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Abstract: Social relationships refer to the connections that exist between people and indicate how
people interact in society. The effective recognition of social relationships is conducive to further
understanding human behavioral patterns and thus can be vital for more complex social intelligent
systems, such as interactive robots and health self-management systems. The existing works about
social relation recognition (SRR) focus on extracting features on different scales but lack a compre-
hensive mechanism to orchestrate various features which show different degrees of importance. In
this paper, we propose a new SRR framework, namely Multi-level Transformer-Based Social Relation
Recognition (MT-SRR), for better orchestrating features on different scales. Specifically, a vision
transformer (ViT) is firstly employed as a feature extraction module for its advantage in exploiting
global features. An intra-relation transformer (Intra-TRM) is then introduced to dynamically fuse the
extracted features to generate more rational social relation representations. Next, an inter-relation
transformer (Inter-TRM) is adopted to further enhance the social relation representations by atten-
tionally utilizing the logical constraints among relationships. In addition, a new margin related to
inter-class similarity and a sample number are added to alleviate the challenges of a data imbalance.
Extensive experiments demonstrate that MT-SRR can better fuse features on different scales as well
as ameliorate the bad effect caused by a data imbalance. The results on the benchmark datasets show
that our proposed model outperforms the state-of-the-art methods with significant improvement.

Keywords: social relation recognition; data driven; social intelligence; transformer

1. Introduction

A social relationship, as a key concept in sociology, describes the interaction between
people. It has been proved to have both short-term and long-term effects on human
health [1]. Understanding the social relationships among people is thus essential for
identifying the link between social relationships and health outcomes. In addition, effec-
tive social relation recognition (SRR) can also provide valuable interactive information
for other related tasks, such as an activity analysis [2] and group emotion detection [3],
which further benefits more comprehensive tasks, such as smart city design [4] and social
sustainability [5].

Meanwhile, with the development of the Internet and multimedia, various platforms,
e.g., Facebook, Twitter and TikTok, are generating huge amounts of social data with
great application values [6]. Specifically, the different types of social data, including
social network information (positioning information [7,8] and network graph structure [9]),
text [10,11], image [12] and video [13,14], contain abundant interactive information between
users and are conducive to understanding social relationships. Among these different forms
of data, visual data reflect the relationship between individuals more intuitively than textual
and social network information. Furthermore, compared with video, images show less
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complexity and are easier to be processed. In other words, recognizing social relationships
based on images balances the intuitiveness and the complexity.

Existing methods for SRR based on images have their own paradigm, which con-
tains three key parts: (1) feature extraction, (2) feature fusion and (3) classification and
optimization. In terms of the scale of features, different features can be divided into intra-
relation features, inter-relation features and scene features. A detailed classification of these
features will be given in the related work.

For feature fusion, early attempts concatenate intra-relation features and scene fea-
tures [15] or design simple feature selection methods to fuse them [12,16]. Recent works
further exploit the inter-relation features (logical constraints, illustrated in Figure 1) by
concatenating intra-relation features to generate relation nodes and introducing a gated
graph neural network (GGNN) or a graph convolutional network (GCN) to propagate the
messages among these nodes or to extract the topological information [17–19]. However,
the above methods cannot effectively fuse the intra-relation feature to better represent social
relationships because they ignore the varying degrees of importance of different features
to a particular relationship. In addition, the updating mechanism of a GGNN and GCN
inadequately considers the different influences of all the other neighbor nodes, namely the
message-passing method among nodes is unreasonable when exploiting logical constraints
for SRR.

Figure 1. An example of the logical constraints among social relationships in one image. With relation
A and relation B (‘mother-child’ and ‘father-child’ in the image), we can easily infer that relation C
belongs to ‘spouse’ by the logical constraints. Note that all the displayed pictures are picked from
People in Social Context (PISC) dataset.

For classification and optimization, using standard cross-entropy (CE) to train the
multi-layer perceptron (MLP) or fully-connected layer (FC) is the mainstream [12,16–19].
However, the benchmark datasets for SRR have imbalanced sample numbers across differ-
ent classes, which means the dominant classes will overwhelm the training process and
thus cause low accuracy of classes with fewer samples. In addition, samples from different
specific classes have similar visual clues, e.g., samples from the class ‘friend’ and samples
from the class ‘couple’. High inter-class similarity leads to serious confusion between these
similar classes, which can be found in the confusion matrixes in [17,18]. The above methods
show the absence of consideration for the bad effect caused by imbalanced data and high
inter-class similarity.

In this paper, we propose a Multi-level Transformer-Based Social Relation Recogni-
tion model (MT-SRR), which introduces a transformer into the feature extraction module
and feature fusion module in different ways, as well as design a new loss function for
relation classification. Specifically, the vision transformer (ViT) [20] is adopted to globally
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extract the visual features of persons. An intra-relation transformer (Intra-TRM) is then
introduced to fuse intra-relation features and scene features to generate more rational social
relationship representations. Then, an inter-relation transformer (Inter-TRM) is designed
to enhance inter-relation features by attentionally aggregating similar social relationship
representations in the same image, which has logical constraints among them. Finally,
margins related to sample similarity and sample numbers are added to the standard CE in
order to adaptively increase the distance between different classes with consideration of
the imbalanced data.

Our contributions can be summarized as follows:

• A new transformer-based feature fusion block (Intra-TRM) is proposed to carefully
fuse the intra-relation features and scene features in order to generate better social
relation representation. The designed module dynamically fuses these extracted
features, which give different features weights related to their similarity to the key
features of a specific relationship.

• A new transformer-based inter-relation feature enhancement block (Inter-TRM) is
employed to enhance the representation of similar relationships in one image and
exploit the logical constraints among them. This module attentionally aggregates
similar relation representations in the same image, which can solve the problem
caused by the unweighted updating mechanism of a commonly used graph-reasoning
network for SRR.

• A new margin is designed to mitigate the negative effect caused by imbalanced data.
The new margin is related with inter-class similarity and influenced by the sample
numbers, which can adaptively adjust the distance between different classes with
different sample numbers.

• Our proposed MT-SRR achieves the state-of-the-art results on two public benchmark
datasets for SRR, i.e., the People in Social Context (PISC) [12] and the People in Photo
Album (PIPA) [21]. Extensive ablation results further demonstrate the effectiveness of
the Intra-TRM, Inter-TRM and the newly designed loss function.

The rest of the paper is organized as follows. Section 2 reviews the related work
about SRR and the applications of a transformer in computer vision. Section 3 elaborates
the details of our proposed MT-SRR. The detailed experimental results are described in
Section 4. Section 5 gives the conclusion of this paper.

2. Related Work

In this section, we give a holistic view of social relation recognition to describe the
tendency of its development, followed by a literature review of a transformer used in
computer vision, which can be introduced to better orchestrate the intra-relation features,
inter-relation features and scene features for SRR.

2.1. Social Relationship Recognition

Social relationship recognition is now a field of growing interest to the research
community. In this subsection, we will brief the SRR in terms of the three key parts of the
paradigm, as mentioned in Section 1.

Through years of researchers’ persistent efforts, the specific categories of features have
been richly extended, as shown in Table 1. In detail, earlier attempts tend to manually
design face features, e.g., the colors of skin and hair [22] and appearance [23], to recognize
simple kinship relationships. With the increasing demand for detailed relation recognition
and the development of a deep learning network, researchers began to use complex neural
networks to extract face features for detailed relation recognition. Gao et al. [24] introduced
a higher-order graph neural network to find the connection between two faces. After the
publications of the PISC datasets [12] and the PIPA datasets [21], researchers began to
pay more attention to extracting whole body features and scene features. Li et al. [12]
adopted a convolutional neural network (CNN) to extract body features from cropped
individual regions and union regions as well as extract visual scene clues from cropped
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contextual objects. Zhang et al. [25] further utilized the pose key points to enhance the body
features and extract scene information from the whole image. Goel [15] recognized age and
gender clues and extended SRR to a multi-task framework. Since then, the performance
of intra-relation features extraction was close to a saturation point and subsequent works
started to take inter-relation features into consideration. Li et al. [19], Qing et al. [17] and
Li et al. [18] successively constructed different graph structures to generate the logical
constraints among different types of social relationships.

Table 1. Features on different scales for SRR.

Features on Different Scales Category

Intra-relation feature

Individual features: face [23,26–28]; gesture [25]; cropped individual region [12,15,17,25]

Person-pair features: cropped union region [12,15,17,18,25]; relative position [12,17,18,25]

Attributes: age [15,16]; gender [15,16]

Inter-relation feature Logical constraint [17–19]

Scene feature
Contextual object [12]

Whole scene (whole image) [18,19,25]

For feature fusion, most works focus on the fusion of concatenated intra-relation
features and scene features. Li et al. [12] adopted the traditional attention mechanism to
fuse the concatenated intra-relation features and contextual object clues. Wang et al. [29]
introduced a gated graph neural network (GGNN) to pass messages between intra-relation
features and contextual objects. Few methods try to better fuse the intra-relation features but
neglect the fusion of inter-relation features, e.g., Wang et al. [16] learned a sparse weighting
matrix to select optimal feature subsets in order to reduce the noises and redundancy caused
by high-dimension multi-source attributes. Recent methods employ different variants of a
graph neural network (GNN) to grasp the inter-relation features and fuse them (provided
within the GNN itself), e.g., Li et al. [18] designed a new weighted-GGNN to attentionally
fuse inter-relation features and scene features. Qing et al. [17] simultaneously utilized a
GGNN and graph convolutional network (GCN) to fuse the global and local information
among inter-relation features.

The aforementioned SRR methods have validated the effectiveness of features on dif-
ferent scales and have achieved some progress on the fusion of concatenated intra-relation
features, inter-relation features and scene features. However, few works take the effective
fusion of intra-relation into account. Moreover, the updating mechanism of existing social
relationship graph-reasoning methods [17–19] still inadequately considers the different
influences of all the other neighbor nodes, although Li et al. [18] have introduced different
weights between the scene node and relation nodes. Furthermore, existing works rarely
attempt to alleviate the problem caused by imbalanced data and high inter-class similarity.

2.2. Transformer for Visual Tasks

Significant success has been achieved by the transformer in computer vision led by
the ViT. Firstly, various transformer-based backbones greatly improve the performance of
feature extraction. The great improvement is credited to multi-head self-attention (MSA)
because this structure can simultaneously calculate self-attention among all the patches
and thus fuse the global feature of the whole images. Subsequent methods integrate the
design philosophy of a CNN into a transformer structure and a series of variations [30–32]
of ViT have been proposed as the backbones for feature extraction.

Secondly, the transformer structure also benefits a large number of downstream
tasks, e.g., semantic segmentation [33], remote sensing image classification [34–36] and
behavior analysis [37–39]. However, in tasks such as semantic segmentation and remote
sensing image classification, the contribution of a transformer structure is still limited
to its advantage in visual features extraction. On the contrary, in behavior analysis, due
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to the similarity between video frames and image patches (both are parts of the whole
video stream or image), the transformer structure is introduced to exploit the temporal
information among these video frames [38]. Similarly, a transformer is also employed to
exploit the features from the pose skeleton in order to recognize human actions [39].

The above applications of the transformer structure have proved its potential capacities
for feature extraction and feature interpretation. In terms of SRR, using a transformer-based
backbone can exploit more global information hidden in images compared with CNN-
based backbones, which contain the important interactive information between individuals.
MSA, as the core of the transformer structure, also enables the transformer to attentionally
fuse intra-relation features and inter-relation features, when the input is various features
and relation representations, respectively. To this end, we first introduce the ViT as the
feature extraction module. Intra-TRM is then employed to attentionally fuse intra-features
with the ability of MSA. Finally, Inter-TRM is designed to enhance the representation of a
similar relationship in one image for more rational social relation recognition.

3. Methods

In this section, we elaborate on the proposed MT-SRR. We give a general view of the
whole framework with a brief introduction of the design process, followed by a detailed
description of three key parts in our model, namely (1) feature extraction, (2) feature fusion
and (3) classification and optimization.

3.1. Overall Framework of Model

Similar to the general paradigm for SRR [12,17–19,25], the proposed MT-SRR pays
more attention to recognizing pair-wise relationships, whose overall framework is depicted
in Figure 2. Specially, we adopt two transformer-based feature fusion models on two levels:
one is used to fuse the intra-relation features and scene features, and the other is utilized to
fuse the inter-relation features to enhance the representation of a similar relationship in
one image. Briefly speaking, for an image with N individuals, there are M = C2

N different
relationships (‘no relation’ is treated as a special kind of relationship in this paper). For each
social relationship, we first adopt pretrained ViTs to extract different intra-relation features
for its capacity of globally exploiting the visual clues and employ a ResNet50 pretrained
on Places365-Standard [40] especially for scene recognition. Then, Intra-TRM is used to
attentionally fuse the output of the feature extraction module, namely the intra-relation
features and scene features, and generate a well-designed relation representation. Next,
Inter-TRM is employed to enhance the relation representations with inter-relation features
by attentionally fusing similar relationship in the same image and generating a new relation
representation. Finally, the outputs of Inter-TRM are fed to the classification module. At
the same time, we accumulate the sample numbers of different relationships and calculate
the average cosine similarity among the outputs of Inter-TRM. A dynamic margin related
to the sample numbers and average cosine similarity is then added to standard CE in order
to alleviate the bad effect caused by data imbalance.

3.2. Feature Extraction

For a specific relationship in an image with N individuals, we extract four different
intra-relation features and one scene feature by five channels, as sketched in Figure 3.
Specially, we first crop the image with the bounding boxes information provided by
the labels and generate two individual regions and a union region of two individuals.
Individual regions contain the visual clues of a single person, e.g., face, clothing and pose,
while the union region implies the interactive information between two individuals. These
cropped regions, along with the whole images for scene feature extraction, are uniformly
resized to 224× 224 as the input of specific feature extraction networks. Relative position
information, including the coordinates and areas of two individual bounding boxes, are
also fed to the feature extraction module.
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Figure 2. Overall Framework of MT-SRR. Blocks with solid lines are real computation modules, while
blocks with dash lines mean the contents are utilized together. For each person pair in the image:
(1) We first extract four intra-relation features and one scene feature. (2) Along with a learnable
global embedding, all the extracted features are fed to Intra-TRM, which outputs the learnable global
embedding as fused social relation representation. (3) All the social relation representations in the
same image are fed to Inter-TRM to further enhance the social relation representation. (4) Finally, the
output of Inter-TRM, i.e., enhanced social relation representations, is classified into specific relations.
Specially, we utilize the outputs of Inter-TRM and the sample number to redesign a new loss with an
adaptive margin. The figure is best seen in color.

Different from recent SRR methods [17,18], we introduce fine-tuned ViT pretrained
on ImageNet [41] to extract intra-relation features. Compared with CNN, ViT divides the
image into small patches and employs multi-head self-attention (MSA) to more globally
integrate the features from different patches, which pays more attention to the global
interactive information and thus benefits the social relation representation. In our frame-
work, the output dimension of the last MLP layer in ViT is changed from 1000 to 2048 and
the parameters of MLP layer are fine-tuned during the training process to adapt to our
tasks. Scene feature is still extracted from the whole image by a ResNet50 pretrained on
Place365-Standard dataset and we change the output dimension of ResNet50 to 2048 by
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removing the last classification layer and the first pooling layer. Here, we do not use the
ViT as a scene feature extraction network because the scene information is relatively simple
and Place365-Standard dataset is specially proposed for scene recognition, which provides
pretrained models using ResNet50 as the backbone. In addition, an FC, whose output is a
vector with the size of R2048, is adopted to extract the relative position information. Finally,
we obtain four R2048 intra-relation features and one R2048 scene feature for each relationship
in the image, which are fed to subsequent feature fusion module.

Figure 3. Illustration of feature extraction. Note that here we only take one person pair in the input
image as an example.

3.3. Transformer-Based Feature Fusion

Next in the pipeline is the features fusion module. We first design a transformer-based
feature fusion module, namely Intra-TRM, to dynamically fuse all the features fed by the
feature extraction module and generate more rational social relation representations for
each relationship in an image. Then, another transformer-based feature fusion module, i.e.,
Inter-TRM, is introduced to enhance the social relation representation generated by Intra-
TRM, which utilizes MSA to attentionally aggregate similar social relation representation
in the same image. The details of the whole module are elaborated as follows in terms of
Intra-TRM and Inter-TRM.

For Intra-TRM, the inputs are the intra-relation features and scene features in previous
steps. Inspired by the application of transformer structure in Natural Language Process-
ing (NLP) [42], we add an extra global embedding xglobal with the same dimension as
those extracted features to the input, for globally fusing all the extracted features for each
relationship in one image. The whole input of Intra-TRM (zinput_intra) can be expressed as:

zinput_intra =
[

xglobal ; x1; x2; x3; x4; xscene

]
, xglobal , x1, x2, x3, x4, xscene ∈ RM×2048 (1)

where x1, x2, x3, x4, xscene are the features extracted from two individual regions, one
union region, relative position and the whole image, respectively. M is the number of
relationships in an image with N individuals, as mentioned in Section 3.1.

Then, we utilize a stacked transformer to globally fuse the intra-features and scene fea-
tures for more rational social relationship representations. In addition, residual connections
are added before and after every block, respectively. The whole process can be described
by the following formula:

z′l = MSA(LN(zl−1)) + zl−1, l = 1 · · · L (2)

zl = MLP
(

LN
(
z′l
))

+ z′l , l = 1 · · · L (3)
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where L is the number of stacked blocks, which is set as 12, referring to [42]. zl denotes the
outputs of the l-th block, while zl−1 has similar meaning. MSA is extended by standard
self-attention, which runs several self-attention operations (called ‘heads’) in different
vector space in parallel and concatenates their output for subsequent processing. LN is the
abbreviation of layer normalization.

Stacked transformer blocks ensure that the extra learnable global embedding can
effectively fuse the intra-relation features and scene features with dynamic weights. For
each relationship, we use the global embedding within the output of final transformer
block as the social relation representation r. The illustration of whole Intra-TRM is shown
in Figure 4.

Figure 4. Intra-TRM module. For one person pair, the inputs are all the extracted features along with
a learnable global embedding. With the MSA in stacked transformers, global embedding gradually
fuses the various features with different weights.

For Inter-TRM, we use M social relation representations in one image as the inputs
zinput_inter, expressed as,

zinput_inter = [r1, r2, · · · , rM], ri ∈ R2048, i ∈ (1, 2, · · · , M) (4)
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Similar to Intra-TRM, a stacked transformer structure is constructed with
Equations (2) and (3), which utilizes the MSA mechanism to enhance similar social re-
lation representations in the same image. MSA mechanism enables these social relation
representations to attentionally aggregate the similar representations and thus generate
enhanced social relation representations, which benefits the inter-relation feature fusion
for SRR. For example, as illustrated in the left part of Figure 5, there are three different
relations in the image, namely two pairs of ‘commercial’ and one pair of ‘friend’. In MSA
blocks of Intra-TRM, the input representations aggregate all the representations based
on the similarity among them. To be specific, the similarity between one social relation
representation and itself is most likely to be the largest, followed by the similarity between
social relation representations of the same class, while the similarity between social relation
representations of different classes is the lowest. The different similarity enables the block
to attentionally aggregate the similar social relation representations, as the different grada-
tions of colors in Figure 5. However, such a method will be affected by the problem of high
inter-class similarity, which may increase the confusion between similar classes. To tackle
the problem, we further design a new loss function, which is elaborated in the next section.

Figure 5. Inter-TRM module. Note that the stack transformer structures are intentionally omitted
here for brevity and an intuitive understanding of the module.

3.4. Classification and Optimization

The aforementioned Inter-TRM outputs are the final social relation representations
r f inal , which are used to calculate the per-class probability pi with a soft-max function,
expressed as:

SRi = {p1, p2, · · · , pm} = softmax
(

FC
(

r f inal

))
(5)

where pj(j = 1, 2, · · · , m) is the probability of the j-th class. m denotes the number of
classes in different SRR tasks (3, 6 and 16 for PISC-C, PISC-F and PIPA, respectively). SRi
means the final classification results with the max probability of the i-th sample.

In order to further optimize our model to alleviate the bad effect caused by imbalanced
data, we add an adaptive margin δ related to the sample numbers and the inter-class
similarity to standard CE, inspired by [43]. The margin should satisfy the following two
properties: (1) the more similar the two classes are, the larger it should be; (2) between
two similar classes, the margin of the dominant class (class with more samples) should be
smaller than that of the minority class in order to enlarge the suppression of minority class
over dominant class. Therefore, for a sample of class y, the new loss function with margin
is designed as follows,

loss = log

1 + ∑
y′ 6=y

ezy′−zy+δ

 (6)

where zy′ and zy are the output of class y and class y′ after FC in Equation (5).
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The adaptive margin δ can be calculated as follows,

δ =
nummax

ny
· cosine_similarity

(
y, y′

)
(7)

where nummax is the maximum sample number of different classes in training data, numy is
the sample number of class y. cosine_similarity(y, y′) means the average cosine similarity
between samples in class y and samples in class y′.

4. Experiments and Results

In this section, we first brief two public benchmark datasets for SRR, i.e., the PISC [12]
and PIPA [21] datasets, followed by the implementation details. Then, we present the
results of the comparison experiments with state-of-the-art methods. Next, we analyze the
comparison results and elaborate the ablation experiments in order to verify the effective-
ness of the different modules in our framework. Finally, we compare the Inter-TRM with
other graph neural networks to further prove the advantages of Inter-TRM.

4.1. Datasets

PISC: The PISC dataset contains a huge number of samples collected from various
social media. It proposes a hierarchy task structure, namely PISC-C (three coarse-level
relationships) and PISC-F (six fine-level relationships). In detail, coarse-level relationships
are made up of an intimate relationship, non-intimate relationship and no relationship,
while fine-level relationships consist of friend, family, couple, professional, commercial and
no relation. Referring to the mainstream SRR methods [12,17–19,29], we adopt the mean
average precision (mAP) as the evaluation metric.

PIPA: Zhang et al. [44] annotated bounding boxes of persons from Flickr photo albums
and Sun et al. [21] further extended them as new SRR datasets, i.e., PIPA datasets. According
to the social domain theory [45], PIPA divides social relationships into five social domains
and further defines a subclassification with 16 specific social relationships. Referring to the
mainstream SRR methods [12,17–19,29], we evaluate the proposed model only for 16 social
relations, which employ top-1 accuracy (Acc) as the evaluation metric.

Other details of these two datasets, including the split of the training set, validation
set and testing set, are shown in Table 2. For the PISC-C task, the training set consists
of 13,142 images with 49,017 relation samples. The validation set and testing set include
4000 images with 14,536 relation samples and 15,497 relation samples, respectively. For
the PISC-F task, the dataset can be divided into a training set of 16,828 images with
55,400 relation samples, a validation set of 500 images with 1505 relation samples and a
testing set of 1250 images with 3961 relation samples. For the PIPA task, the training set,
validation set and testing set are made up of 5857 images with 13,672 relation samples,
261 images with 709 relation samples and 2452 images with 5106 relation samples.

Table 2. The split details according to different social relation tasks.

Training Validation Testing

Images Relations Images Relations Images Relations
PISC-C 13,142 49,017 4000 14,536 4000 15,497
PISC-F 16,828 55,400 500 1505 1250 3961
PIPA 5857 13,672 261 709 2452 5106

4.2. Implementation Details

In the training process, different components of our framework are trained simultane-
ously with the Adam [46] optimizer on one Nvidia GeForce RTX 2080 Ti GPU. The whole
model is firstly trained with lr = 10−3 and then fine-tuned with lr = 10−4, while the lr
reduces to one-tenth by 20 epochs. In addition, the learning attenuation, batch size and the
maximum epoch are set as 5× 10−4, 16 and 200, respectively.
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In detail, we evaluate the model on the validation set after every epoch during the
training process and pick the best model of the validation set within maximum epoch under
lr = 10−3. Then, we fine-tune the chosen best model with lr = 10−4 and pick the best
model of the validation set within maximum epoch again. Finally, we test the fine-tuned
best model on the testing set and obtain the final experimental results.

At the same time, suggested by the collector of the PISC [12], data augmentation
methods, such as pair-wise label reversing and the whole image horizontal rotation, are
employed on those classes with fewer samples, e.g., the commercial relationship in the
PISC-F task. The augmentation methods increase the number of samples in the tail classes
and thus mitigate the imbalance of data to some extent.

4.3. Comparison Experiments with the State-of-the-Art Methods

To evaluate the effectiveness of our designed MT-SRR, we firstly brief the existing
methods and then compare our final model with several state-of-the-art models, as shown
in Table 3. The experimental results are presented against three different SRR tasks, namely
PISC-C, PISC-F and PIPA. In detail, for the PISC-C task, Int., Non. and No. denote the
three coarse-level relation classes ‘intimate’, ‘non-intimate’ and ‘no relation’, respectively.
For the PISC-F task, Fri., Fam., Cou., Pro., Com. and No. are the six fine-level relation
classes ‘friend’, ‘family’, ‘couple’, ‘professional’, ‘commercial’ and ‘no relation’, respectively. The
quantities under these columns represent the per-class recall, while mAP is adopted as the
whole evaluation metrics both for the PISC-C task and the PISC-F task. For the PIPA task,
we adopt Acc to evaluate the whole framework as mentioned in Section 4.1. Finally, we
further analyze the pros and cons of our proposed model on the fine-grained tasks in order
to better understand the characteristics of the model.

Table 3. The comparison results (per-class recall (in %) and the mAP over all classes (in %) for PISC
and Acc (in %) for PIPA) of our MT-SRR model with the state-of-the-art methods on PISC-C, PISC-F
and PIPA datasets. Best results are highlighted in bold face. (Int.: ‘intimate’, Non.: ‘non-intimate’, No.:
‘no relation’, Fri.: ‘friend’, Fam.: ‘family’, Cou.: ‘couple’, Pro.: ‘professional’, Com.: ‘commercial’).

PISC-C PISC-F PIPA

Int. Non. No. mAP Fri. Fam. Cou. Pro. Com. No. mAP Acc
Dual-Glance [12] 73.1 84.2 59.6 79.7 35.4 68.1 76.3 70.3 57.6 60.9 63.2 59.6

DSFS [16] - - - - - - - - - - - 61.5
GRM [29] 81.7 73.4 65.5 82.8 59.6 64.4 58.6 76.6 39.5 67.7 68.9 62.3
MGR [25] - - - - 64.6 67.8 60.5 76.8 34.7 70.4 70.0 64.4

SRG-GN [15] - - - - 25.2 80.0 100.0 78.4 83.3 62.5 71.6 53.6
GR2N [19] 81.6 74.3 70.8 83.1 60.8 65.9 84.8 73.0 51.7 70.4 72.7 64.3

SRR-LGR [17] 89.6 84.6 78.5 84.8 83.9 52.4 35.9 64.0 54.0 63.6 73.0 66.1
HF-SRGR [18] 89.1 87.0 75.5 84.6 82.2 39.4 33.2 60.0 47.7 71.8 73.3 65.9

Ours 91.8 91.8 75.2 86.8 71.6 69.7 62.5 88.0 34.2 72.7 74.6 72.5

1. Dual-Glance [12]. This method is the baseline method proposed by the collector
of the PISC dataset. The attention mechanism is employed to fuse two kinds of
features (named two glance), i.e., the features of persons and the features of contextual
objects. Specifically, the features of persons including the feature of an individual, the
feature extracted from union regions of two individuals and the coordinates of two
individuals.

2. DSFS [16]: This method proposes a deep supervised feature selection framework,
which learns a sparse weighting matrix to select the optimal feature subsets in order to
reduce the noises and redundancy caused by high-dimension multi-source attributes.

3. GRM [29]. This method introduces stacked GGNNs to model the connections among
person nodes and contextual objects nodes by a message-passing mechanism. Com-
pared with the Dual-Glance, this method pays more attention to exploiting the inter-
action between the contextual objects and the persons.
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4. MGR [25]. This method designs two different graph structures, namely the person–
object graph and person–pose graph in order to exploit the connections between the
person and the object as well as to utilize pose information, respectively. Two GCNs
are then employed to exploit the topology information hidden in a graph structure
and the outputs of the two GCNs are fused with the scene feature extracted from the
whole image.

5. SRG-GN [15]. This method extends the traditional framework to a multi-task frame-
work, which introduces five CNN-based extraction networks for person-pair attribu-
tions (i.e., age, gender and clothing) and relation attributions (i.e., scene and activity).
Gated Recurrent Units (GRUs) are then adopted to fuse these different attributes and
a multi-task loss is designed for relation classification.

6. GR2N [19]. This method constructs several virtual relation graphs in order to grasp
the logical constraints among various relationships in the same image. GNNs are
adopted to model the edges in the graph, using relations as nodes, which represent
the logical constraints among the relations.

7. SRR-LGR [17]. This method further analyzes two different graph networks, i.e., a
GCN and GGNN, and draws a conclusion that a GCN exploits the global features
of the entire graph, while a GGNN focuses on the local message passing. A new
reasoning module with the fusion of a GCN and GGNN is then proposed for SRR,
dubbed local–global information reasoning.

8. HF-SRGR [18]. This method takes the different influences a scene exerts on different
relationships in an image into consideration. On this basis, a variant of a GGNN is
proposed, which introduces the attention mechanism to attentionally pass messages
between person nodes and the scene node.

As shown in Table 3, our proposed MT-SRR significantly outperforms the state-of-the-
art methods on the benchmark datasets for SRR. To be specific, the final model achieves
86.8%, 74.6% and 72.1% for the PISC-C task, PISC-F task and PIPA task, which exceeds the
state-of-the-art methods by 2.0%, 1.3% and 6.4%, respectively. Note that MT-SRR achieves
great improvement without introducing new types of features, and attributes such as age
and gender are not used for a better comparison with the state-of-the-art methods [17,18],
which further prove the effectiveness of the whole proposed model.

In order to further analyze the characteristics of the proposed model, we consider
the per-class recall in the PISC-F task, which is a fine-grained classification task. As
shown in Table 3, our model achieves relatively better per-class recall, especially in the
class ‘professional’ and the class ‘no relation’. However, the recall of class ‘commercial’ is
relatively low, which means our model has trouble recognizing the samples of commercial
relationships. To find out, we construct the confusion matrix, as shown in Figure 6. It
can be easily observed that the confusion of the class ‘commercial’ mainly appears in the
class ‘professional’. After the analysis, we partially owe the problem to the highly similar
visual clues of these two classes and the overwhelming gap in the sample number of
the class ‘professional’ over the class ‘commercial’ (the problem of imbalanced data will be
further analyzed in Section 4). As shown in Figure 7, the samples annotated with the class
‘professional’ and the class ‘commercial’ both describe the relationships between patients and
doctors, which have highly similar visual clues and thus make it difficult for our model to
distinguish them. Although we have changed the loss function to mitigate the problem,
highly similar visual clues and the imbalanced data still lead to the confusion between the
‘commercial’ and the ‘professional’ classes.
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Figure 6. Confusion matrix of PISC-Fine task. The values on the leading diagonal denote the
per-class recall.

To explain it more intuitively, we further analyze the outputs of Inter-TRM in the PISC-
F task, namely the feature vectors that represent different social relationships. We first utilize
a principal components analysis (PCA) to reduce the dimension of the features from 2048
to 2 and then scale the values to interval [0, 1]. For better observation, we simultaneously
exhibit two pairs of distinguishable classes (‘professional’ and ‘family’, ‘professional’ and
‘couple’) and two pairs of highly confused classes (‘friend’ and ‘couple’, ‘professional’ and
‘commercial’), as shown in Figure 8. Obviously, two classes with lower confusion (pairs
of classes in Figure 8a,b) have less overlaps than those highly confused classes (pairs of
classes in Figure 8c,d), which proves that the high similarities among indistinguishable
classes deteriorate the recognition performance and lead to high inter-class confusion.

4.4. Ablation Study

In this subsection, we implement extensive experiments to evaluate the effective-
ness of the different components in our framework. The detailed settings of the ablation
experiments by removing different modules are as follows:

1. Feature extraction using ViT (FE-ViT). We simply concatenate four intra-relation
features extracted by ViT and one scene feature extracted by ResNet-50 for relation
classification.

2. Feature extraction + Intra-TRM (FE-ViT + Intra-TRM). We added Inter-TRM on top
of the ablation (i), which dynamically fuses four intra-relation features and one scene
feature.

3. Feature extraction + Intra-TRM + Inter-TRM (FE-ViT + Intra-TRM + Inter-TRM).
We added Inter-TRM on the basis of ablation (ii). The outputs of Intra-TRM, namely
the social relation representations in the same image, are fed to the Inter-TRM module
for attentionally enhancing social relation representations of similar relationships.
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4. Feature extraction + Intra-TRM + Inter-TRM + loss with margin (FE-ViT + Intra-
TRM + Inter-TRM + loss-m). On top of ablation (iii), we replace the standard CE loss
with the new loss with the margin. The details are in Section 3.4.

Figure 7. Similar samples in different classes.
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Figure 8. The distribution of social relation representations (outputs of Inter-TRM) in latent fea-
ture space. The points with different colors are the social relation representations from different
classes. Note that, here, we utilize principal components analysis (PCA) to achieve dimensionality
reduction. (a) Visualization of ‘professional’ and ‘family’. (b) Visualization of ‘professional’ and ‘couple’.
(c) Visualization of ‘friend’ and ‘couple’. (d) Visualization of ‘professional’ and ‘commercial’.

Table 4 lists the ablation results. We start with the baseline experiment ablation
(i), which achieves 76.2%, 67.0% and 66.8% for PISC-C, PISC-F and PIPA, respectively.
Compared with ablation (i), ablation (ii) achieves improvement with absolute 5.9%, 5.4%
and 2.5% for PISC-C, PISC-F and PIPA, which demonstrates that Intra-TRM can effectively
fuse intra-relation features and scene features. Ablation (iii) attentionally enhances the
representation of similar relationships in the same image. The effects are boosted up to
85.7%, 75.1% and 71.4%. The change of the CE to the new loss with margin in ablation (iv)
promotes the results further on PISC-C and PIPA by 1.1% and 0.7%, respectively. However,
for the PISC-F task, the overall mAP decreases from 75.1% to 74.6%. This will be further
analyzed below.

Table 4. Ablation results with row 1 to row 5 corresponding to the results of ablation (i) to ablation
(v). The best results are given in bold.

Ablation Methods PISC-C (mAP) PISC-F (mAP) PIPA(Acc)

(i) FE-ViT 76.2 67.0 66.8
(ii) FE-ViT + Intra-TRM 82.1 72.4 69.3

(iii) FE-ViT + Intra-TRM + Inter-TRM 85.7 75.1 71.4
(iv) FE-ViT + Intra-TRM + Inter-TRM + loss-m 86.8 74.6 72.1
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To better understand the influence of the new loss function, we further compare
ablation (iii) and ablation (iv) on the PISC-F dataset, as shown in Table 5. With the new
loss function, MT-SRR increases the recall of most classes, except for the class ‘no relation’,
of which the recalls of the minority classes ‘couple’ and ‘commercial’ increase by 19.5% and
2.8%, respectively. The overall accuracy of ablation (iv) is also 2.1% higher than ablation
(iii), which demonstrates that the new loss can boost the performance of the whole model
so as to make more correct predictions. However, for the minority class ‘commercial’, the
increase in the recall is still not as large as expected. This is owing to the data augmentation
strategy, which multiplies the sample number of the class ‘commercial’, as shown in Table 6.
After the data augmentation, the sample number of the class ‘commercial’ increases from
523 to 8372, which decreases the margin (in Equation (7)) between the class ‘commercial’ and
the highly similar class ‘professional’ in the new loss function. A lower margin between
two classes weakens the capacity of our model to distinguish the class ‘commercial’ and
‘professional’ and thus leads to a lower increase in recall.

Table 5. Detailed comparison between ablation (iii) and ablation (iv) on PISC-F dataset. Ablation (iii)
consists of FE-ViT, Intra-TRM and Inter-TRM, while ablation (iv) introduces the new loss function
into the training process on basis of ablation (iii). Better results are given in bold.

Ablation Methods Fri. Fam. Cou. Pro. Com. No. mAP Acc

Ablation(iii) 70.5 68.1 43.0 80.4 31.4 78.3 75.1 69.0
Ablation(iv) 71.6 69.7 62.5 88.0 34.2 72.7 74.6 71.2

Table 6. The sample distribution of the PISC dataset. Row 1 denotes the sample numbers of the
original dataset, while row 2 shows the sample numbers after the data augmentation strategy
is employed.

Social Relations Fri. Fam. Cou. Pro. Com. No.

Numbers of samples (Origin dataset) 12,686 7818 1552 20,842 523 11,979
Numbers of samples (After data augmentation) 13,120 7982 3149 21,448 8372 18,541

4.5. Comparison Experiments with Inter-TRM and Other Graph-Based Networks

In this subsection, we further compare our proposed Inter-TRM with other graph-
based networks used in SRR in order to demonstrate that Inter-TRM can enhance the
social relation representations by attentionally aggregating the representations of similar
relationships in the same image; namely, it better exploits the logical constraints among
relationships. To be specific, we compare our proposed Inter-TRM with a GGNN [47],
GCN [48] and Graph Attention Network (GAT) [49] on the PISC-F task, as shown in Table 7.
Among those graph-based networks, the GAT is the closest to our design idea of Inter-
TRM because it introduces the attention mechanism into a graph structure. However, the
nodes in the GAT only aggregate the information of the neighbor nodes, which limits the
ability of global information aggregation. In [18], the GAT and GCN are also proved to
be less efficient than the GGNN for constructed social relation graph reasoning because
they are constructed based on spectral graph theory and thus pay more attention to the
topological information. The results in Table 7 further demonstrate that our Inter-TRM
module performs better than the GGNN, GCN and GAT in exploiting the logical constraints
among relationships than the graph-based networks.
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Table 7. Comparative results between Inter-TRM and other graph-based networks on PISC-F. The
best results are given in bold.

Ablation Methods PISC-F (mAP)

GCN 71.5
GAT 72.6

GGNN 73.1
Inter-TRM 74.6

5. Conclusions

In this paper, we focus on the design of the feature fusion module, which orchestrates
the intra-relation features, inter-relation features and scene feature in order to generate
more rational social relation representation for a deeper understanding of SRR. Specially,
two transformer-based feature fusion modules, namely Intra-TRM and Inter-TRM, are
introduced to dynamically fuse all the features for social relation representations generation
and attentionally enhance the representations of similar social relationships in the same
image, respectively. We also add a newly designed margin to standard CE in order to
mitigate the bad effect caused by imbalanced data. The new margin can be potentially
used in different tasks which have the same problem, e.g., emotion recognition and activity
recognition in a public space.

In total, the two transformer-based modules boost the performance with absolute
9.5%, 8.1% and 4.6% for PISC-C (mAP), PISC-F (mAP) and PIPA (Acc) over the ablation
baseline, which demonstrates that our MT-SRR can efficiently orchestrate the features on
different scales. The comparison between Inter-TRM and graph-based networks further
proves that Inter-TRM is the better choice for exploiting the logical constraints. In addition,
the ablation results also prove that the newly designed margin can alleviate the bad effect
caused by imbalanced data and improve the recognition accuracy on three tasks with
only 0.5% deterioration on PISC-F (mAP). In general, our proposed MT-SRR significantly
outperforms the state-of-the-art methods by absolute 2.0%, 1.3% and 6.4% for PISC-C
(mAP), PISC-F (mAP) and PIPA (Acc), which illustrates the effectiveness of our proposed
MT-SRR.

However, some classes with highly similar visual clues still suffer from low recognition
accuracy. To address the problem, how to comprehensively utilize multimodal social data
(text, audio, etc.) to distinguish the highly confused classes and achieve more accurate
recognition is thus a key issue in the future. In addition, how to apply SRR to higher-level
social scene understanding and further benefit more complex social intelligence systems,
such as a city-scale public administration system, is another key issue for future research.
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Abbreviations
The following alphabetical abbreviations are used in this manuscript:

Acc Top-1 accuracy
CE Cross-entropy
CNN Convolutional neural network
Com. Class ‘commercial’
Cou. Class ‘couple’
Fam. Class ‘family’
FC Fully connected layer
Fri. Class ‘friend’
GAT Graph attention network
GCN Graph convolutional network
GGNN Gated graph neural network
GNN Graph neural network
Int. Class ‘intimate’
Inter-TRM Inter-relation transformer
Intra-TRM Intra-relation transformer
LN Layer normalization
lr Learning rate
mAP Mean average precision
MLP Multi-layer perception
MSA Multi-head self-attention
MT-SRR Multi-level transformer-based social relation recognition
NLP Natural language processing
No. Class ‘no relation’
Non. Class ‘non-intimate’
PIPA People in Photo Album
PISC People in Social Context
PISC-C Coarse-level social relation recognition task in People in Public Space dataset
PISC-F Fine-level social relation recognition task in People in Public Space dataset
Pro. Class ‘professional’
SRR Social relation recognition
ViT Vision transformer
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