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Received: 29 June 2022

Accepted: 28 July 2022

Published: 31 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Convolutional Neural Network Applied to SARS-CoV-2
Sequence Classification
Gabriel B. M. Câmara 1,2,† , Maria G. F. Coutinho 2,† , Lucileide M. D. da Silva 2,3,† ,
Walter V. do N. Gadelha 2,† , Matheus F. Torquato 2,† , Raquel de M. Barbosa 2,4,*,†

and Marcelo A. C. Fernandes 1,2,5,*,†

1 Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte,
Natal 59078-970, RN, Brazil; gmottaz@gmail.com

2 Laboratory of Machine Learning and Intelligent Instrumentation, Federal University of Rio Grande do Norte,
Natal 59078-970, RN, Brazil; gracielly@dca.ufrn.br (M.G.F.C.);
lucileide.dantas@escolar.ifrn.edu.br (L.M.D.d.S.); wgadelha@gmail.com (W.V.d.N.G.);
matheusft@dca.ufrn.br (M.F.T.)

3 Federal Institute of Education, Science and Technology of Rio Grande do Norte, Paraiso,
Santa Cruz 59200-000, RN, Brazil

4 Department of Pharmacy and Pharmaceutical Technology, University of Granada, 18071 Granada, Spain
5 Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte,

Natal 59078-970, RN, Brazil
* Correspondence: rbarbosa@ugr.es (R.d.M.B.); mfernandes@dca.ufrn.br (M.A.C.F.)
† These authors contributed equally to this work.

Abstract: COVID-19, the illness caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus belonging to the Coronaviridade family, a single-strand positive-sense RNA
genome, has been spreading around the world and has been declared a pandemic by the World
Health Organization. On 17 January 2022, there were more than 329 million cases, with more than
5.5 million deaths. Although COVID-19 has a low mortality rate, its high capacities for contamination,
spread, and mutation worry the authorities, especially after the emergence of the Omicron variant,
which has a high transmission capacity and can more easily contaminate even vaccinated people.
Such outbreaks require elucidation of the taxonomic classification and origin of the virus (SARS-CoV-
2) from the genomic sequence for strategic planning, containment, and treatment of the disease. Thus,
this work proposes a high-accuracy technique to classify viruses and other organisms from a genome
sequence using a deep learning convolutional neural network (CNN). Unlike the other literature,
the proposed approach does not limit the length of the genome sequence. The results show that
the novel proposal accurately distinguishes SARS-CoV-2 from the sequences of other viruses. The
results were obtained from 1557 instances of SARS-CoV-2 from the National Center for Biotechnology
Information (NCBI) and 14,684 different viruses from the Virus-Host DB. As a CNN has several
changeable parameters, the tests were performed with forty-eight different architectures; the best of
these had an accuracy of 91.94 ± 2.62% in classifying viruses into their realms correctly, in addition
to 100% accuracy in classifying SARS-CoV-2 into its respective realm, Riboviria. For the subsequent
classifications (family, genera, and subgenus), this accuracy increased, which shows that the proposed
architecture may be viable in the classification of the virus that causes COVID-19.

Keywords: SARS-CoV-2; COVID-19; deep learning; CNN

1. Introduction

The Coronaviridae family has been characterized as a (+) ssRNA (positive-sense single-
stranded RNA virus) and has been identified in avian and mammalian hosts (including
humans). This virus family has a genome length that ranges between 26 and 32 k base pairs
(kbp). In humans, the Coronaviridae family includes viruses such as SARS-CoV, MERS-CoV,
HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1 [1,2].
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The new virus from this family, named SARS-CoV-2, is responsible for the COVID-19
illness and was discovered in Wuhan, China [3,4]. This virus has a great affinity for the
angiotensin-converting enzyme 2 receptor [5], using it as the main site of penetration into
a host cell due to its affinity for the spike (S) protein; it is translated by at least one of
the six ORFs of the viral genome [6,7]. Genomic similarity studies show similarities with
viruses from bats, which is the probable origin of it, although other animals, such as the
pangolin, are also candidates [8,9]. Ref. [10]: such outbreaks demand elucidation of the
taxonomic classification and origin of the virus’s genomic sequence for strategic planning,
containment, and treatment.

To address the challenges associated with identifying and classifying all species, sev-
eral techniques have been proposed for the analysis and comparison of genomic sequences.
These methods are usually categorized as with or without alignment.

Classification techniques applied to viral sequences have been based on alignment
methods or algorithms, such as the Needleman–Wunsch [11], Smith–Waterman [12],
FASTA [13], BLAST [14,15], and others. These methods use different techniques, such
as dynamic programming, pairwise comparison, and heuristic methods associated with
similarity metrics between the nucleotide sequences. However, these methods have some
limitations: (1) They require some prior knowledge of the reference sequence; (2) they
admit that there is contiguity between homologous regions; (3) they are computationally
expensive for long sequences (for example, for only two sequences of length N, we have
(2N)!/(N!)2) possible gapped sequences and a time complexity of the length of the inputs
and/or their products; and (4) they are not very efficient for specimens that have a high
rate of genomic mutation, such as viruses [16–20].

In order to mitigate these limitations, new alignment-free methods (AFMs) have been
explored. Normally, the AFMs are composed of two cascaded stages called mapping
and processing, respectively. In the mapping stage, the sequence is mapped to a new
representation space, called feature space [16,17]. There are many different mapping
strategies to produce the feature space, such as word composition, entropy, signal space,
and others [21–28]. In some cases, multiple mapping strategies are applied sequentially.
The research presented in [16,17] details several of these strategies.

In the processing stage, the AFMs can use clustering or prediction techniques, depend-
ing on the application [16,17]. For the first option, the AFMs use a similarity metric to
cluster the information. Applications such as host prediction, phylogenetic tree, genotype–
phenotype association, and others can use this approach and many different similarity
metric schemes [16,17]. On the other hand, for applications such as gene interaction
prediction, protein classification, drug repositioning, genome classification, and others,
prediction techniques can be applied. The work presented in [18–20] compares multiple
AFMs’ approaches.

Several works in the literature explored the use of machine learning (ML) algorithms
and techniques in the processing stage [10,16,17,25,27–36]. It can be noted that, among
these applications, deep learning (DL) is the most frequently used approach [28,31–36].
Deep learning is part of a broader family of machine learning methods based on artificial
neural networks (NN) that are capable of identifying highly complex patterns in large
datasets [34–36].

Thus, the present work proposes a new alignment-free approach based on deep
learning to classify genomic virus sequences. In this proposal, AFM-2DkMCNN uses
the k-mers 2D image technique in the mapping stage and convolutional neural networks
(CNN) in the processing stage. The genome sequence classification has proved to be an
important approach for the identification of genomic variability, taxonomic aspects, and
disease mechanisms. Comparative genomic analyses can benefit significantly from AFM
tools based on DL as they are generic, fast, and accurate in classifying newly sequenced
strains from several virus families [25,30,33].

Previous works [37–41] have proposed genome classification strategies that use
alignment-free methods with a CNN in the processing stage. The research presented
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in [37] shows a deep learning neural network for DNA sequence classification. The pro-
posals presented in [37] used a spectral sequence representation (k-mers representation) in
the mapping stage and LeNet-5 CNN in the processing stage. It was tested with 16S rRNA
sequences, and the performances (in terms of accuracy and the F1 score) were compared
to other machine learning techniques, such as regression neural network, naive Bayes,
random forest, and support vector machine classifiers. In this work, the input sequence
size was limited to 1200 bp. A DL applied to DNA classification was also proposed in [38].
In this work, the authors used a one-hot vector representation of DNA sequence in the
mapping stage and a CNN for processing. The proposal was limited to sequences with a
maximum length of 500 bp.

In [39], a deep learning-based method, called the ViraMiner, was developed to identify
viruses in various human specimens. The ViraMiner uses the one-hot vector representation
and a CNN in the mapping and processing stages, respectively. The processing stage
contains two branches of a CNN designed to detect both patterns and pattern frequencies
on raw metagenomic contigs. The training dataset included sequences obtained from
19 metagenomic experiments, which were analyzed and labeled by the BLAST algorithm.
The ViraMiner works with sequences of 300 bp.

Similarly, the work presented in [40] proposed a method called DeepVirFinder. Deep-
VirFinder used the same approach as the ViraMiner, presented in [39]; however, it can work
with 300, 500, 1000, and 3000 base pairs, and it outperformed the ViraMiner in terms of
accuracy.

A deep learning genome classification strategy targeting SARS-CoV-2 was proposed
in [41]. Following a different approach from the work presented in [37–40], this research is
capable of working with 31,029 bp (maximum length of available cDNA sequences for a
coronavirus) [1]. The work presented in [41] used the direct number representation [24]
and a CNN in the mapping and processing stages, respectively.

The work presented in [42] also used RNA as the input in the form of a one-hot
encoding; however, a tree-shaped model in which each step classifies the virus into a taxon
and advances it on to the subsequent taxon classification was used, and, in the end, a
genetic sequence may be even excluded as viral RNA.

The work proposed in this paper consists of a representation of the genetic code of
SARS-CoV-2 in image form, using the frequency of its k-mers, which are substrings of size
k of the genetic code. These images will be submitted to a CNN for viral classification,
mainly of SARS-CoV-2. The proposed k-mers’ images, associated with the CNN, make up
a faster alignment-free method of comparing sequences than the methods described in this
section. This approach is less susceptible to rapid evolutionary changes in the viral genome,
thereby generating more accurate and reliable results, especially in RNA viruses. On the
other hand, the k-mers’ methods are susceptible to the choice of k size, which requires
testing new imaging methods as the CNN’s input. Thus, this work brings the following
specific contributions:

• Develop and validate a new genomic viral classification based on the k-mers’ image
representation and a CNN.

• Develop an alignment-free method to classify SARS-CoV-2 sequences as viruses from
different realms, families, genera, and subgenera.

• Develop a deep learning algorithm that can efficiently classify the complete cDNA
sequences of the virus.

2. Materials and Methods
2.1. Data

The conducted experiments used a database of 1553 SARS-CoV-2 RNA samples
(Dataset1) downloaded from the National Center for Biotechnology Information (NCBI)
and 14,684 samples of other viruses downloaded from the Virus-Host DB (Dataset2). For
each experiment performed, sub-datasets were created, called Dataset(3–6). Complete
descriptions of Dataset1 and Dataset2 are in Table 1. Some of the viruses do not have a
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taxon classification, e.g., the virus with code in the Virus-Host DB of code NC_043374 has
no classification within any realms but does have classifications in the other taxa. When
this occurs, it is called unclassified and will not be considered in the analysis for that taxon.
For the subgenus taxon, almost all samples are unclassified.

Table 1. Contents of datasets used in this work.

Datasets Content Number of Classes

Dataset1 1553 samples SARS-CoV-2 species

Dataset2 14,684 samples

4 realms
95 families
1160 genera

36 subgenera

2.2. Image Representation

A representation of the viral genome was used in the form of its k-mer, which is a
substring of the genetic code in question of a size k with a maximum size of L− k+ 1, where
L is the size of the genetic sequence (about thirty thousand base pairs (bp) for SARS-CoV-2),
and nk is the possible k-mers, where k is the number of possible monomers; in this case,
they are k = 4, one for each nitrogen base of DNA. In this work, of all the k-mers chosen,
the one that presented the best result for a CNN’s accuracy was 6. The k-mer equal to k = 6
was chosen because it generates highly accurate results with a short network training time.
When the k-mers are equal to or greater than 7 have little impact on increasing the accuracy
but greatly increase the training time. This brings us to a maximum number of 64 k-mers,
which will be used throughout this work. To form the sets of images, each one represents
a virus that will be used as an input to the CNN. The frequency with which each k-mer
appears in the genetic code of a virus becomes a pixel of a 64× 64 pixel image (64 horizontal
pixels and 64 vertical pixels). Figure 1 shows four examples of image representations of
the viral genome. Each one of these images represents a specific ”fingerprint” of the
genetic code of a particular virus. As some k-mers appear with a much higher frequency
than others, which could generate large discrepancies in the images that would make
classification by a CNN difficult, a normalization of the values of each pixel was performed
by the highest k-mers’ frequency value. The result of this process can be seen in Figure 1.
The mathematical process behind this methodology was previously described by [43], and
a dataset with several examples can be found in [44].

2.3. Processing

Deep learning has proved its efficiency over fellow state-of-the-art image classification
techniques. It uses layered algorithms to perform the recognition of patterns. Its recognition
is refined through each layer, until the last one, upon which the image is finally classified.

The deep learning approach presented in this paper is based on the convolutional
neural network (CNN). The CNN is a supervised method of learning with several layers,
inspired by visual cortex biologic cells. Cortical neurons respond to stimulation only per a
region of their field of view, and then imbricate them, reaching the whole visual field [45].
Convolutional layers are the main structure of a CNN network. The layers are composed of
a set of learnable filters (or kernels). Each filter is activated to detect a specific sort of feature
in a small region of the input (or feature map). The filters’ activation maps, bundled in
depth, form the output of the convolutional layer. The outcome is crossed to the following
layer, similar to what a virtual cortex does when it receives a stimulus. In addition to the
convolutional layers, the network is also composed of a rectified linear unit (ReLU) as
the activation function, max pooling layers for size reduction, and fully connected layers
for classification.
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Figure 1. Examples of viral genomes in the form of images created by the process described in
Section 2.2: (a) Paramecium bursaria Chlorella virus (NC_043234); (b) Gordonia phage Obliviate
(NC_031237); (c) SARS-CoV-2 USA 2020 (MT251977); and (d) SARS-CoV-2 Wuhan-Hu-1 (MN908947).

The inputs of the CNN used in this paper are sets of images of 64× 64 pixels, in which
each one represents the frequency of a k-mers within the genomic sequence of a virus
(see Section 2.2). The arrangement of the following layers is shown in Figure 2. The first
convolutional layer has 32 filters with a 7× 7 filter size. The second convolutional layer
has 64 filters with a 5× 5 filter size, and the third convolutional layer has 64 filters with a
3× 3 filter size. The choices of filters and the number of layers were made based on the
training of several different architectures; the ones that are shown here obtained greater
accuracies in their training and testing with lower complexities; therefore, architectures with
filters greater than 7× 7 and 4 or more convolutional layers were not chosen because they do
not interfere with the model’s accuracy. All of these have a stride of 2 and padding to keep
the input image’s dimensions unmodified, followed by a rectified linear unit (ReLU) layer
and max pooling layer with a 2× 2 kernel. In the end, there are 2 fully connected layers: one
with 64 neurons and the other with 32 neurons. Each one has a 40% dropout (smaller values
were tested but decreased the accuracy of the model). For classification, there is a fully
connected layer with an equal number of neurons to the number of classes used in each
level of the taxonomic classification (realm, family, genus, and subgenus). For example, for
the classification of viruses in realms, there were 4 neurons in this layer, which is equivalent
to the 4 possible realms: Monodnaviria, Riboviria, Duplodnaviria, and Varidnaviria.
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Figure 2. Graphical representation of proposed convolutional neural network for virus genome classification.

The realms have the greatest differences from each other because a realm is the
broadest taxon within the viral classification; thus, it was chosen for the validation and
training of the network, as it is expected that the accuracy resulting from the experiment
with the realms does not decrease as much for the realms as for the others, which have
more similarities to one another.

Due to the large number of possible CNN architectures, forty-eight variations of
network parameters were first tested, in order to lead us to choose the one that presents
the best accuracy in classifying viruses into their correct taxa. If the accuracy values of a
given architecture are close to those of another, then the fastest and least computationally
expensive one will be preferred. The following parameters were evaluated for the CNN:
three possibilities for input normalization; zero–one input images, in which they are
normalized to the interval {0, 1}; symmetry, for which the interval is {−1, 1}; mean, in
which the average of the values is subtracted from each pixel; mini-batch size, with a
size of 64 or 128 samples; the configuration of the 2D filters of each layer with possible
configurations of 7× 7− 5× 5− 3× 3 or 5× 5− 5× 5− 3× 3; the stride of each layer
possibly being one or two; and the cross-validation used possibly being able to divide the
dataset used in 90% of the samples for training and 10% for validation (10-fold) or 80%
for training and 20% for validation (5-fold). The optimization algorithm used was the
Adam with an initial learning rate of 0.001 and a validation frequency of 8, and a maximum
number of epochs of 60 was chosen if, after it, there is no more variation in the accuracy
of the model. The CNN was trained as many times as the number of the folds used, and
the mean and standard deviation of the accuracy were calculated. Forty-eight different
architectures were tested, and the results of the mean accuracies of the validation and
standard deviation for the 5 best results are shown in Table 2.
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Table 2. CNN architectures tested in classifying the 14,684 viruses in their realms. The architecture
chosen in this experiment was used in the other experiments in this paper.

Mini-Batch Size
1st Convolu-

tional
Filter

2nd Convo-
lutional

Filter

3rd Convo-
lutional

Filter
Stride Size K-Fold Size

CNN
Accuracy

(%)

Standard
Deviation

128 7× 7 5× 5 3× 3 1 10 92.5 2.149

128 7× 7 5× 5 3× 3 2 10 92.37 2.1205

64 7× 7 5× 5 3× 3 2 10 92.1875 1.9151

128 5× 5 5× 5 3× 3 2 10 91.9375 2.3096

128 5× 5 5× 5 3× 3 2 5 91.8125 1.4218

3. Results and Discussion
3.1. CNN Architecture, Confusion Matrices, and Histograms

As seen in Table 2, the two architectures with the best validation accuracy values
had the same filter sizes in the 7× 7− 5× 5− 3× 3 option (processing area of Figure 3);
normalizations of the zero–one type input; and mini-batch sizes of 128, which represent a
speed gain compared to 64 since it takes less time to present all samples to the network. As
for cross-validation, the best results were from partitioning the group into 10-fold, which
presents a greater execution time than that of 5-fold, but does not interfere as much as stride
changes, and, therefore, the value of 10-fold was used. Finally, the stride had the best result
with the value of one, and there was little difference in the accuracy result for the value of
two; this little difference is not seen in the execution times of each test, where for stride 1,
we have 15.47± 1.56 minutes (n = 10) and, for stride 2, we have 1.45± 0.03 (n = 10) (mean
± standard deviation) minutes. To compare the two architectures, a Student’s T-test was
performed, which showed that there is no statistical difference between the two accuracy
means (p − value = 0.9457), so we proceeded with the stride value of two. The final
architecture chosen and used henceforward for the network was: an input layer with a
dimension of 64× 64 pixels and zero–one normalization; three convolutional layers with,
respectively, 32, 64, and 64 filters; and a filter size of 7× 7 , 5× 5, and 5× 5, respectively,
with an activation function of the ReLU type (Rectified Linear Unit), a dropout of two, a
stride of two, and the same padding. After the convolutional layers, we have two max
pooling layers with 64 and 32 neurons, respectively, and a 40% forgetfulness rate. Finally,
we have a fully connected layer and a softmax layer for classification. A 128-sample mini-
batch was used, with a k-fold of k = 10, a learning rate of 0.001, a validation frequency of 8,
and the Adam as the optimization algorithm. All sets were trained for 40 epochs.

DATA MAPPING PROCESSING CLASSIFICATION

virus sequence k-mers decomposi�on convolu�on layers fully connected layers output

Betacoronavirus

Alphacoronavirus

Deltacoronavirus

ATGGTATGGTAT

ATGGTA TGGTAT

ATGGTAT GGTAT

ATGGTATG GTAT

ATGGTATGG TAT

ATGGTATGGT AT

ATGGT ATGGTA T

ATGGTA TGGTAT

ATGGTA

ATGGTA

TGGTAT

TGGTAT

GGTATG

GTATGG

TATGGT

ATGGTATGG

ATTAAAGGTT

TATACCTTCC

CAGGTAACA

ACCAACCAAC

TTTCGATCTC

TTGTAGATCT

Figure 3. Overview of the proposed approach.
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After choosing the CNN’s architecture, four experiments were carried out (Exp1, Exp2,
Exp3, and Exp4), in which, respectively, the viruses were classified based on the realms,
families, genera, and subgenera to which they belong. In Exp1, all samples from Dataset2
were used for CNN training and virus classification in four realms: Duplodnaviria, Monod-
naviria, Riboviria, and Varidnvaria. In Figure 4, we have the histogram of the distribution
of the number of samples from each realm in Dataset2, which shows a large discrepancy
between the number of samples from the analyzed kingdoms: Riboviria (SARS-CoV-2
Realm) has the highest number, 7489, and Varidnvaria has the smallest, with 476 samples.

Figure 4. Number of samples in each realm and with unclassified label before treatment.

To prevent this difference from leading to overfitting of the network (in which it only
recognizes the instances with more samples), 400 viruses were randomly selected from each
realm to compose the new training dataset (Dataset3) for Exp1, thus adding 1600 samples
in total.

We can see in Figure 5 that the realm that obtained the lowest accuracy was Riboviria
(86.8%), a realm that includes RNA and some DNA viruses: double-stranded RNA (dsRNA),
positive single-stranded RNA ((+) ssRNA), negative single-stranded RNA ((−)ssRNA),
single-stranded RNA with reverse transcriptase (ss RNA-RT), and double-stranded DNA
with reverse transcriptase (dsDNA-RT) [46], which are, respectively, groups III, IV, V, VI,
and VII of the Baltimore Classification System. Each of the three other realms consists
only of viruses with a DNA genome, which may have led to the difference in classification.
Regarding the classification of SARS-CoV-2, the network achieved a perfect result with
100% accuracy, therefore correctly classifying it in its true realm, the Riboviria.
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Figure 5. Confusion matrices for Experiment1, which show results for the classification of the viruses
in their respective realms (top) and SARS-CoV-2 in the Riboviria realm (bottom).

For the classification of families within those of the Riboviria realm (Exp2), it was
necessary to choose those with more representatives in Dataset2, as the total number of
families is 95. Taking into account the number of samples from each family, we have
a median of 18 and approximately 20% of families have less than four samples (which
is the value of the first quartile), which shows that a lot of the families have only a few
samples and that families such as Reoviridae have more than 1000 samples. Because of this,
to avoid overfitting, only families with more than 100 samples were selected for training
and validation, reaching a total of 16: Betaflexiviridae, Bromoviridae, Caliciviridae, Coronaviri-
dae, Flaviviridae, Hantaviridae, Orthomyxoviridae, Partiviridae, Peribunyaviridae, Phenuviridae,
Picoraviridae, Potyviridae, Reoviridae, Retroviridae, Rhabdoviridae, and Secoviridae.

As in Exp1, to avoid overfitting, since we have families such as Reoviridae, with more
than 1000 samples, and Picornaviridae and Caliviridae, with more than 400, we randomly
chose 100 samples of each to form Dataset4, which was used for training and validation in
Exp2, totaling 1600 samples. In Figure 6, we have the confusion matrices for validation of
the network using Dataset4, and, in Figure 7, the test was completed with Dataset1.
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Figure 7. Confusion matrix for the test of the CNN for the classification of the SARS-CoV-2 in its
correct family (Coronaviridae).

Initially, we can see that the CNN correctly classified 100% of SARS-CoV-2 in its
family, Coronaviridae. For the confusion matrix, it is observed that the Reoviridae family
presented the lowest accuracy (82%). It is the dsRNA (double-stranded) family with the
largest number of genera (12) inside it and reaches a wide range of mammals, plants, birds,
reptiles, crustaceans, fish, protists, insects, plants, and fungi. Its genetic code has very
different sizes, ranging from 1200 bp to almost 4000 bp, with a constant rearrangement.
In addition to the untranslated regions of the genome, these present a great variation,
between 12 nt and 83 nt. Further, since the parts conserved between the species are close
to the 5’ and 3’ ends, they are not being conserved in other parts of the genome. All of
this information shows that the big differences within the family may explain why the
CNN had a harder time classifying it [46]. The classification within the Coronaviridae family
genera was completed in Exp3. This experiment has a much smaller number of samples,
the four genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus, and Gammacoronavirus,
in which SARS-CoV-2 is a representative of the second. Betacoronavirus has 120 samples,
and Gammacoronavirus has 10 samples, as in Figure 8. Then, as in the previous experiments,
we take 10 random samples from each of these in Dataset2 and form Dataset5, which will be
used for training and validation. The confusion matrix associated with Exp 3 is presented
in Figure 9.
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Figure 8. Histogram of sample distribution for the Exp3 before normalization.

Figure 9. Confusion matrices for validation of the CNN using the genus inside (Coronaviridae) the
family (left) and, for classification of SARS-CoV-2, in its correct genus (Betacoronavirus).

Due to the low number of samples, any classification error leads to a decrease in
the classification accuracy, which leads us to believe that, with a more robust dataset, we
would have a higher accuracy for the genus experiment. The biggest error was between
Gammacoronavirus and Betacoronavirus.

We have a problem similar to that of Exp3 when performing Exp4, which is that we
have few samples in each family. Another problem is that there are a lot of unclassified
samples within the (Betacoronavirus) subgenus, as we can see in Figure 10, which leads us
to few representative samples.

As in the other experiments, we will also normalize the number of samples by the
amount of the smallest subgenus, forming Dataset6 from Dataset 2, Norbecovirus, which
leads to eight samples in each of these for training and validation. As a result, which we
can see in Figure 11, we obtained 100% accuracy in the training and validation, except for
Merbecovirus and, for the test carried out with the SARS-CoV-2 samples, we obtained an
accuracy of 100% in its classification into its corresponding subgenus (Sarbecovirus).

In Table 3, we have the values of the average training accuracy, the average training
error, and their respective standard deviations for all the experiments performed, where we
can observe that for the experiments between kingdoms, families, and genera, the results
were quite similar, around 92%; in the case of subgenera, in which the similarity among all
viruses is higher, the result increases to 97.5%.
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Figure 10. Histogram of sample distribution inside the Betacoronavirus subgenus. The number of
samples without classification (Unclassified) is more than 15,000 times bigger than the ones with a
defined subgenus.
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Figure 11. Confusion matrices for CNN validation using the subgenus samples within the Beta-
coronavirus genus (top) and, for SARS-CoV-2 classification, in its correct subgenus, Sarbecovirus
(bottom).

Table 3. Validation accuracy and validation error results for the 4 experiments performed.

Experiment Validation Accuracy
(Mean ± Standard Deviation)

Validation Error
(Mean ± Standard Deviation)

Exp1 91.94± 2.62 0.40± 0.20

Exp2 92.00± 2.26 0.31± 0.14

Exp3 92.70± 2.78 0.21± 0.09

Exp4 92.50± 7.90 0.09± 0.19
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3.2. Related Works Comparison

The most recent works to have used deep learning in viral classification are divided
into two types of metrics used to verify their results. These works, presented in [41,42,47],
use the model’s accuracy as the model proposed in this work and [39,40] use the area under
the receiver operating characteristics (AUROC) curve.

Regarding the works associated with accuracy metric, in [47], a CNN was used to
classify viruses, such as Influenza, Dengue, HIV, and Hepatitis, with an accuracy of at least
98%, reaching 100% for the Dengue virus. On the other hand, the work presented in [47]
uses the complete sequence (without mapping) as the CNN input, and this constraint
forces the creation of several different models for different viral families and considerably
increases the computational effort in the first layers. Using the tree-shaped model, with a
CNN responsible for classifying the viral RNA [42], they tried to classify the genome into
orders, families, and genera. In addition, the RNA could be classified as non-viral. For the
genera and families, they obtained 86% and 79% accuracy. In the scheme proposed in this
work, the classification accuracies in families and genera were more significant than 92%,
demonstrating a better capacity for viral classification. Using the complete viral genome
and a convolutional three-layer CNN [41] achieved over 96% accuracy, which is an excellent
result, but their dataset contains around 400 samples, of which only 50 are SARS-CoV-2, a
deficient number, which can lead to generalization problems across the model.

Regarding the works that use AUROC as a metric, ref. [39] uses a CNN that receives
a metagenomic dataset as the input and achieved an AUROC of 0.923, but this value
decreased to approximately 0.75 when randomly generated virus sequences that were not
used in training were used as test set; this can be a sign of a generalization problem. Finally,
the additional utilization of metagenomics data, especially from prokaryotes, ref. [40]
reached an AUROC of 0.966, which leads to a result superior to that of [39]. However,
taking into account that the maximum size of the sequences used in this work was 3000 bp,
this may be a problem because a virus such as SARS-CoV-2, one of the most targeted at the
moment for studies, has approximately 30 kbp.

The CNN proposed in this work achieved accuracies similar to or greater than those
of the works mentioned above. In addition to having a good result in classifying SARS-
CoV-2 into its respective taxon and using the complete viral genome as the input in an
image format, the genome size does not affect the computational cost of training. Table 4
summarizes the related comparison between more recent works involving deep learning
and viral classification.

Table 4. Comparison between more recent works involving deep learning and viral classification.

Reference
Maximum Dataset Size Number of

Accuracy AUROCSequence (Numbers of Convolutional
Size (bp) Sequences) Layers

Fabijańska and 24,751 665,353 5 97.7–100% –Grabowski (2019) [47]
Ren et al., (2020) [40] 3000 1,735,440 1 – 0.966Tampuue et al.,

(2019) [39] 300 – 2 – 0.923
Lopez-Rincon et al.,

(2020) [41] 31,029 553 3 96% –
Shang and Sun

(2020) [42] 250 438,072 4 79–96% -

This work 2,473,870 146,84 3 91.94% –

4. Conclusions

The convolutional neural network proved to be an effective way to correctly classify
viruses, especially SARS-CoV-2, into their realms, families, genera, and subgenera. Despite
the promising results (above a 92% accuracy for the general classification and 100% for the
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new coronavirus) that prove this model to have a similar or greater accuracy to other works
and a good generalization capacity, we believe that new modes of an image representation
of the viral genetic code may help increase these values; this is the future path of the
proposed work.
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