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Abstract: The safety of vehicles is one of the major goals of driving automation. The safety distance is
longer for rail vehicles such as trams because of the adherence limitations of the wheel-to-rail system.
The major issues of fixed frontal sensing are fake target detection, blind spots related to rail slopes,
curves, and random changes in the target’s illumination or reflectivity. In this experimental study,
distance measurements were performed using a scaled tram model equipped with a LiDAR sensor
with a narrow field of view, under different conditions of illumination, size, and reflectivity of the
target objects, and using different track configurations, to evaluate the effectiveness of such sensors
in collision-avoidance systems for rail applications. The experimental findings are underlining the
sensor’s sensitivity to fake targets, objects in the sensor’s blind spots, and special optical interferences,
which are important for evaluating long-range LiDAR capabilities in sensing safety distance for
vehicles. The conclusions can help developers to produce a dedicated colliding prevention system
for trams and to identify the zones with high risk in the track where additional protection methods
should be used. The LiDAR sensor must be used in conjunction with additional sensors to perform
all the security tasks of an anti-colliding system for the tram.

Keywords: automated driving; autonomous vehicles; distance sensor; LiDAR sensor; long-distance
sensor; safety distance; sensor sensitivity; tram safety

1. Introduction

The automation of vehicle driving is a major goal of future transportation systems.
One goal of driving automation is increasing traffic fluency while maintaining high safety.
Regarding safety, most of the work is performed in developing autonomous vehicles based
on several methods such as supervising the surrounding area for detection of imminent
collision [1], precise location on map to define optimal route [2], automated interaction
between cars for route optimization, and for automated braking system using time-to-
contact detection [3].

Supervising the area is performed using optical means such as LiDAR and cameras. A
LiDAR sensor has two main components: a light emitting circuit (infrared, LED or laser)
and a receiver circuit [4].

Trams are special vehicles, and they can use some of the findings from autonomous
drive and adopt some similar solutions for improved safety [5]. On-line GPS localization
can impose some speed limitations based on the digital map information stored on board
the vehicle [6,7]. Automated interaction between trams and signalization/traffic control
signs is already implemented [8].

However, the sensing distance is below 30 m [9] as the braking system of the rubber
wheels is more efficient than the wheel-rail systems of the tram.
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The braking distance is longer for rail vehicles [10], and the maximum speed is limited
to below 30 km/h in the mixed auto and rail traffic lines [11]. In the independent lines, the
trams can be operated at speeds of 50 km/h or more, and the braking distance can be more
than 90 m in several malfunction situations [12]. If the speed is 70 km/h, the safety distance
is over 120 m [12]. In the special situation of the tram’s long braking distances, some
precautions must be taken, such as the GPS map matching for active speed limitations [13]
and implementation of long-range sensing for the automated braking system [14].

In railway applications, such as trams, onboard LiDAR sensors are used to determine
the speed and the rail track quality, while safety measures are performed independently on
ground equipment that advises the pilot about hindrances and prevents head-on, rear-end,
and side-on collisions [15].

Similar work [16] was started by Siemens and presented an autonomous tram on the
lines of Potsdam during Innotrans 2018, a prototype containing “multiple LiDAR, radar and
camera sensors” [17], from which we can notice the wide-range LiDAR. Even if the tram is
fully automated, a driver is still required to intervene when required. Two years later the
system was commercially presented during a delivery announcement for Dusseldorf, in
which they were presenting only cameras and radar [18]. Nowadays, they include in their
communication an improved solution named “Collision Warning Assistant for Mainline”
which can prevent accidents of the trams at speeds up to 45 km/h. Their presentation
contains a LiDAR device able to perform detection of obstacles up to 600 m away. The
research was performed on ICE trains and will be soon applied to trams, according to [19].

Alstom systems are described better in international patents and commercial presen-
tations. A collision prevention system for trams is the hybrid solution presented in the
patent [20], consisting of a fixed sensor system providing collision prediction to an onboard
detection system that can control the automated braking system of the tram. This system
was developed for the safety of the trams in the danger area of major crossroads where a
full onboard system has bad visibility of the lateral roads. Patent [21] presents a long-range
LiDAR sensor, without any description of the type, FoV, or range, focusing especially on
the software of the automated signaling and braking of the tram. In the patent [22], there is
a method for measuring the maximum range of the LiDAR sensors. Another patent [23]
comprises four frontal sensors connected to a powerful computing unit that is performing
three safety zones for the tram, using the actual speed of the tram. The sensors are not
clearly defined, as they can be a selection of radar, camera, or LiDAR. Hence, the FoV of
those sensors must be between 120◦ and 180◦, specific for short-range sensors.

Alstom starts in 2017 with the autonomous stabling of a tram in the RATP depot,
using LiDAR sensors, with excellent results. The project [24] is using also the wide FoV
short-range LiDAR for low-speed automatic parking of the trams in the depot.

There are collision avoidance systems implemented in high-priced trams from Alstom
and from Bombardier, such as ODAS [25] and COMPAS from AIT and MS, based on 3D
cameras. The systems operate starting at 29.7 m from the obstacle.

In a commercial presentation of the Russian company Yandex [26], we can see that
they are preparing a special LiDAR device able to adjust its scanning pattern to detect
objects at 200 m distance; this device can be used for a prototype of a driverless tram in
2023 [27].

Another tram prototype was tested in Florence, implementing the safety system
developed by Thales, and comprising multiple LiDAR, radar, cameras, and map localization
techniques [28], with the goals of developing an integrated software architecture and testing
the obstacle detection and avoidance functionality of ADAS (advanced driver assistance
systems).

No academic references were found describing the application of long-range and
narrow-FoV LiDAR for trams capable of detecting obstacles up to at least 90 m.

The Introduction section is presenting some of the most important papers regarding
the LiDAR usage in the vehicular sensing, the Materials and Methods section is presenting
the experimental model and the track and target configurations used for testing the issues.
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The Results section is presenting the measured data, which is analyzed in the Discussion
section and leading to the findings presented in the Conclusion section.

2. Materials and Methods

The novelty of the research is to show how an onboard detection system that contains
a single long-range LiDAR sensor behaves under certain track configurations. Our study
was intended to show the limitations that this kind of long-range sensor has and evaluate
if such a sensor can be used in an onboard tram safety system, in conjunction with several
wide FoV sensors for low-speed operation.

The laboratory measurements we made were static, with the model standing still;
however, the sensor and necessary electronics will be onboard a tram while it operates
normally. We intend for the system to be used as a warning (stand-alone or redundant)
solution for trams that operate on tracks without any kind of signaling system.

2.1. Description of Experimental Indoor Model

The experimental model was designed, executed, and tested by our team, with the
goal of indoor-testing several types of long-range and narrow-field-of-view LiDAR sensors.
Because we want to develop a special device for enhancing the safety of the trams, we
started with a scaled train set class G (scale 1:22.5), as presented in Figure 1.
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Figure 1. Scaled tram model for indoor testing of long-range LiDAR.

The basic diagram of the model is presented in Figure 2. A battery is used to power
both a V3-Lite LiDAR sensor and an Atmega2560 microprocessor board that reads the
information from the sensor via an I2C communication protocol.
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The information from the microprocessor is then transmitted along a USB cable to
a local PC for displaying and graphing the received data. Two values are read from the
sensor, the measured distance d in centimeters and the signal strength Ss, which is a sensor
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internal value that has no units and is proportional to the amount of reflected light back to
the sensor.

2.1.1. Distance Detection Principle Using LiDAR

The measuring principle of the LiDAR is the ToF measuring because, knowing the ToF,
one computes the distance between the sensor and the target using the equation:

d = tToF·c/2 (1)

where d is the distance between the target and the LiDAR sensor, tToF is the time of flight,
and c is the speed of light.

2.1.2. Long-Range and Narrow-Field-of-View LiDAR Sensor

For a LiDAR sensor to be able to detect objects placed at a 100 m distance, two improve-
ments must be made: the powerful emitter diode must be equipped with a convergent
optical lens with a high focal length and the sensitive receiver must have a divergent
optical lens.

Furthermore, to improve the sensitivity, decrease the power consumption, and enhance
the operational time of the sensor, some techniques of adjusting the diode’s emitted power
with the returned signal’s strength are used. Therefore, for some producers, there is
available the signal strength parameter for evaluation.

In Table 1 are some LiDAR sensors we have evaluated during this project and their
main characteristics.

Table 1. Main characteristics of several narrow-field-of-view LiDAR.

Characteristic TF03 Leddar-Vu8 V4-Lite V3-Lite TFmini-S

Range [m] 180 185 10 40 12

Resolution [cm] 1 1 1 1 1

FoV [◦] 0.5 0.3 4.77 0.5 1

One can notice that the sensing area of those sensors is related to the distance between
the sensor and the targets: the narrower the field of view the smaller the sensing area and
the bigger the sensing distance. Most of the sensing areas are round, but specific sensors
have an elliptical sensing area based on their special-shaped lens, making some of the
sensors recommended for applications requiring more horizontal or vertical sensing area.

Another feature of these sensors is the return of an average value of the distance when
the target object is not completely covering the sensing area, in which case the sensor will
return a distance value that is an average of the distance to the target and the distance to
the secondary object. This measurement can be noticed as an error; it must be detected by
the software and it must be removed from the decision-making procedure. In Table 2 we
explain the diameter of the FoV spot dFOV for different distances between the sensor and
the target, as we will measure on the experimental model.

Table 2. Field of view for the TF03 LiDAR for different distances to target.

Distance [cm] 100 200 300 400

FoV [◦] 0.5 0.5 0.5 0.5

dFOV [cm] 0.87 1.75 2.62 3.5

2.1.3. Experimental Model Using LiDAR

Studying long-range LiDAR has a part that can be performed indoors, where several
tests can be easily performed by using a scaled model. Models for a tramcar, a car, a
pedestrian, and a pillar were prepared using a scale factor of 1:22.5, which is the scale of
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the model track that is being used. The sizes of the models, in terms of average height h
and width w of real objects, are given by the following equations:

h_tram = 3200/22.5 = 142 mm (2)

w_tram = 1800/22.5 = 80 mm (3)

h_car = 1600/22.5 = 71 mm (4)

w_car = 1800/22.5 = 80 mm (5)

h_person = 1700/22.5 = 76 mm (6)

w_person = 400/22.5 = 18 mm (7)

w_pillar = 300/22.5 = 13.3 mm (8)

w_parallel_line = 3200/22.5 = 142 mm (9)

These dimensions do not consider things such as external mirrors, the pantograph,
rooftop antennas, or similar irregularities in the shape of the objects.

2.2. Possible Measurement Errors Using Narrow-Field-of-View LiDAR

Because of the narrow-field-of-view angle there is a possibility of a misalignment of
the sensor with the target. In Figure 3 there are shown three possible mismatches between
the sensor’s spot (see dFOV in Table 2) and the target.
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(c) downhill.

To study these three cases, we prepared several experiments to test the limits of sensing
with long-range LiDAR.

2.2.1. Measurements in Curved Line

For these experiments, we used the tramcar target. One end of the track was kept
stationary while the other end of the track was displaced with the horizontal displacement
hd measured from the center axis of the straight track, as shown in Figure 4.
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The relation between the horizontal displacement hd and the radius of curvature of
the track is given by Equation (10):

R = d2/hd (10)

2.2.2. Slope Influence over Narrow-Field-of-View LiDAR

There are two possibilities: uphill slope and downhill slope. An important factor for
these experiments is the height of the sensor above the track. Scaled height of the sensor
axis is calculated in Equation (11).

hlidar = 1230/22.5 = 55 mm (11)

where 1230 mm is the minimum value of the height of the windshield of a tramcar.
For the uphill slope experiment, the track was prepared using progressive height

pillars to sustain the track at a certain slope (Figure 5) and we placed the tramcar target
at increasing distances until the information from the LiDAR sensor did not match the
reference distance.
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The downhill slope experiment was prepared in a similar way to the uphill experiment,
using progressive pillars and placing the sensor at the highest point of the track, on a
horizontal section of the track, as shown in Figure 6.
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This experiment is important to determine the sensing capabilities of the narrow-field-
of-view LiDAR when the tram approaches a tunnel under the level of the ground and has
low visibility, the sensor being placed beneath the windshield of the tram.

2.2.3. Fake Target Sensitivity

When using a LiDAR sensor, the provided distance information is related to the
obstacle or to the targeted tram. This subsection aims to determine whether the pedestrian,
the car, or the tram with the scaled dimensions as shown in Equations (2)–(8) are sensed
as obstacles or fake targets to determine the limitations of measuring distance with a
narrow-FoV LiDAR.

Measurements are to be made with smaller obstacles in front of the bigger obstacles,
placed in front of the sensor at specific distances (d1 and d2 from Figure 7), on the same line
(Figure 8a) or placed on a separated line (Figure 8b).
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Figure 8. Fake targets used for indoor testing of long-range LiDAR.: (a) pedestrian model and/or
car model placed between the tram equipped with sensor and the tram target; (b) pedestrian model
and/or car model placed on the lateral line from the tram equipped with sensor and the tram target.

The distances for fake target measurements are resulting from the first tests performed,
considering that the tram target should be placed at the distance where the FoV of the
sensor is similar with the target dimensions. The fake targets must be placed at random
distances between the sensor and the target.

2.2.4. Target’s Behavior under Special Light Environment

To test if the LiDAR measurement is influenced by certain light conditions a strobing
LED light was shined on the target object (tram model) while the LiDAR was measuring
the distance, as shown in Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 9. Powerful light on target object. 

3. Results 
3.1. Experimental Results for Horizontal Misalignment—Track Turning Left or Right 

The results are presented in Table 3 for left displacement and Table 4 for right dis-
placement, showing the reference distance in a straight line, d*, the displacement, hd, the 
LiDAR reported distance, d, and the signal strength Ss, as well as a graph for both left and 
right, as shown in Figure 10. 

 
Figure 10. Horizontal displacement sensing area. 

Table 3. Left horizontal displacement experimental results with tramcar target. 

d1* hd1 d1 Ss1 d2* hd2 d2 Ss2 d3* hd3 d3 Ss3 
[cm] [cm] [cm]  [cm] [cm] [cm]  [cm] [cm] [cm]  

100 

0 97 126 

200 

0 202 126 

300 

0 307 140 
1 98 126 1 202 126 1 308 140 
2 97 126 2 202 140 2 311 140 
3 103 140 3 203 140 3 329 140 
4 410 98 4 228 112 4 395 112 
5 410 98 5 415 126 5 415 140 

  

Figure 9. Powerful light on target object.



Sensors 2022, 22, 5731 8 of 15

3. Results
3.1. Experimental Results for Horizontal Misalignment—Track Turning Left or Right

The results are presented in Table 3 for left displacement and Table 4 for right displace-
ment, showing the reference distance in a straight line, d*, the displacement, hd, the LiDAR
reported distance, d, and the signal strength Ss, as well as a graph for both left and right, as
shown in Figure 10.

Table 3. Left horizontal displacement experimental results with tramcar target.

d1* hd1 d1 Ss1 d2* hd2 d2 Ss2 d3* hd3 d3 Ss3

[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

100

0 97 126

200

0 202 126

300

0 307 140
1 98 126 1 202 126 1 308 140
2 97 126 2 202 140 2 311 140
3 103 140 3 203 140 3 329 140
4 410 98 4 228 112 4 395 112
5 410 98 5 415 126 5 415 140

Table 4. Right horizontal displacement experimental results with tramcar target.

d1* hd1 d1 Ss1 d2* hd2 d2 Ss2 d3* hd3 d3 Ss3

[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

100

0 97 126

200

0 202 126

300

0 307 140
1 97 126 1 202 126 1 308 140
2 98 126 2 202 126 2 308 140
3 97 126 3 202 126 3 311 140
4 96 126 4 208 126 4 331 126
5 97 126 5 348 70 5 380 112
6 415 112 6 415 140 6 406 140
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3.2. Experimental Results for Vertical Misalignment—Track Going Uphill and Downhill
3.2.1. Uphill Slope

For this experiment, we prepared the track using pillars and we placed the tramcar
target, as computed in Equations (2) and (3), at increasing distances, d*, with the result
shown in Table 5 for a tramcar target and Table 6 for a car target. Figure 11 is presenting the
measured value versus the target’s frontal displacement when the target is moved uphill.
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Those measurements are influenced by the height between the LiDAR sensor and the track,
as computed in Equation (8).

Table 5. Uphill vertical track experimental results with tramcar target on track.

Uphill Slope d* d Ss

[cm] [cm]

2%

100 98 126
150 150 126
200 202 140
250 257 140
300 315 140
350 350 126

4%

100 102 126
150 157 140
160 164 140
170 177 140
180 185 140
190 193 140
200 200 140
210 203 140
220 205 126
250 205 126
300 205 126

6%

90 95 140
100 102 140
110 113 140
120 125 140
130 130 140
140 130 154
150 132 154
160 133 145
200 134 145
250 135 145
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Figure 11. Distance measurement on uphill slope.

The measurements are relevant while the LiDAR measured distance is equal to the
distance between the sensor and the target. For better results we performed multiple tests
near the value where the returned distance remains unchanged, meaning that the target
is not in the FoV of the sensor, but the existing track is returning the light of the LiDAR.
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Those values are 200 cm on a 4% slope and 130 cm on a 6% slope. In Table 6, we repeated
the measurements on the uphill modeled track using the car model as a target.

Table 6. Uphill vertical track experimental results with car target on track.

Uphill Slope d* d Ss

[cm] [cm]

2%

100 98 126
150 147 140
200 203 140
250 258 140
300 312 140
350 401 140

4%

100 97 126
140 140 140
150 151 140
160 167 140
170 175 140
180 186 140
190 194 140
200 200 140
210 203 140
220 207 126

6%

90 91 126
100 103 126
110 114 140
120 125 140
130 131 140
140 133 140
150 135 140
160 134 140

The results from Tables 5 and 6 are the same because the FoV will aim at the base of
the vehicle, which is moving far and up from the fixed FoV of the LiDAR, and the height
difference between tram and car becomes irrelevant.

3.2.2. Downhill Slope

A scaled downhill track was prepared using pillars and we placed the tramcar target
at increasing distances, d, until the information from the LiDAR sensor did not match the
reference distance d*, with the result shown in Table 7 and summarized in Figure 12.
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Table 7. Downhill vertical track experimental results with tramcar target on track.

Downhill Slope d* d Ss

[cm] [cm]

2%

100 100 126
150 150 140
200 202 140
250 258 140
300 307 140
350 355 140

4%

50 56 126
100 100 112
150 150 126
200 205 126
250 257 126
300 312 140

6%

50 55 126
100 100 112
150 150 126
200 220 126
250 360 98
300 370 98

The errors appear at 200 cm for the 2% slope, at 300 cm for the 4% slope, and 150 cm
for the 6% slope; the sensed distance being the one to the wall, the target is no longer in the
FoV of the sensor. The sensibility of the sensor is decreased because the sensor is placed at
55 mm above the track. The car target was not sensed by the LiDAR at any distance in the
downhill experiment.

3.3. Experiments Using Fake Targets

This experiment presented in Figure 8a involves placing two different targets on the
track at different distances, d1, and d2 (as in Figure 7), from the sensor and observing the
measurement, d, reported by the sensor to see how the targets influence the reading. Results
are shown in Table 8.

Table 8. Different objects in the sensor field of view experimental results.

Targets d1 d2 d Ss

[cm] [cm] [cm]

Tram and car 300 200 212 140

Tram and car 300 100 100 126

Tram and pedestrian 300 200 210 140

Tram and pedestrian 300 100 99 126

Car and pedestrian 300 200 210 112

Car and pedestrian 300 100 99 126

Car and pedestrian 200 100 101 126

These experiments are supporting the affirmation that the major obstacles, as the
car and the pedestrian are, will not interfere with the latter target of the tram, and the
returned values of distance will be, most of the time, the distance to the closest obstacle
from the sensor.

The experiment with fake targets on a lateral line was using distance computed from
Equation (9), placing a tram, a car, and a pedestrian on a parallel line placed at 142 mm
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distance between the axis, and a pillar of 13.3 mm placed half-way. None of these objects
were interfering with the LiDAR distance reported value.

3.4. Experimental Results in Different Lighting Conditions

For this experiment we set up the tramcar target at varying distances and use an LED
strobing light to see if the LiDAR measurement is influenced by this change in lighting
conditions. The results are shown in Table 9.

Table 9. Different lighting conditions experimental results.

d* d Ss

[cm] [cm]

100 101 126

200 202 140

300 300 140

400 402 126

The LiDAR reported value d and the signal strength Ss are not influenced by the
external light.

3.5. Experimental Results with Different Target Color

For this experiment, we used two different tramcar targets that are colored differently,
with light and dark colors. The targets were placed at different distances, dlight and ddark,
and a comparison between them is shown in Table 10.

Table 10. Different color target experimental results.

d* dlight ddark Ss

[cm] [cm] [cm]

100 97 102 126

150 148 152 126

200 200 207 126

250 255 257 140

300 307 309 140

Different colors of the target have minor influence over the measured values.

4. Discussion

The model used for this work is in accordance with the parameters of the full-scale
tram, including the FoV of the LiDAR sensor, which is identical to the one used in this
paper, the sensor height position on the tram (hlidar), the dimensions of the target tram, and
the sensing distance will be scaled respecting the selected G scale with a ratio of 1:22.5. The
distances presented in the discussion will be normal distances at 1:1 scale.

A dedicated software was developed, which reports in a simple way the distance to
the target and the strength of the signal. Unfortunately for the analyzed sensor the signal
strength is an internal value that cannot be used as additional information to differentiate
two objects at the same distance. When the measurements are returning correct values, the
signal strength has 126–140 values, while errors are accompanied by weaker signal values
of 98–112.

The tram operates with maximum speed mostly on separated and straight lines, where
the LiDAR sensor proves to be very efficient at distances up to 90 m. On a major curved line
where the target tram will be misaligned horizontally, the sensor’s small FoV will not cover
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the vehicles placed outside this detection area and additional measures must be taken into
account, such as a 30 km/h speed limiter in track curves with a radius less than 100 m. This
is a must, especially for the tram itself, to prevent derailment caused by centrifugal force.

For horizontal displacement we can note two observations. The first one is that the left
and right displacements from which the distance measurement is returning incorrect values
are not the same, especially at 22.5 m distance, because the sensor itself has a horizontal
displacement between the emitter and the receiver lens.

The second note is that, at important distances, errors appear at smaller lateral dis-
placements. One explanation is that the LiDAR spot is larger and most of the target is not
covered by the FoV, as presented in Table 2. For example, at 67.5 m distance the horizontal
displacement from which we have errors is between 0.45 m and 0.675 m, a value close to
the FoV diameter from Table 2 (2.65 cm representing 0.6 m).

If the tram is running on a track going upward (an ascending slope) the sensing
distance will be diminished because the sensor will measure the distance to the mid-range
targets or the distance to the track. From the measurements on the 4% slope the sensing
distance falls below 45 m. In this case, because the braking distance will be smaller when
braking uphill, there are no measures to be taken.

In the downhill running case, the sensor on the tram will see only close-range targets,
missing some small-size obstacles such as the cars and the pedestrian. In this case, the best
solution is to reduce speed to below 30 km/h because smaller obstacles are not detectable
before the slopes of more than 4%. Additional care must be considered when going
downhill, especially because the braking distance will be bigger.

The sensor with a small FoV will be insensitive to fake targets on parallel lines,
including cars, pedestrians, and aerial line poles.

In addition, the sensor information can be perturbed when a small-size obstacle is
placed on the same line with the target, especially because the sensor will report an average
value of the distance. The solution to avoid fake alarms from the sensor is that the signal
must be validated for a specified time (in our case 0.5 s) prior to setting the alarm on.

The mounting position of the LiDAR sensor on the tram is very important to the
sensing capabilities because, if we are placing the sensor to low, it will not cover a long
distance, especially with a slow ascending slope, as proved in Section 3.2.1. A sensor
placed higher on the tram will not be sensitive enough for medium size obstacles, such as
pedestrians or cars, as demonstrated when measuring the downhill distance to cars, which
were not sensed starting with an equivalent of 25 m real distance.

When changing the illumination of the target or the illumination of the environment
there were no important changes in the measurements of distance and only small influences
can be noticed on the signal strength, thus being a normal operation of such a sensor.

Future work is focused on tests with the already developed full-scale TRL4 experimen-
tal model of a long-range narrow-FoV distance detector, which will be tested outdoors on a
separated track. That model can be tested afterward in real traffic conditions.

For the automated braking system for the tram, a three-level braking system must be
developed, based on the LiDAR information. The three levels are, according to the ADAS
standards from the auto industry and braking standards for rail vehicles, first a warning
signal of 1.5 s maximum rolling time, followed by an automated braking with deceleration
of 1 m/s2 covering 1.5 s, and a complete emergency brake with more than 2.8 m/s2 until
complete stop. The driver can interfere with this system by moving the master controller
handle on the “Brake” section, a feature needed to avoid excessive use of the brake because
of false alarms.

5. Conclusions

A long-range LiDAR sensor with a narrow FoV is recommended to be used by the au-
tomated braking systems of trams, especially trams that must be operated with high speed
on long and separated lines. This type of LiDAR sensor is not influenced by the lighting
conditions, by the color of the target, or by the objects that are outside the detection area.
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The sensor position on the tram influences the distance measurement: the higher
position of the sensor on the tram, the longer the sensing distance, but the lower the
performance when the tram is going downhill.

The field of view and the sensing distance of the sensor are the most important
parameters taken into consideration when selecting a long-range LiDAR sensor for trams.
Based on the measurements performed and presented in this paper, we recommend a
sensor with an FoV of 0.5◦ and 90 m minimum detection range for use in an anti-colliding
system for trams. We hope that the LiDAR sensor producers will focus on such sensors that
can improve the long-range sensitivity of the ADAS systems for trams and for general-use
vehicles, as well.

Due to the limitations of the long-range LiDAR, a complete prevention system must
contain additional sensors like wide-FoV LiDAR or radar sensors for collision prevention,
backed up with cameras for obstacle and traffic sign recognition.

If possible, a secondary short-range wide-FoV LiDAR can be placed in front of the
tram, closer to the ground, to check whether there are some close-range obstacles in front
of the tram like small pedestrians or animals, fallen objects, or small objects.

A frontal camera can be used to improve the functionality of the automated brake
system, especially when used to protect against frontal colliding at high speed. A comple-
mentary safety solution is using the speed limiter of the tram, implemented based on GPS
localization of portions of the rail that represent blind spots for the LiDAR sensor.
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