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Abstract: With the development of artificial intelligence technology, the behavior decision-making 

of an intelligent smart marine autonomous surface ship (SMASS) has become particularly im-

portant. This research proposed local path planning and a behavior decision-making approach 

based on improved Proximal Policy Optimization (PPO), which could drive an unmanned SMASS 

to the target without requiring any human experiences. In addition, a generalized advantage esti-

mation was added to the loss function of the PPO algorithm, which allowed baselines in PPO algo-

rithms to be self-adjusted. At first, the SMASS was modeled with the Nomoto model in a simulation 

waterway. Then, distances, obstacles, and prohibited areas were regularized as rewards or punish-

ments, which were used to judge the performance and manipulation decisions of the vessel Subse-

quently, improved PPO was introduced to learn the action–reward model, and the neural network 

model after training was used to manipulate the SMASS’s movement. To achieve higher reward 

values, the SMASS could find an appropriate path or navigation strategy by itself. After a sufficient 

number of rounds of training, a convincing path and manipulation strategies would likely be pro-

duced. Compared with the proposed approach of the existing methods, this approach is more effec-

tive in self-learning and continuous optimization and thus closer to human manipulation. 
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1. Introduction and Background 

Since the 1970s, the combination of robot technologies and vehicles has led to the 

emergence of drones, unmanned vehicles, and unmanned ships [1]. Among them, a ship 

sailing on the sea is seriously affected by wind and surges. The decision-making and path 

planning of intelligent ships have been considered significant academic problems. Ships 

are generally under-actuated due to their large tonnage, slow speed, and relatively weak 

power. The autonomous navigation of ships has to meet huge inertia and complex navi-

gation rules; therefore, the requirements for smart ships are much higher than those for 

unmanned vehicles. A ship operator faces many challenges, including those associated 

with the dynamic environment, insufficient power, and uncertainties in perception. Ac-

cording to the report of the International Maritime Organization, more than 80 percent of 

maritime accidents are caused by misunderstandings of the situation and by human error 

in decision-making resulting from failure to comply with the International Regulations 

for Preventing Collisions at Sea (COLREGs). Therefore, artificial intelligence for ship nav-

igation is considered very difficult, and its core functions are path planning and intelligent 

decision-making. 

Ship intelligent decision-making can be divided into two types: path planning and 

obstacle avoidance. One is the traditional model-based obstacle avoidance algorithm. For 

many years, the A* algorithm was the dominant approach in relevant research. A Swiss 

boat named Avalon was capable of generating a persuasive path to a given destination 
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and avoiding both static and dynamic obstacles based on the A* algorithm [2]. Several 

heuristic function values of the current path grid are compared by the A* algorithm to 

gradually determine the next path grid, which can accurately avoid obstacles. However, 

when there were multiple minimum values, the optimal path could not be searched by 

the A* algorithm. Sudden obstacles would make the ship fall into the local optimum. 

Zhang et al. improved the Rapidly Exploring Random Tree (RRT) algorithm so that the 

convergence rate of the algorithm was significantly improved [3]. However, the path was 

randomly selected by the RRT algorithm, and the probability of encountering narrow 

channels was low. It was not appropriate to navigate in a narrow channel or to face mul-

tiple static obstacles. An ant colony optimization (ACO) and a clustering-based algorithm 

were proposed to settle the path planning of the USV by Liu et al. [4]. The improved ant 

colony optimization was used to adaptively select the appropriate search range, and the 

smoothing mechanism was used to adjust the path to achieve global path planning. An 

improved artificial potential field method (APF) was proposed by Shaorong Xie et al. The 

problem of USV falling into the unreachable local optimal target could be improved by 

this method, but there were still problems such as the poor accuracy of the algorithm and 

falling into local optimum in complex environments [5]. The gravitational field and repul-

sion field functions were required to be set separately; thus, this method does not apply 

to any environment. A new artificial potential field (APF) method was improved by 

Hongguang Lv et al. Different from the method proposed by Shaorong Xie et al., the new 

modified repulsive potential field function and the corresponding virtual force were in-

troduced in the algorithm [6]. Appropriate functionality and security requirements were 

added to the corresponding virtual force to ensure compliance with the International Reg-

ulations for Preventing Collisions at Sea (COLREGs). However, with the complexity of 

modern maritime systems, a complete collision avoidance model is difficult to establish 

in many path planning and navigation problems. In most model-based algorithms, uncer-

tainty is difficult to predict in practical applications. 

Another is a model-free reinforcement learning algorithm that learns optimal strate-

gies by interacting with the environment. At present, the development of artificial intelli-

gence technology, especially reinforcement learning, provides a new possibility to satisfy 

the requirements of the path planning of intelligent ships. Reinforcement learning has at-

tracted extensive attention in recent years, which emphasizes the learning of agents from 

the environment to behavior mapping and seeks the most correct or best action decision 

by maximizing value functions. A ship path planning algorithm based on Q learning was 

proposed by Chen C. et al. Combined with the ship mathematical model, the USV could 

obtain a higher reward value by learning the action-value function [7]. However, the re-

inforcement learning algorithm had an insufficient perception of the external environ-

ment, and the action state information was difficult to be searched. In addition, the exper-

imental environment was too simple, without considering the decision problem of com-

plex multi-obstacles. An algorithm was proposed by Everett et al. that generates an ap-

propriate collision-free path even when the number of dynamic obstacles is changed by 

using Long short-term memory (LSTM) [8]. A Deep-Q-Learning (DQN) algorithm linking 

perception and decision-making was proposed by Jingwei Zhang et al. The algorithm 

could acquire external images by depth camera information and extracts image features 

as inputs of DQN [9]. Decision problems can be solved by this algorithm, but the use of a 

depth camera and convolution network makes the calculation huge. Moreover, when sail-

ing in harsh sea conditions, the depth camera could not be effectively put into use, and 

the method would be not convincing. A DQN-based path planning obstacle avoidance 

algorithm was proposed by Haiqing Shen et al. The algorithm could be successfully sim-

ulated with human experience and International Regulations for Preventing Collisions at 

Sea [10]. However, the DQN algorithm has an overestimation problem, and an unmanned 

surface vessel (USV) is prone to action selection error in a more complex environment. An 

algorithm combining Deep-Q-Learning (DQN) and the artificial potential field (APF) was 

proposed by Lingyu Li et al., which was used for USV path planning [11]. This algorithm 
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made deep reinforcement learning more purposeful in the early stage of training and had 

a faster convergence effect. However, the method based on Q-learning seemed inadequate 

in solving the problem of continuous action. A Multi-Experience Library Framework was 

proposed by Zijian Hu et al. for Unmanned Aerial Vehicle (UAV) autonomous motion 

planning. The algorithm generated expert experience by model predictive control and 

simulated annealing [12]. When applying this algorithm to a complex unknown simula-

tion environment constructed based on the parameters of the real UAV, the training ex-

periment results showed that the novel Deep reinforcement learning (DRL) algorithm led 

to a performance improvement exceeding twenty percent, as compared to the state-of-the-

art Deep Deterministic Policy Gradient (DDPG). DDPG has a slightly better decision-mak-

ing effect than value-based learning algorithms in complex environments. Choosing the 

maximum probability action in each step under continuous action can make calculation 

much simpler. A new quantitative risk assessment method was proposed by Do-Hyun 

Chun et al. In the calculation of collision risk (CR), the distance closest point of approach 

(DCPA) and time closest point of approach (TCPA) were determined by ship length and 

ship speed [13]. This algorithm could take the collision risk assessment CR as one of the 

inputs of the neural network, but the experiment was too simple to generalize. An obstacle 

avoidance method based on the combination of PPO and the Line of Sight (LOS) guidance 

system was proposed by Luman Zhao et al. This algorithm could ensure that the ship 

moves along the predetermined path and avoids collision with the moving ship. Due to 

the limitation of the LOS algorithm, this experiment cannot avoid collision in a complex 

environment [14]. An improved DQN algorithm was proposed by Xinli Xu et al. The net-

work weight was set by them to slowly approach the current value; in other words, the 

target network would approach the evaluation network gradually [15]. It could reduce 

the correlation between the current value function and the target value function to some 

extent. In addition, the reward function of the algorithm made the USV alter different 

angles, and the reward value was also different. However, the algorithm based on value 

learning was still overestimated, and the problems of static obstacles and generalization 

were not considered in the experiment. A distributed sensor-level collision avoidance pol-

icy for multi-robot systems was proposed by Pinxin Long et al., which could directly map 

raw sensor measurements to an agent’s steering commands in terms of movement veloc-

ity [16]. This experiment verified the learned sensor-level collision avoidance strategy in 

various simulation scenarios and conducted a comprehensive performance evaluation. 

This experiment also demonstrated that the learned policy could be well generalized to 

new scenarios that did not appear in the entire training period, including navigating a 

heterogeneous group of robots and a large-scale scenario with 100 robots. Pinxin Long et 

al.’s experiment had a strong generalization ability, which is worth learning. 

Based on the above research, an intelligent smart marine autonomous surface ship 

(SMASS) decision system based on an improved PPO algorithm was proposed in this pa-

per. The main contributions of this article were as follows: 

• An intelligent SMASS decision-making system based on the Proximal Policy Optimi-

zation (PPO) algorithm was proposed in this paper, which could make the critic net-

work and action network converge faster. 

• Through the Gazebo simulation environment, sensors such as laser radar and navi-

gation radar were used to obtain external environmental information. Intelligent 

SMASS could make complex path planning decisions in different environments. Af-

ter the training, if unknown obstacles are placed on the map, the intelligent ship 

could still successfully avoid obstacles. 

• The Nomoto model was brought into the training of this experiment. Training the 

model could meet the needs of practical engineering. 

The rest of this paper is organized as follows. Section 2 introduces the composition 

of the intelligent SMASS system, ship mathematical model, and COLREGs. Section 3 in-

troduces a deep reinforcement learning algorithm and improved Proximal Policy 
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Optimization (PPO) algorithm. Section 4 mainly introduces the reward function setting 

and network setting. Section 5 mainly introduces the design of the Gazebo simulation and 

the analysis of experimental results. Section 6 is the summary of this paper and the future 

research planning. 

2. Intelligent Ship Decision System and Ship Mathematical Model 

In building a complete set of the intelligent smart marine autonomous surface ship 

(SMASS) decision-making systems, it was necessary to clarify the components of the sys-

tem, the functions of each part, and the relationship between different parts [17]. There 

are three parts included in the intelligent smart marine autonomous surface ship (SMASS) 

decision-making system, namely, the sensing part, the decision-making part, and the con-

trol part, as shown in Figure 1. 

 

Figure 1. Intelligent ship navigation system: (a) the sensing part, (b) the decision part, and (c) the 

control part. 

2.1. Intelligent Ship Decision System 

The sensing part is divided into the SMASS’s own state information and navigation 

environment information. The sensing part is mainly composed of navigation radar, laser 

radar, GPS, shaft power sensor, bathymeter, speed sensor, and AIS. The SMASS’s own 

state information includes the SMASS’s course, speed, position, oil consumption remain-

ing, propeller speed, and hull structure strength [18]. Navigation environment infor-

mation includes other ship heading speed TCPA, DCPA, hydrological information, veloc-

ity, channel depth, meteorological information (temperature, humidity, wind direction, 

wind speed), electronic chart information, navigation mark distribution, etc. In this paper, 

laser radar and positioning systems were used in the environmental perception of intelli-

gent SMASS. The decision part includes path planning before sailing and obstacle avoid-

ance during self-service navigation. In this paper, improved PPO algorithms were used 

for SMASS path planning and obstacle avoidance. The algorithm has the following ad-

vantages: 

• With autonomous learning ability, the convergence rate was faster than the common 

calculation method. 

• The trained intelligent SMASS navigation system could obtain strong generalization, 

which would solve different scene problems. For example, it can solve the problem 

of path planning for SMASS sailing in broad waters, narrow waters, and restricted 
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waters. In local path planning, it could successfully avoid unknown obstacles that do 

not appear on the electronic chart. 

• The path planning problem and SMASS decision problem could be solved simulta-

neously. SMASS could find the optimal path to the target point through known ob-

stacle information. Under the unknown environment, the SMASS could detect the 

position of obstacles by laser radar and accurately avoid the obstacles. 

2.2. Ship Mathematical Model 

The mathematical model of ship motion is significant for ship motion simulation. The 

ship motion model can be divided into the linear model and the nonlinear model. The 

linear model is mainly used to optimize or train the control simulator, neural network 

decision-making, and controller design [19]. To describe the motion of a ship, a ship mo-

tion coordinate system was established, as shown in Figure 2. 

 

Figure 2. Ship motion mathematical model. 

In this figure, G  represents the position of the center of gravity of the ship, XOY  

indicates the hydrostatic water plane, O  is the origin, OGX  represents the projection of 

the center of ship gravity on the X  and Y  axes, respectively,  is the heading of the 

ship, and  indicates the ship rudder angle. Considering only the ship lateral drift ve-

locity v  and yaw angular velocity r , the ship motion mathematic model could be ex-

pressed as: 

11 12 11

21 22 21

a a bv v
δ

r a a r b
 (1) 

where 11a , 12a , 21a , 22a , 11b , and 21b  are the ship maneuverability parameters [20]. 

Ignoring the lateral drift velocity v  in Equation (1), the response equation of the ship 

steering rudder to yaw motion can be written as: 

1 2 1 2 0 0 3( )TT r T T r r K δ K T δ  (2) 

where 1T , 2T , 3T , and 0K  are maneuverability indexes. Their values could be estimated 

by 1 2 11 22 12 211/ ( )TT a a a a , 1 2 11 22 12 21 11 22( ) / ( )T T a a a a a a , 3 21 21 11 11 21/ ( )T =b a b a b , and 

0 21 11 11 21 11 22 12 21( ) / ( )K a b a b a a a a . Then, the Laplace transform of Equation (2) could be 
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carried out to obtain the transfer function of the ship steering control system, as shown in 

Equation (3): 

0 3

1 2

(1 )(s)
(s)

(s) (1 )(1 )

K T sψ
G

δ s T s T s
 (3) 

For ships with large inertia, the dynamic characteristics are the most important in the 

low-frequency range [21]. Thus, let the following formula show that 0s jw , and, ig-

noring the second and third-order small quantities, the Nomoto model can be obtained 

by: 

0

0

( )
( 1)

φδ

Kψ
G s

δ s T s
 (4) 

The differential equation form of the Nomoto model is written as shown in Equation (5): 

Tψ ψ Kδ  (5) 

The value T  represents the coefficient ratio of the inertia moment to the damping 

moment [22]. A large T  value indicates a large inertia moment and a small damping 

moment during ship motion. The value K  actually refers to the angular velocity value of 

yaw motion by each rudder angle. The large K  means a large yaw moment and a small 

damping moment produced by the rudder. 

Taking the ship as a rigid body, when the ship steers at any rudder angle δ , the yaw 

rate is r . The above formula can be seen as the yaw motion equation of the ship when it 

steers. When the ship turns, altering her course, at any rudder angle, assuming that the 

initial conditions are 0t , 0δ δ , and 0r , the yaw angle at any time can be calculated 

by KT  Equation (6): 

/(1 )t Tr Kδ e  (6) 

Ship yaw angle r  is the derivative of  with respect to time. As shown in Equa-

tion (7). 

/

0 ( )t Tψ Kδ t T T e  (7) 

There are two advantages of using the Nomoto model in this experiment: 

• In the low-frequency range, the spectrum of the Nomoto model is very close to that 

of the high order model. 

• The designed controller has low order and is easy to implement. 

2.3. COLREGs 

To solve SMASS path planning and obstacle avoidance problems based on DRL, mar-

itime collision avoidance rules should be considered. COLREGS is a maritime traffic rule 

that is stipulated in the high seas and all navigational waters connected to the high seas 

to ensure the safety of ship navigation, preventing ship collision. Therefore, intelligent 

ship decision-making systems should also act in accordance with COLREG to ensure the 

safety of maritime navigation [23]. According to the COLREGS, the relative position of the 

two ships is divided into four obstacle avoidance strategy regions, such as in Figure 3. 

The four collision avoidance rules involved in COLREGS Chapter 2 Regulation 13 to 

17 are as follows. The corresponding collision avoidance actions are displayed in Figure 

3. 
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Figure 3. Encounter situations defined by COLREGs: (a) Head-on, (b) Overtaking, (c) Crossing 

give-way, and (d) Crossing stand-on. 

(1) Head-on 

The encounter situation refers to the opposite or nearly opposite course (where the 

course usually refers to the bow direction of the ship rather than the track direction) of the 

two mobile ships under the condition of mutual seeing, and there is a risk of collision. The 

opposite direction means the relative azimuth of the target ship (TS) and own ship (OS) is 

in [355°, 360°] or [0°, 5°]. Two ships should alter course port through passing the starboard 

side of another ship. The head-on situation is displayed in Figure 3a. 

(2) Overtaking 

The overtaking situation means that the speed of the rear ship is greater than that of 

the front ship. When the own ship chases the target ship in a certain direction 22.5 degrees 

behind the target ship, the target ship is a stand-on ship, and the own ship should give 

way to the target ship. The overtaking situation is displayed in Figure 3b. 

(3) Crossing give-way 

When two ships meet and there is a risk of collision, the relative position of the target 

ship and the own ship is in [5°, 112.5°]. In this case, the own ship should give way to the 

target ship. According to COLREGs, the own ship should alter her course to starboard to 

avoid a collision. The crossing give-way situation is displayed in Figure 3c. 

(4) Crossing stand-on 

When two ships meet and the relative position of the target ship and the own ship is 

in [247.5° ,355°], there is a risk of collision. In this case, the ship is stand-on, and the target 

ship should give way to the own ship. If the target ship does not take avoidance action 

timely, the own ship should take action to avoid the collision. The crossing stand-on situ-

ation is displayed in Figure 3d. 
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3. Improved PPO Algorithm 

3.1. Deep Reinforcement Learning 

At present, artificial intelligence technologies have developed rapidly; especially af-

ter AlphaGo defeated Lee Sedol, the nine-stage chess player, reinforcement learning has 

risen rapidly to provide new possibilities for intelligent ship path planning. The Q-learn-

ing algorithm could obtain the best behavior decision-making through the optimal action-

value function [24]. However, the marine environment is too complex, and a ship sailing 

on the sea faces many uncertainties. The Q-table could seem inadequate in solving com-

plex problems. 

The development of deep reinforcement learning is greatly accelerated by neural net-

works [25]. With the change of the agent’s external environment, through the backpropa-

gation of neural networks, the weights of neural networks could be updated to simulate 

complex functions. Deep reinforcement learning algorithms are divided into two catego-

ries: value learning and strategy learning. 

Reinforcement learning based on value function is represented by Deep Q-Learning 

(DQN), and the problem of correlation and non-static distribution could be solved by the 

experience replay method. The current Q value is generated by the evaluation network, 

and the target Q value is generated by the target network [26]. The experience replay 

stores the transfer samples 1( , , , )t t t ts a r s  from each time step agent that interacts with the 

environment into the replay memory unit. Then, small-batch data in the memory library 

are selected for training, but the DQN algorithm is not accurate in estimating the action 

value Q, so there are some errors. Suppose DQN’s estimate of the real action is unbiased, 

then the error is noise with an average of 0. max ( , ; )
a

q Q s a ω  is maximized based on 

DQN action a  and used to compute
argt etTD . Adding noise to the action-value function 

will make 1max( ,a, )t+
a

q S ω . Obtaining the Q value at the next moment is an overestima-

tion. Although noise does not change the mean value, it will make the maximum value of 
Q greater than the maximum value of x . Expectations for the maximum of Q will also be 

greater than the maximum value of x . Updating DQN estimates at time t  with 
argt etTD  

also means updating itself with itself. Uniform overestimation does not make DQN a 

problem with action selection because each action overestimation is the same agent and 

will still choose to score high action. However, non-uniform overestimation will make 

DQN have problems in the action selection. Double Deep Q-Learning (Double DQN) was 

proposed by Google DeepMind to solve the overestimation problem of DQN [27]. Alt-

hough the estimation made by Double Deep Q-Learning is relatively small, its overesti-

mation of the maximum value cannot be solved fundamentally. This is why reinforcement 

learning based on value learning was abandoned in this paper. 

The Actor-Critic (AC) algorithm is representative of strategy learning. There are two 

neural networks that exist in the AC algorithm. One is used to interact with the environ-

ment to select actions, and the other is used to evaluate the quality of actions, and the 

network parameters are updated by gradient descent. The AC algorithm is good but dif-

ficult to converge. Compared with random strategies, deterministic strategies adopt dif-

ferent action probabilities at the same state when solving continuous action problems, but 

the maximum probability is only one. Double actor neural networks and double critic 

neural networks were used in the Deep Deterministic Policy Gradient (DDPG) algorithm 

to improve the convergence of neural networks [28]. The algorithm can only take action 

with the maximum probability; however, by removing the probability distribution, the 

algorithm will be much simpler. In 2017, a Proximal Policy Optimization (PPO) algorithm 

was proposed by OpenAI [29]. The Policy Gradient algorithm is very sensitive to the step 

size, but it is difficult to select the appropriate step size. If the difference between the new 

and old strategies is too large, it is not conducive to learning. The problem of uncertain 

learning rates in the Policy Gradient algorithm could be solved by the PPO algorithm; if 
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the learning rate is too large, then the learned strategy is not easy to converge. On the 

contrary, if the learning rate is too small, it will take a long time. The proportion of current 

and previous strategies could be used in the PPO algorithm, which would limit the update 

range of the current strategy, so that the Policy Gradient algorithm would not be so sen-

sitive to a slightly larger learning rate. 

3.2. Improved PPO Algorithm 

The current and previous strategy networks were used by the traditional PPO algo-

rithm to improve the uncertainty of the learning rate, but they still had a large variance. 

A generalized advantage estimate was proposed by John Schulman et al. to improve the 

TRPO algorithm [30], which can also be used to improve the PPO algorithm. 

First, the application of baseline in strategy learning should be understood. The base-

line could be regarded as a function b  independent of action a . 

ln ( ; ) ln ( ; )

ln ( s; )
( ; )

( s; )1
( s; )

( s; )

( s; )

( s; )

0

A π A π

a

a

a

a

π A S θ π A S θ
E b b E

θ θ

π a θ
b π a S θ

θ

π a θ
b π a θ

π a θ θ

π a θ
b

θ

π a θ
b

θ

 (8) 

where a  is the action taken for the agent, s  is the current state, and θ  is the network 

parameter. The essence of the policy function is the probability density function. Taking 

Equation (9) to the equality of policy gradient update will obtain the advantage function. 

ln ( ; )(S)
( , )

ln ( ; )
( , )

π

A π π

A π π

π A S θV
E Q S A

θ θ

π A S θ
E Q S A b

θ

 (9) 

Although the gradient is not affected by the value of b , it affects the Monte Carlo 

approximation. When b  approaches πQ , the variance of the Monte Carlo approxima-

tion will decrease, and the convergence rate will improve. The value of b  is ( )π tV S , 

where ( )π tV S  is independent of action a , and then the advantage function is obtained. 

The action value function can be seen as the conditional expectation of the return value 

tU  to ts , ta , and the state value function can be seen as the conditional expectation of 

the action value function to ts ; thus, the equation can be obtained: 

1 1

1 1

1

, 1 1

1 1

1

( , ) [ ( , )]

( ( , ))

[ ( )]

t t

t t

t

π t t S A t π t t

S t A π t t

S t π t

Q s a E R γQ s a

E R γE Q s a

E R γV S

 (10) 

1

1

1

, 1

( ) [ ( , )]

[ ( )]

[ ( )]

t

t t

t t

π t A π t t

A S t π t

A S t π t

V S E Q S A

E E R γV S

E R γV S

 (11) (11) 
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At this time, the Monte Carlo approximation of πQ and πV  can be obtained: 

1( , ) ( )π t t t π tQ s a r γV s  (12) 

1( ) ( )π t t π tV s r γV s  (13) (13) 

Because the value b  in the dominant function is 
π tV s , it is a definite value, so it is 

not necessary to use the Monte Carlo approximation. The unbiased estimation of the strat-

egy gradient can be expressed as: 

1

1

ln ( ; )
( ) ( ( , ) ( ))

ln ( ; )
( ( ) ( ))

ln ( ; )
( ( ; ) ( ; ))

t t

t π t t π t

t t

t π t π t

t t

t π t π t

π a s θ
g a Q s a V s

θ

π a s θ
r γV s V s

θ

π a s θ
r γV s ω V s ω

θ

 (14) 

We can define 1( ) ( )V

t t π t π tη r γV s V s  and subtract the K step  advantage from 

the baseline function, then we can obtain the following equation: 

( )

1 1
0 0

ˆ ( )k V k

t t t t
k k

G γ η V s γ r  (15) 

Therefore, the generalized advantage estimation can be obtained. The formula is as 

follows: 

(1) (2) 2 (3)

2 2

1 1 2

2
2

1 1

1
0

ˆ ˆ ˆ ˆ(1 )( )

(1 )( ( ) ( ) )

1
(1 )

1 1 1

( )

t t t t

V V V V V V

t t t t t t

V V V

t t+ t+

k V

t+
k

G λ G λG λ G

λ η λ η γη +λ η γη +γ η +

λ λ
λ η +γη γ η

-λ -λ -λ

γλ η

 (16) 

The loss function of the PPO algorithm is: 

( ) min( , ( ,1 ,1 ))PPO t t t t

θ θL θ =E μ G clip μ ε ε G  (17) 

( )

( )

t tt

θ

old t t

π a s
μ

π a s
 (18) 

In this equation, t

θμ  is the ratio of probability. The ratio of the probability is that the 

strategy before updating takes a specific operation in a specific state to the probability that 

the current strategy takes the same operation in the same state. The ratio is between 1 ε  

and 1 ε  according to the range of the super parameter ε . Therefore, there is a great 

change between the previous strategy and the current strategy. The PPO loss iteration is 

shown in Figure 4. 
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Figure 4. Loss function structure of PPO algorithm. 

4. Neural Network Design and Reward Function 

4.1. Network Construction and Input and Output Information 

State information is input by the actor network and critic network in the PPO algo-

rithm. Two-dimensional plane coordinates of the ship (
px , 

py ); rudder angle and rudder 

angular velocity of the operating system ( δ , 1δ ); and 24 laser radar vector lines 

1 2 3 24( , , )χ χ χ χ  were used as the state information of the environment. 

To avoid collisions with other ships, the navigator should adjust the direction of their 

own ship to ensure the navigation safety of ships in designated waters. The collision 

avoidance method of an autonomous ship can be created through a sufficient learning 

process by simulating the appropriate decision-making skills that the navigator could ac-

quire over a long period of experience [31]. In this experiment, the output data are the 

rudder angle of the SMASS. The course and path of the SMASS would be affected by the 

change of rudder angle. The altering course to port is defined as negative, and altering 

course to starboard is defined as positive. The action space of this experiment is [−45°, 

−25°, 0°, 25°, 45°]. The obstacle avoidance process of the SMASS is shown in Figure 5. 
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Figure 5. The update process of the SMASS collision avoidance algorithm. 

In this paper, the deep neural network was used to fit the policy function π . Among 

them, the actor network adopted a two-layer full connection layer with 128 neurons. The 

Relu activation function was used and the network input was state S . The obtained ex-

pectation and standard deviation were put into the Gaussian distribution, the probability 

density function was obtained using the strategy distribution, and the probability corre-
sponding to different action a  was the output. The critic network adopted two fully con-

nected layers with 128 neurons and the Relu activation function. The network input was 

state S , the output of the actor selected action score. The PPO algorithm and environ-

ment interaction process are shown in Figure 6. 

 

Figure 6. Flow chart of the PPO algorithm and environment interaction. Input is state vector S , 

output is ship steering angle δ . Both critic network and actor network are connected by a linear 

layer with 128 neurons using the Relu activation function. 

The probability obtained by the previous strategy was optimized with other relevant 

parameters, and the difference in the _new Actor  network was obtained. The obtained 

difference was put into the _new Actor , so that the strategy of the global network is new, 

and the strategy of the regional network is old. The critic network output is the value V , 

using discount reward, value subtraction, and generalized advantage estimate 
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optimization to obtain the advantage function. Then, the gradient descent algorithm was 

used to calculate the error and update the network parameters. The proportion of the cur-

rent and previous strategies was multiplied by the advantage function. One part was di-

rectly multiplied, and the other part was multiplied after 1 ε  and 1 ε , according to 

the range of the super parameter ε . The minimum value of the two was taken, and then 

the error was calculated. 

To break the correlation of data and ensure the convergence of policy functions, an 

empirical playback memory can be set to store the historical motion state. Under each time 
step t , the intelligent ship entered a new state after interacting with the environment, and 

the updated state was put into the memory. In the process of the neural network training, 

a small batch of state samples were extracted from the memory to ensure the stability of 

the training. 

4.2. Reward Function 

According to the task of SMASS path planning and obstacle avoidance, the reward 

function was set to the following five parts: goal approach reward, yaw angle reward, 

target point reward, obstacle avoidance reward, and COLREGs reward as shown in the 

Figure 7. 
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Figure 7. Calculation process of the reward function. 

(1) Goal approach reward 

The primary task to solve the intelligent SMASS path planning was to make the 

SMASS reach the target position. The goal approach reward value was set as follows: 

2 2_ ( ) (y )g p g p gR d λ x x y  (19) 

where 
px  and 

py  are the coordinates of the current position of the ship, 
gx  and

gy  

are the coordinates of the target point, and 
gλ  is the weight of the target proximity re-

ward. 

(2) Yaw angle reward 

When the SMASS is planning the path, the heading angle should be taken as an im-

portant indicator. As shown in Figure 8, the connection between the current position of 

the ship and the position of the target point should be regarded as the shortest distance, 

and the SMASS motion direction should be along this direction as far as possible. The Yaw 

angle reward function is set as follows: 

2 2 2( ) ( ) (y )
_ 2 p g p gεyaw x x y

aR yaw tr λ
 

(20) 

where yaw  is the yaw angle between the SMASS and the target point; tr  is the reward 

coefficient of the yaw angle, which indicates that the reward values obtained from differ-

ent angles are different; aλ  is the weight of the yaw angle reward; and  is the adjust-

ment parameter of the reward value and distance. 

 

Figure 8. Definition of heading angle error. 

(3) Target point reward 

In order to get the SMASS to the target point, it is necessary to set a reward at the 

target point position. At the same time, the SMASS should also receive a negative reward 

when it collides with obstacles during navigation. The reward value is set as follows: 

500
_

2000

collision
R g

goal
 (21) 

(4) Obstacle avoidance reward 
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The laser radar detection range of the SMASS is a circle, launching 24 detection lines 

from the center of the circle; _R radar  is the radar radius, and the reward is 0 when the 

static obstacle is outside the radar radius. As shown in Figure 9, 1S  is set as the safe dis-

tance between the SMASS and the obstacle. When the distance between the SMASS and 

the obstacle is less than 1S , a negative reward will be obtained. The reward value is set as 

follows: 

1

1

0 _

_ 5 _ ,

1 _ ,

ob R radar

R ob ob R radar ob S

ob R radar ob S

 (22) 

 

Figure 9. The process of obstacle detection by SMASS laser radar. 

(5) COLREGs reward 

In order to make the trained SMASS behavior satisfy COLREGs, a COLREGs reward 

function was introduced. The distance between SMASS and the target point was designed 

in the COLREGs reward. 

While SMASS needs to keep heading, the rudder angle should be 0. In addition, when 

SMASS needs to avoid obstacles or target ships, she should alter her course to starboard. 

These are defined as satisfying COLREGs. Otherwise, SMASS should alter her course to 

port or hold heading after encountering obstacles or target ships, which is considered to 

be a violation of COLREGs. When the SMASS operations comply with COLREGs, the 

SMASS would obtain positive rewards. However, when SMASS violates COLREGs, it will 

be punished. Hence, the reward function can be set as follows: 

2 2

0 ,
_

( ) (y ) .c p g p g

contrary to COLREGs
R c

λ x x y else
 (23) 

where c  is the weight of the COLREGs reward function. 

Therefore, the calculation process of the total reward function is shown in Figure 7 

and is expressed as follows: 

_ _ _ _ _R R d R yaw R g R ob R c  (24) 
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5. Simulation 

5.1. Design of Simulation 

The training environment is necessary for the intelligent SMASS deep reinforcement 

learning. A designed unmanned ship training environment can quickly test algorithms 

[32]. Hence, multiple simulation scenarios were set up to train mobile SMASS for path 

planning. Based on the improved PPO algorithm proposed above and the construction of 

the neural network framework, the neural network was trained. The computer configura-

tion was as follows: Intel Core i9-11900K, NVIDIA GTX3090, 24 G video memory, 32 G 

main memory, and 512 G SSD storage. Gazebo and VScode were used for joint simulation 

and established a three-dimensional navigation environment in Gazebo to simulate dif-

ferent waters and build a SMASS model, as shown in Figure 10. 

 

Figure 10. Ship model built in Gazebo simulation environment. 

Some restrictions were attached to the SMASS model. SMASS cannot slow down her 

speed and can only alert her course during the voyage. The SMASS inertia was appropri-

ately increased to simulate the real motion state of the SMASS. In the SMASS steering 

phase, with the increase of the rudder angle, the rudder transverse force and rudder force 

turn the SMASS moment. In the transition stage, the transverse velocity and angular ve-

locity were generated under the action of transverse force and rudder force transfer 

torque, and the increasingly obvious oblique shipping motion made the ship enter the 

accelerated rotation state. When the SMASS moved in a fixed-length cycle, the steering 

force transfer torque, drift angle hydrodynamic transfer torque, and resistance transfer 

torque were balanced. The acceleration of the rotational angular is zero, and the rotational 

angular velocity was the largest and most stable at this value. This experiment assumed 

that the SMASS navigated in still water. 

5.2. Network Training Process 

Experimental parameter settings are shown in Table 1. The Gazebo environment plat-

form module is responsible for generating a navigation environment and simulating 

SMASS simulation. The environment module could generate and calculate SMASS posi-

tion and SMASS movement information. When the SMASS reached the target, the training 

task was over, and entered the next training. When the SMASS encountered obstacles, it 

stopped training immediately and was placed in the initial position for the next training. 
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The SMASS obstacle avoidance decision training process was divided into two environ-

ments, environment one (Env1) and environment two (Env2). 

Table 1. Experiment parameter information table. 

Experimental Parameters Symbol Value 

Discounted rate γ  0.95 

Lambda λ  0.99 

Clipping hyperparameter ε  0.20 

Target reward weight gλ  10.0 

Reward coefficient tr  1.00 

Yaw angle reward weight aλ  0.30 

COLREGs reward weight c  1.20 

Safe distance 1S  0.50 

Radar radius _R radar  4.50 

In the experiment, the initial position of the SMASS in the simulation environment 

was (0,0). There were six static obstacles in the simulation environment, and the coordi-

nates of these six static obstacles were (0.46, 1.78), (−0.57, −1.75), (1.68, 3.78), (0.62, −4.44), 

(0.13, 6.08), and (−1.15, −6.18). There were two target points, and the coordinates were 

(1.00, −7.00) and (2.00, 7.00), as shown in Figure 11. In the early stage of environmental 

interaction, ships extremely lacked driving experience and collision avoidance experience. 

The trained SMASS could not navigate towards the target and avoid a collision. 

 

Figure 11. Gazebo simulation environment (Env1). From right to left are six obstacles (ob1, ob2, ob3, 

ob4, 0b5, and ob6), the blue part is the laser radar range, and the blue line is the laser radar detection 

line. The left purple box is the target point. 

After 1000 training times, SMASS could avoid obstacle 1 and obstacle 2. When the 

SMASS sailed on the port side of obstacle 2, the course remained unchanged. When en-

countering obstacle 2, the SMASS took two consecutive port alters of 25° and moved to-

wards the upper right under obstacle 2. When it was 0.6 miles from obstacle 1, her course 

to port was altered to 45°, along with obstacle 1 upward obliquely. The SMASS continu-

ously steered port and starboard and changed course during movement, but the SMASS 

could not reach the target point and collided with the environmental framework during 

the wandering process. SMASS collision avoidance obstacles 1, 2, and 3 are shown in Fig-

ure 12. 
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Figure 12. The processes of SMASS avoiding obstacle in Env1 after 1200 training times. Subfigures 

(a–c) show the process of SMASS avoiding ob3. Subfigures (d–f) show the process of SMASS 

avoiding ob2. Subfigures (g,h) show the process of SMASS avoiding ob1. 

After training about 1200 times, the SMASS successfully reached the first target point. 

Subsequently, the SMASS continuously altered her course to port 45° and sailed to the 

target point 2. When the SMASS passed under obstacle 3 and navigated towards obstacle 

4, her course was altered to starboard 25°, then port and starboard rudder were altered 

continuously to ensure heading stability. 

After training 1500 times, the SMASS could maintain her course and sail to the target 

point. The SMASS first altered her course to port 25° close to the upper starboard of ob-

stacle 6, and then turned starboard by 25° twice in succession, passing over Obstacle 6, 

successfully reaching the target point 2. The collision avoidance process is shown in Fig-

ure 13. In training environment one, the SMASS successfully avoided six obstacles. In the 

process of SMASS obstacle avoidance, the change curve of the SMASS steering angle with 

time is shown in Figure 14. 

 

Figure 13. The processes of SMASS avoiding obstacle in Env1 after 1500 training times. Subfigures 

(a–c) show the process of SMASS avoiding ob4. Subfigures (d–f) show the process of SMASS 

avoiding ob5. Subfigures (g,h) show the process of SMASS avoiding ob6. 
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Figure 14. Rudder angle changes of the SMASS sailing in environment 1. 

There were five obstacles in the second simulation environment, and the coordinates 

of these five obstacles were (−1.7,3.2), (−1.6, −0.5), (2.7, −2.0), (5.4, −1.6), and (−3.8, 1.6). The 

coordinates of the two target points were (6.0, −3.0) and (−4.5, 3.0), as shown in Figure 15. 
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Figure 15. Gazebo simulation environment (Env2). From up to down, there are five obstacles (ob1, 

ob2, ob3, ob4, and ob5); the blue part is the laser radar range, and the blue line is the laser radar 

detection line. The purple box is the target point. 

After training about 1200 times, the SMASS frequently operated the rudder and 

reached the first target point. In the process of sailing to the second target point, the 

SMASS chose to sail around obstacle 1 from above, as shown in Figure 16b. After reaching 

the target point, the SMASS chose to alter course to port 45° to sail a distance on the left 

upper side, and then frequently operated the rudder. When the SMASS reached the top 

left of obstacle 1, the SMASS chose to alter the course to port 45° to drive down. 

 

Figure 16. SMASS avoids Obstacle 1 in Env 2. Figure (a) shows the obstacle avoidance process of 

the ship after 1400 training times. Figure (b) shows the obstacle avoidance process of the ship after 

1200 training times. 

After training 1400 times, the SMASS almost did not collide with five obstacles or 

enter the minimum distance 1S  between the SMASS and the static obstacle. The reward 

value obtained by the SMASS crossing between obstacle 1 and obstacle 2 was greater than 

that obtained by the SMASS bypassing above obstacle 1. As shown in Figure 16a, when 

the distance between the SMASS and obstacle 1 was greater than 0.5 miles, the SMASS 

altered her course to starboard 25°. When the SMASS was 0.4 miles away from obstacle 2, 

the SMASS chose to alter her course to starboard 25° and moved forward 0.5 miles. Sub-

sequently, the SMASS altered her course to port and avoided obstacle 2. At the same time, 

when the SMASS arrived at target 2 and got ready to return to target 1, the reward value 

obtained by the SMASS passing through the left side of obstacle 5 was larger than that 

passing through the right side. After passing obstacle 5, the SMASS chose to alter her 
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course to port by 25°. The SMASS altered her course to starboard 45° after passing through 

obstacle 5. The process of SMASS obstacle avoidance is shown in Figure 17. In the process 

of SMASS obstacle avoidance, the change of the SMASS steering angle is shown in Figure 

18. 

 

Figure 17. The processes of SMASS avoiding obstacle in Env2. Subfigures (a–c) show the process 

of SMASS avoiding ob1 and ob2. Subfigures (d–f) show the process of SMASS avoiding ob3. Sub-

figures (g,h) show the process of SMASS avoiding ob4 and ob5. 

 

Figure 18. Rudder angle changes of the SMASS sailing in environment 2. 
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5.3. Comparison Experiment 

To verify the effectiveness of the improved PPO algorithm, this paper compared the 

improved PPO algorithm with the other classic strategy-based reinforcement learning al-

gorithms (such as the AC algorithm, DDPG algorithm, and traditional PPO algorithm). 

As shown in Figure 19, after training 20,000 times, the actor-network in the AC algorithm 

converged after training 11,000 times, and the critic network converged after training 

10,000 times. The results showed that the convergence rate of the AC algorithm was not 

satisfied, and the loss value was high. While the DDPG algorithm converged after about 

training 10,000 times, the algorithm still had the problem of high loss value. When solving 

SMASS decision-making problems, the traditional PPO algorithm converged after 8000 

training times, which was better than the AC algorithm and DDPG algorithm. However, 

the improved PPO algorithm converged after 6000 training times; the convergence rate 

was significantly better than the traditional PPO algorithm, and the loss was greatly im-

proved. Hence, it can be found that the convergence rate of the improved PPO algorithm 

could increase by about 25% compared to the traditional PPO algorithm. Compared with 

the traditional DDPG and AC algorithms, the convergence rate of the improved PPO al-

gorithm could increase by about 50%. 
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Figure 19. The comparative experiment of the convergence curve. 

The Generalized Advantage Estimation Algorithm directly affects the convergence 

speed and convergence quality of the PPO algorithm. In this experiment, four groups of 

comparison experiments were conducted to prove the influence of differences in the gen-

eralized advantage estimation on the PPO algorithm. Taking the training environment as 

an example, four λ  values were selected for comparative experiments, which were 0.8, 

0.9, 0.95, and 0.99, respectively. 

The convergence of actor and critic networks when λ  was 0.8 is shown in Figures 

20 and 21. The convergence of the actor network was not obvious, and the critic network 

was not converged obviously after 24,000 training sessions. 
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Figure 20. The loss function value change with episodes of actor network when λ  was 0.8. 

 

Figure 21. The loss function value change with episodes of critic network when λ  was 0.8. 

The convergence of actor and critic networks when λ  was 0.9 is shown in Figures 

22 and 23. Compared with the actor network convergence curve when λ  was 0.8, the 

actor network convergence was better, but the critic network still did not converge after 

22,000 training sessions. 

 

Figure 22. The loss function value change with episodes of actor network when λ  was 0.9. 
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Figure 23. The loss function value change with episodes of critic network when λ  was 0.9. 

The convergence of actor and critic networks when λ  was 0.95 is shown in Figures 

24 and 25. The convergence rate of the actor network was faster than when λ  was 0.9 in 

the early convergence effect, and the overall convergence trend was shown. In addition, 

the convergence effect of the critic network was significantly better than when λ  was 0.9. 

 

Figure 24. The loss function value change with episodes of actor network when λ  was 0.95. 

 

Figure 25. The loss function value change with episodes of critic network when λ  was 0.95. 

The convergence of actor and critic networks when λ   was 0.99 is shown in Figures 

26 and 27. The convergence rate of the actor network was much faster than that of the 

curve when λ  was 0.95. In addition, when λ  was 0.99, the convergence quality and sta-

bility of the actor network and critic network were better than the curve when λ  was 

0.95. 
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Figure 26. The loss function value change with episodes of actor network when λ  was 0.99. 

 

Figure 27. The loss function value change with episodes of critic network when λ  was 0.99. 

5.4. Verification Simulation 

Generalizability refers to the ability of trained models to apply to new data and make 

accurate predictions. When the training is insufficient, the fitting ability of the decision-

making system is not obvious. The disturbance of training data is insufficient to make the 

decision-making system change significantly. With the increase of training times, the fit-

ting ability of the decision-making system is gradually enhanced. The disturbance can be 

detected by the decision-making system. A model is often trained too well on training 

data, that is, overfitting, so that it cannot be generalized. In order to prove the generaliza-

tion of the proposed SMASS intelligent obstacle avoidance model in this paper, several 

different simulation environments were constructed to verify the generalizability of the 

trained SMASS obstacle avoidance network. 

The eight representative simulation environments were extracted and displayed as 

shown in Figure 28. The initial and end positions of each environment were shown in 

Table 2. There were five obstacles in environment 3. Environments 4, 5, and 6 were used 

to simulate the navigation of SMASS in relatively narrow waters. The number of obstacles 

in environment 7 was not too much, but the environment was more complex. There were 

only two obstacles in environment 8, but the navigable waters were very narrow to simu-

late the SMASS obstacle avoidance in narrow waters. Environment 9 was relatively open, 

but there were multiple obstacles located along a line. The environment was used to test 

whether the SMASS could find the optimal path when there were multiple obstacles in 

the environment. In environment 10, the navigation area with more obstacles was very 

narrow, which could be used to simulate the SMASS complex obstacle avoidance naviga-

tion in complex narrow waters. In each environment, the collision avoidance processes 

from the starting position to the end position were described by six graphs (as shown in 
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Figures 29 and 30). Moreover, the SMASS steering rudder angle of collision avoidance 

processes in each environment are shown in Figures 31–33. 

 

Figure 28. Experimental environment to verify the universality of the SMASS decision-making net-

work. 

Table 2. Training environment and verification environment target point coordinates. 

Gazebo Environment Initial Position End Position 

Env 1(Train) (1.0, −7.0) (2.0, 7.0) 

Env 2(Train) (6.0, −3.0) (−4.5, 3.0) 

Env 3(Verification) (5.0, 2.0) (−4.0, 1.0) 

Env 4(Verification) (5.0, −1.0) (−5.0, 1.0) 

Env 5(Verification) (1.0, 5.0) (1.0, −5.0) 

Env 6(Verification) (1.0, 4.0) (2.0, −5.0) 

Env 7(Verification) (3.0, 2.0) (−1.0, −4.0) 

Env 8(Verification) (−3.0, 1.0) (4.0, −1.0) 

Env 9(Verification) (0.0, 7.0) (1.0, −6.0) 

Env 10(Verification) (9.0, −4.0) (−9.0, 3.0) 
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Figure 29. Obstacle avoidance process from environment 3 to environment 6. The SMASS collision 

avoidance process of each environment is shown by six subgraphs from a to f. 

 

Figure 30. Obstacle avoidance process from environment 7 to environment 10. The SMASS colli-

sion avoidance process of each environment is shown by six subgraphs from a to f. 
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Figure 31. Rudder angle changes of the SMASS sailing in environment 3, environment 4, and envi-

ronment 5.  
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Figure 32.  Rudder angle changes of the SMASS sailing in environment 6, environment 7, and en-

vironment 8. 
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Figure 33. Rudder angle changes of the SMASS sailing in environment 9 and environment 10. 

In addition, the avoidance simulations of sailing target ships were carried out to ver-

ify the trained SMASS obstacle avoidance capability. Taking the No. 9 environment as an 

example, these sailing target ships met the trained SMASS under the different collision 

encounter situations, and the trained SMASS could avoid them accurately and safely ac-

cording to COLREGs. 

As shown in Figure 34, the left side of the figure is the sailing path of the SMASS and 

three target ships, and the right side is the SMASS avoidance process in the simulation 

environment. The first target ship (TS01) and the SMASS formed a crossing give-way sit-

uation, and the SMASS altered her course to starboard to avoid the first target ship. When 

the SMASS met the second target ship (TS02), the two ships are formed a crossing stand-

on situation. Then, the SMASS kept her course and altered starboard to avoid the second 

target ship. When the SMASS passed through the middle position, the third target ship 

(TS03) and the SMASS formed the head-on situation. Then, the SMASS altered course to 

starboard to avoid the third target ship. 
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Figure 34. Trained SMASS avoids other ships in environment 9. 

6. Conclusions 

An improved PPO algorithm for path planning and obstacle avoidance in different 

complex waters was presented in this paper. SMASS can perform complex local path plan-

ning and obstacle avoidance operations when external information is not fully accepted. 

In this experiment, five factors were considered in the design of the reward function, 

namely, the relationship between target position, angle, and distance, COLREGs, the re-

ward for safety obstacle avoidance, and whether to reach the target point. This algorithm 

also performed well in complex waters composed of different numbers of obstacles. The 

contributions of this experiment are as follows: 

• The improved PPO algorithm is superior to other traditional model-free reinforce-

ment learning algorithms based on strategy learning in solving ship decision-making 

and local path planning problems. The improved PPO algorithm has the advantages 

of fast convergence and low loss value. 

• The improved PPO algorithm has a strong self-learning ability and strong generali-

zation, which could be used to solve the SMASS local path planning and collision 

avoidance decision-making simultaneously in different complex navigation environ-

ments. 

Some works should be explored in the future. In the experiment, there are some lim-

itations in setting obstacles into cylinders and squares. Actual obstacles such as islands 

and navigable areas are not suitable to be set into base shapes. The design of complex 

obstacles is one of the directions in the future study. In addition, the rudder angle output 

in this study was the command rudder angle, which has a certain deviation from the exe-

cution rudder angle. This is also an important factor to be considered in future studies. 
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