. Clockwise from
top left: the RGB frame, its corresponding point cloud, the grayscale image obtained from the point
cloud using a bilateral filtering method, and the grayscale image obtained from the point cloud using
Delaunay triangulation.

Car:

Pedestrian: Cyclist:

Raw G1 G2 G3

Raw G1 G2 G3 Raw G1 G2 G3

Figure 4. An example of the object classes that were considered from KITTI, with the depth images
generated using the bilateral filtering method from point clouds compressed at different degrees. For
each object class, from left to right: RGB image, depth images computed from data at G1, G2 and G3
compression degrees.

Car:

Pedestrian: Cyclist:

Raw G1 G2 G3

Raw G1 G2 G3 Raw G1 G2 G3

Figure 5. An example of the object classes that were considered from KITTI, with the depth images
generated using the Delaunay Triangulation interpolation method from point clouds compressed at
different degrees. For each object class, from left to right: RGB image, depth images computed from
data at G1, G2 and G3 compression degrees.

Sensors 2022, 22, 5767 7 of 12

4. Experimental Validation

To test the adequacy of the applied data compression methods, we decided to compare
them using the well-known KITTI dataset [30], using 70% of the KITTI training dataset for
training the aforementioned methods. The remaining 30% of the KITTI training dataset were
compressed for use in the evaluation of the trained models. The encoder and compression
degrees are those described in Section 3.1.

Two distinct and publicly available architectures for point cloud-based object detection
were used in this study. Compression adequacy was also tested when using the point
clouds as source data for images used to train image-based object detection architectures;
for this case we employed YOLOv5m and YOLOv5l. Within the scope of this study, the
following training and testing of object detection models were carried out:

• Training a Complex-YOLO object detection architecture model using raw data and
testing it using raw and decompressed point cloud data. Precision, Recall, F1-score
and Intersection over Union (IoU) metrics were used to evaluate model performance.

• Training a PointNet++ model using raw data and test it using raw and decompressed
point cloud data. IoU is used to evaluate model performance.

• Training YOLOv5l and YOLOv5m models with images converted from raw point
cloud data using bilateral filter interpolation, and testing them in images created from
either raw or decompressed point cloud data, using the same interpolation method as
that in training. Precision, Recall and mean Average Precision (mAP) metrics were
used to evaluate model performance.

• Training YOLOv5l and YOLOv5m models with images converted from raw point
cloud data using Delaunay triangulation interpolation, and testing them in images cre-
ated from either raw or decompressed point cloud data, using the same interpolation
method as that in training. Precision, Recall and mAP metrics were used to evaluate
model performance.

• Results were also obtained for object detection using training and testing sets prepared
with different methods. A training model was obtained with YOLOv5m and Bilateral
Interpolation, while images created with Delaunay triangulation on G2 decompressed
point cloud data were used for the testing set. Precision, Recall and mAP metrics were
used to evaluate model performance.

4.1. Point Cloud-Based Architectures

For the Complex-YOLO architecture we trained the weights using raw data for
100 epochs. Weights that scored the highest average precision (on intermediate evalu-
ations) were obtained on epoch 82; these were subsequently used to evaluate detection
metrics for both raw and decompressed data. We also evaluated raw and decompressed
data using the weights from a 300-epoch training run; these produced consistently lower
metrics than those presented here.

Table 3 shows results for the evaluation of raw and decompressed point cloud data.
Results for raw data show high performance when averaging (weighted) across all classes.

All compression levels were evaluated using weights models trained with raw point
clouds. The results were markedly inferior to those obtained using raw point clouds, with
major drops in precision when detecting non-car objects. It could be seen that non-car
classes were responsible for most of the drop in the average precision metric, as well as in
the other metrics shown. The effect of compression on the average IoU, which decreased
from 0.7621 to 0.5497, was smaller than the effect on detection precision, which decreased
from 0.88 to 0.34.

For the PointNet++ architecture we obtained the final and intermediate IoU values
for the training sessions. IoU average values for raw and decompressed point clouds are
summarized in Table 4, and the evolution of IoU during training is shown in Figure 6.
Network evaluations were made every two epochs, with different points of distinct degrees
of data compression converge. Two out of the three compression levels attained similar

Sensors 2022, 22, 5767 8 of 12

IoU values to those of raw data, with a significant penalty observed for IoUs of highly
compressed data.

Table 3. Complex-YOLO architecture performance evaluated in raw and decompressed point clouds.

Class
Precision Recall F1-Score IoU

Raw G1 G2 G3 Raw G1 G2 G3 Raw G1 G2 G3 Raw G1 G2 G3

Car 0.97 0.98 0.88 0.65 0.98 0.97 0.91 0.68 0.95 0.82 0.81 0.71 - - - -

Pedestrian 0.77 0.56 0.36 0.10 0.92 0.78 0.51 0.15 0.75 0.51 0.47 0.23 - - - -

Cyclist 0.91 0.53 0.42 0.26 0.95 0.66 0.52 0.35 0.88 0.51 0.47 0.38 - - - -

Average 0.88 0.68 0.55 0.34 0.95 0.81 0.65 0.39 0.86 0.61 0.59 0.44 0.7621 0.6634 0.6317 0.5497

0 20 40 60 80 100
Epoch #

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

In
te

rs
ec

tio
n

ov
er

 U
ni

on

Average IoU on End-Epoch Evaluation (every 2 Epochs)

Raw
Low
Medium
High

Figure 6. PointNet++ IoU performance evolution for each degree of compression (model trained
with raw data). Test data is evaluated every two epochs.

Table 4. Average IoU performance of PointNet++ model across classes, for varying degrees of point
cloud compression.

IoU Average (Epoch 100)
Raw G1 G2 G3

0.6756 0.6747 0.6661 0.5303

4.2. Point Cloud to Image Architectures
4.2.1. Point Cloud Image Conversion

To validate the architecture depicted in Figure 2 with the KITTI dataset, the label
format and dataset structure were modified. In particular, the point cloud label format was
converted from the KITTI format into the PASCAL Visual Object Classes(PASCAL VOC)
using a publicly available library vod-converter, found at https://github.com/umautobots/
vod-converter (accessed on 5 January 2022). This allowed us to convert the bounding boxes
and labelling from KITTI directly into a format readily usable in YOLOv5. Using this format
allows us to test the detection suitability of the multiple network architectures associated
with YOLO, which have vastly different depths and, consequently, very different parameter
counts. We excluded the largest networks and focused our analysis on the YOLOv5l and
YOLOv5m sub-architectures.

https://github.com/umautobots/vod-converter
https://github.com/umautobots/vod-converter

Sensors 2022, 22, 5767 9 of 12

Object detection models were evaluated for different image sets obtained from raw or
differently compressed point cloud datasets, with the same training-test split as that used
for Complex-YOLOv3 and PointNet++. Results from images created using bilateral filter
interpolation are shown in Table 5 for YOLOv5l and Table 6 for YOLOv5m. For all image
sets, performance assessments were always performed with the best weights network
obtained when training the model with images from raw data.

Table 5. Evaluation metrics for KITTI point cloud data compressed at different degrees, converted
with the Bilateral Filter method and evaluated using the best YOLOv5l model. The resulting model,
with the best weights, was obtained over the course of 200 epochs using a batch size of 10.

Class
Precision Recall mAP

Raw G1 G2 G3 Raw G1 G2 G3 Raw G1 G2 G3

Car 0.917 0.900 0.879 0.867 0.869 0.881 0.880 0.816 0.938 0.938 0.932 0.882

Pedestrian 0.937 0.926 0.886 0.867 0.724 0.733 0.730 0.599 0.837 0.833 0.821 0.705

Cyclist 0.893 0.926 0.845 0.764 0.682 0.694 0.680 0.416 0.789 0.782 0.768 0.499

Average 0.915 0.899 0.870 0.833 0.758 0.770 0.763 0.610 0.855 0.851 0.840 0.695

Table 6. Evaluation metrics for KITTI point cloud data compressed at different degrees, converted
with the Bilateral Filter method and evaluated using the best YOLOv5m model. The resulting model,
with the best weights, was obtained over the course of 200 epochs, with a batch size of 20.

Class
Precision Recall mAP

Raw G1 G2 G3 Raw G1 G2 G3 Raw G1 G2 G3

Car 0.888 0.849 0.898 0.814 0.848 0.865 0.827 0.788 0.917 0.916 0.908 0.850

Pedestrian 0.927 0.879 0.932 0.675 0.665 0.706 0.665 0.605 0.800 0.799 0.773 0.632

Cyclist 0.848 0.808 0.869 0.732 0.674 0.680 0.614 0.380 0.762 0.754 0.735 0.456

Average 0.887 0.875 0.899 0.740 0.729 0.750 0.702 0.591 0.827 0.823 0.806 0.646

A small degradation in object detection accuracy was observed from G1 to G2 levels,
with a much larger gap for G3 compression. Results for low and medium compression are
roughly equivalent to those obtained from the evaluation of directly-converted point cloud
data, which shows the adequacy of the Bilateral Filter approach when dealing with point
clouds in differing states of compression.

As an extra step, we evaluated images created using Delaunay triangulation with the
network trained using images from the bilateral filter. The results are shown in Table 7.
The detection metrics can be considered reasonable, given that the training and evaluation
datasets were created from the same dataset using two different methods.

Table 7. Evaluation metrics for Medium (G2) compression KITTI point clouds converted with
the Delaunay triangulation method and evaluated using the best YOLOv5m model obtained with
Bilateral Filter-generated images.

Class Precision Recall mAP

Car 0.714 0.682 0.738
Pedestrian 0.779 0.420 0.522

Cyclist 0.707 0.559 0.608
Average 0.733 0.554 0.623

4.2.2. Detection Using Images Created with Delaunay Triangulation

To compare results obtained using the custom bilateral filter described in [1] with
another point cloud up-sampling method, we used images created using Delaunay triangu-

Sensors 2022, 22, 5767 10 of 12

lation in the same manner as described in [1], and tested as in [1,2] on the KITTI dataset.
Delaunay triangulation is employed to “fill-in” a 2D representation of the point-cloud with
data interpolated from sparse Depth Map data, allowing a depth-based image to be used
in place of either the standard KITTI images or point clouds even though it is based only
on the latter. Thus the labelling conversion is the same as that used in the previous analysis.
Detection results for these images using either the YOLOv5l or YOLOv5m sub-architectures
are shown in Tables 8 and 9, respectively.

Table 8. Evaluation metrics for KITTI point cloud data compressed at different degrees, from raw
to high, converted with the Delaunay Triangulation and evaluated using the best YOLOv5l model,
trained over the course of 200 epochs with a batch size of 10.

Class
Precision Recall mAP

Raw G1 G2 G3 Raw G1 G2 G3 Raw G1 G2 G3

Car 0.922 0.887 0.877 0.853 0.854 0.876 0.827 0.774 0.935 0.934 0.906 0.864
Pedestrian 0.958 0.930 0.901 0.672 0.724 0.749 0.693 0.636 0.829 0.815 0.778 0.665

Cyclist 0.896 0.865 0.866 0.832 0.701 0.727 0.692 0.516 0.804 0.799 0.781 0.648
Average 0.925 0.894 0.881 0.785 0.760 0.784 0.737 0.642 0.856 0.849 0.822 0.725

Table 9. Evaluation metrics for KITTI point cloud data compressed at different degrees, converted
with the Delaunay Triangulation and evaluated using the best YOLOv5m model, trained over the
course of 200 epochs with a batch size of 20.

Class
Precision Recall mAP

Raw G1 G2 G3 Raw G1 G2 G3 Raw G1 G2 G3

Car 0.855 0.879 0.882 0.842 0.859 0.848 0.796 0.759 0.917 0.916 0.888 0.849
Pedestrian 0.893 0.922 0.894 0.594 0.718 0.688 0.658 0.617 0.791 0.789 0.747 0.605

Cyclist 0.842 0.847 0.857 0.805 0.713 0.693 0.634 0.468 0.779 0.774 0.748 0.604
Average 0.863 0.883 0.878 0.747 0.763 0.743 0.696 0.614 0.829 0.827 0.794 0.686

4.3. Discussion

From the results summarized in Tables 3–9, the detection performance obtained when
using decompressed point clouds was close to the level obtained using raw point clouds.
The results showed decreasing performance with increasing compression degree. Due to
the smaller size of the pedestrian and cyclist objects, the distortion effects due to the higher
levels of compression led to “noisier” representations of those types of objects, resulting in
lower detection performance. Moreover the performance decrease was higher for higher
compression levels. For the car objects, due to their larger sizes, the image interpolation
still correctly represented the object, with smaller drops in performance.

For 3D-based object detection methods, a steady decrease in performance was seen
with each step of increased compression degree. The PointNet++ architecture is robust
to a certain degree to different levels of lossy compression, although it showed poorer
performance for object detection from point cloud data with a higher degree of compression.
It appeared to be, however, more stable than Complex-YOLO over different degrees of
compression, which may have been due to its approach of using local point sets. For
Complex-YOLO we saw a steady decline in performance when going from raw data to
higher degrees of compression; this empirical evidence was made clearer by the larger
set of metrics available in the ComplexYOLO architecture compared to PointNet++. The
observed trend for the interpolation-based methods, with smaller objects suffering the
highest penalties in detection metrics for higher compression degrees, was also verified in
the case of 3D-based object detection.

Sensors 2022, 22, 5767 11 of 12

5. Conclusions

While it can be said that the different metrics computed for each employed architecture
made direct comparisons difficult, it was noticeable that high rates of compression had, in
general, a significantly detrimental effect on object detection performance, especially when
discussing modalities operating directly on 3D data.

The results also showed that the use of point cloud-to-depth map conversion was more
robust to the changes introduced by the compression with different degrees of information
loss. This robustness could be attributed in part to the interpolation strategies employed,
which up-sample points and in some cases soften the influence of outliers by considering
multiple points in a mask.

Furthermore, object detection of smaller objects is shown to be consistently more
affected by point cloud data compression.

In conclusion, the PointNet++ and the presented point cloud-to-image object detection
pipeline are robust to a medium degree of lossy compression, with only a small reduction in
performance, and can be considered in application scenarios where only lossy point clouds
are available. Considering the compression factors that can be achieved as shown in Table 2,
and the fact that these will allow vehicle-to-vehicle communication to proceed with much
lower data transmission rates than would otherwise be necessary, the small degradation
in object detection might, in some circumstances, be considered an acceptable trade-off.
Future work on this topic can include the modification of object detection methods by
introducing preprocessing stages that include local interpolation strategies.

Author Contributions: Conceptualization, L.G., L.A.d.S.C. and U.J.N.; Methodology, L.G., J.P. and
L.A.d.S.C.; Software, L.G. and L.A.d.S.C.; Validation, L.G., J.P., L.A.d.S.C. and U.J.N.; Investigation,
L.G., J.P. and L.A.d.S.C.; Writing—original draft preparation, L.G., J.P., L.A.d.S.C. and U.J.N.; Writing—
review and editing, L.G., J.P., L.A.d.S.C. and U.J.N.; Visualization, L.G.; Project administration, U.J.N.
and L.A.d.S.C.; Supervision and funding acquisition, U.J.N. and L.A.d.S.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Portuguese Foundation for Science and Technology (FCT)
through Project Grant LANDmaRk (POCI-01-0145-FEDER-031527), the Institute of Systems and
Robotics, University of Coimbra (ISR-UC) through FCT grant UIDB/00048/2020 and the Instituto de
Telecomunicações (IT) under FCT Projects UIDB/EEA/50008/2020 and LA/P/0109/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Premebida, C.; Garrote, L.; Asvadi, A.; Ribeiro, A.P.; Nunes, U. High-resolution lidar-based depth mapping using bilateral filter.

In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016; pp. 2469–2474. [CrossRef]

2. Asvadi, A.; Garrote, L.; Premebida, C.; Peixoto, P.; Nunes, U.J. Multimodal vehicle detection: Fusing 3D-LIDAR and color camera
data. Pattern Recognit. Lett. 2018, 115, 20–29. [CrossRef]

3. Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; Xie, T.; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; Abhiram, V.; et al.
Ultralytics/yolov5: v6.0—YOLOv5n ‘Nano’ Models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support. Available
online: https://doi.org/10.5281/zenodo.5563715 (accessed on 12 October 2021).

4. Maksymova, I.; Steger, C.; Druml, N. Review of LiDAR Sensor Data Acquisition and Compression for Automotive Applications.
Proceedings 2018, 2, 852. [CrossRef]

5. Peng, J.; Kim, C.S.; Kuo, C.C.J. Technologies for 3D mesh compression: A survey. J. Vis. Commun. Image Represent. 2005,
16, 688–733. [CrossRef]

6. Pauly, M.; Gross, M. Spectral processing of point-sampled geometry. In Proceedings of the SIGGRAPH’01: 28th Annual
Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 379–386.

7. Hubo, E.; Mertens, T.; Haber, T.; Bekaert, P. Self-similarity based compression of point set surfaces with application to ray tracing.
Comput. Graph. 2008, 32, 221–234. [CrossRef]

http://doi.org/10.1109/ITSC.2016.7795953
http://dx.doi.org/10.1016/j.patrec.2017.09.038
https://doi.org/10.5281/zenodo.5563715
http://dx.doi.org/10.3390/proceedings2130852
http://dx.doi.org/10.1016/j.jvcir.2005.03.001
http://dx.doi.org/10.1016/j.cag.2008.01.012

Sensors 2022, 22, 5767 12 of 12

8. Ochotta, T.; Saupe, D. Compression of Point-Based 3D Models by Shape-Adaptive Wavelet Coding of Multi-Height Fields. In
Proceedings of the SPBG’04 Symposium on Point—Based Graphics 2004, Zurich, Switzerland, 2–4 June 2004; Gross, M., Pfister, H.,
Alexa, M., Rusinkiewicz, S., Eds.; The Eurographics Association: Zurich, Switzerland, 2004. [CrossRef]

9. Schnabel, R.; Moeser, S.; Klein, R. A Parallelly Decodeable Compression Scheme for Efficient Point-Cloud Rendering. In
Proceedings of the Eurographics Symposium on Point-Based Graphics, Prague, Czech Republic, 2–3 September 2007; Botsch, M., Pajarola,
R., Chen, B., Zwicker, M., Eds.; The Eurographics Association: Prague, Czech Republic, 2007. [CrossRef]

10. Golla, T.; Klein, R. Real-time point cloud compression. In Proceedings of the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5087–5092. [CrossRef]

11. Morell, V.; Orts, S.; Cazorla, M.; Garcia-Rodriguez, J. Geometric 3D point cloud compression. Pattern Recognit. Lett. 2014,
50, 55–62.[CrossRef]

12. Houshiar, H.; Nüchter, A. 3D point cloud compression using conventional image compression for efficient data transmission. In
Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT),
Sarajevo, Bosnia and Herzegovina, 29–31 October 2015; pp. 1–8. [CrossRef]

13. Kohira, K.; Masuda, H. Point-Cloud compression for Vehicle-based Mobile Mapping systems using Portable Network Graphics.
ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, IV-2/W4, 99–106. [CrossRef]

14. Tu, C.; Takeuchi, E.; Carballo, A.; Takeda, K. Point Cloud Compression for 3D LiDAR Sensor using Recurrent Neural
Network with Residual Blocks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, 20–24 May 2019; pp. 3274–3280. [CrossRef]

15. Schnabel, R.; Klein, R. Octree-based Point-Cloud Compression. In Proceedings of the Symposium on Point-Based Graphics, Boston, MA,
USA, 29–30 July 2006; Botsch, M., Chen, B., Pauly, M., Zwicker, M., Eds.; The Eurographics Association, Boston, MA, USA, 2006.
SPBG06/111-120. [CrossRef]

16. Elseberg, J.; Borrmann, D.; Nuchter, A. One billion points in the cloud—An octree for efficient processing of 3D laser scans. Int. J.
Photogramm. Remote. Sens. 2013, 76, 76–88. [CrossRef]

17. Kammerl, J.; Blodow, N.; Rusu, R.B.; Gedikli, S.; Beetz, M.; Steinbach, E. Real-time compression of point cloud streams. In
Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012;
pp. 778–785. [CrossRef]

18. Hubo, E.; Mertens, T.; Haber, T.; Bekaert, P. The Quantized kd-Tree: Efficient Ray Tracing of Compressed Point Clouds. In
Proceedings of the Symposium on Interactive Ray Tracing, Salt Lake City, UT, USA, 18–20 September 2006. [CrossRef]

19. Gumhold, S.; Kami, Z.; Isenburg, M.; Seidel, H.P. Predictive point-cloud compression. In Proceedings of the SIGGRAPH ’05:
ACM SIGGRAPH 2005 Sketches. Association for Computing Machinery, Los Angeles, CA, USA, 31 July–4 August 2005; p. 137.
[CrossRef]

20. Zhang, X.; Gao, W.; Liu, S. Implicit geometry partition for point cloud compression. In Proceedings of the 2020 Data Compression
Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; pp. 73–82. [CrossRef]

21. Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al.
Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 133–148. [CrossRef]

22. Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression
standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process. 2020, 9, e13.
[CrossRef]

23. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

24. Bross, B.; Chen, J.; Ohm, J.R.; Sullivan, G.J.; Wang, Y.K. Developments in International Video Coding Standardization After AVC, With
an Overview of Versatile Video Coding (VVC). Proc. IEEE 2021, 109, 1463–1493. [CrossRef]

25. MPEG WG7. Geometry Based Point Cloud Compression (G-PCC), Test Model. Available online: https://github.com/
MPEGGroup/mpeg-pcc-tmc13 (accessed on 22 July 2022).

26. Cruz, L. JPEG Pleno Point Cloud Coding Common Training and Test Conditions v1.2; ISO/IEC JTC1/SC29/WG1 N100112. 2022.
Available online: https://ds.jpeg.org/documents/jpegpleno/wg1n100170-095-PCQ-Common_Training_and_Test_Conditions_
for_JPEG_Pleno_Point_Cloud_v1_2.pdf (accessed on 22 July 2022).

27. Mekuria, R.; Li, Z.; Tulvan, C.; Chou, P. Evaluation Criteria for PCC (Point Cloud Compression); ISO/IEC JTC1/SC29/WG11
MPEG2016/n16332. 2016. Available online: https://mpeg.chiariglione.org/sites/default/files/files/standards/parts/docs/
w16332_evaluation_criteria_0.docx (accessed on 22 July 2022).

28. Simon, M.; Milz, S.; Amende, K.; Gross, H. Complex-YOLO: Real-time 3D Object Detection on Point Clouds. arXiv 2018,
arXiv:1803.06199.

29. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017,
arXiv:1706.02413.

30. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

http://dx.doi.org/10.2312/SPBG/SPBG04/103-112
http://dx.doi.org/10.2312/SPBG/SPBG07/119-128
http://dx.doi.org/10.1109/IROS.2015.7354093
http://dx.doi.org/10.1016/j.patrec.2014.05.016
http://dx.doi.org/10.1109/ICAT.2015.7340499
http://dx.doi.org/10.5194/isprs-annals-IV-2-W4-99-2017
http://dx.doi.org/10.1109/ICRA.2019.8794264
http://dx.doi.org/10.2312/SPBG/ SPBG06/111-120
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1109/ICRA.2012.6224647
http://dx.doi.org/10.1109/RT.2006.280221
http://dx.doi.org/10.1145/1187112.1187277
http://dx.doi.org/10.1109/DCC47342.2020.00015
http://dx.doi.org/10.1109/JETCAS.2018.2885981
http://dx.doi.org/10.1017/ATSIP.2020.12
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/JPROC.2020.3043399
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://ds.jpeg.org/documents/jpegpleno/wg1n100170-095-PCQ-Common_Training_and_Test_Conditions_for_JPEG_Pleno_Point_Cloud_v1_2.pdf
https://ds.jpeg.org/documents/jpegpleno/wg1n100170-095-PCQ-Common_Training_and_Test_Conditions_for_JPEG_Pleno_Point_Cloud_v1_2.pdf
https://mpeg.chiariglione.org/sites/default/files/files/standards/parts/docs/w16332_evaluation_criteria_0.docx
https://mpeg.chiariglione.org/sites/default/files/files/standards/parts/docs/w16332_evaluation_criteria_0.docx
http://dx.doi.org/10.1177/0278364913491297

	Introduction
	Background
	Point Cloud Compression
	Depth-Mapping Point Clouds into 2D Images

	Methods
	Point Cloud Compression
	Object Detection Methods
	Complex-YOLO
	PointNet++
	Point Cloud to Image

	Experimental Validation
	Point Cloud-Based Architectures
	Point Cloud to Image Architectures
	Point Cloud Image Conversion
	Detection Using Images Created with Delaunay Triangulation

	Discussion

	Conclusions
	References

