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Abstract: With the development of the information age, the importance of edge computing has
been highlighted in industrial site monitoring, health management, and fault diagnosis. Among
them, the processing and computing of signals in edge scenarios is the cornerstone of realizing these
scenarios. While the performance of edge devices has been dramatically improved, the demand for
signal processing in the edge side has also ushered in explosive growth. However, the deployment
of traditional serial or parallel signal processing architectures on edge devices has problems such
as poor flexibility, low efficiency, and low resource utilization, making edge devices unable to exert
their maximum performance. Therefore, this paper proposes a resource-saving customizable pipeline
network architecture with a space-optimized resource allocation method and a coordinate addressing
method for irregular topology. This architecture significantly improves the flexibility of multi-signal
processing in edge devices, improves resource utilization, and further increases the performance
potential of edge devices. Finally, we designed a comparative experiment to prove that the resource-
saving and customizable pipeline network architecture can significantly reduce resource consumption
under the premise of meeting real-time processing requirements.

Keywords: edge computing; signal processing; pipeline network architecture; FPGA

1. Introduction

Edge computing refers to the provision of computing processing services on the side
close to the source of objects or data [1,2]. Thanks to the low power consumption, small size,
and high performance of edge devices, edge computing is being widely used in various
fields, such as signal denoising [3], frequency domain analysis [4], industrial field condition
monitoring [5,6], fault diagnosis [7,8], health management [9,10], feature extraction [11],
signal solving [12], etc. Among them, the processing and computing of signals in edge
scenes is the key to realize the functions of these scenes. According to the results of signal
processing and computing, the edge device returns the result to the control terminal or
performs corresponding actions to realize edge intelligence. With the rapid growth of the
demand for edge computing, the number and types of signals to be processed have further
increased, and the complexity of signal processing has further increased. Therefore, the
architecture of signal processing has ushered in new challenges.

Generally speaking, low-speed signal processing uses single-chip microcomputers [13],
while high-speed signal processing generally uses ARM processors [14]. When there are a
lot of high-speed signals that need to be collected and processed, it is difficult for single-chip
computers or ARM processors to meet the needs. Especially with the rapid development of
fault diagnosis and health management in recent years, the number of signals that need
to be collected and processed in a single system is also rapidly increasing. The traditional
serial signal processing architecture is no longer competent.
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With the rapid development and application of the field programmable gate array
(FPGA) in recent years, it has been widely used in high-speed parallel acquisition and
high-speed parallel processing [15–17]. However, this method also has some problems. In
different scenarios, the signals that need to be processed are different, and the desired results
are different. Signal processing needs to be redesigned [18]. At the same time, most of the
multi-channel signal processing designed by FPGA are simple channel superpositions, as
shown in Figure 1, which wastes a lot of resources [19,20]. Therefore, this method is not
suitable for scenarios with limited edge resources.
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Figure 1. Traditional multi-signal parallel processing method.

Each signal processing method generally has multiple different processing flows, and
the same or different signal processing methods may have the same processing unit. A
network-on-chip (NoC) is used to connect different resources in the form of a network. Both
have certain similarities. We regard each operation of signal processing as a resource, and
use the idea of a NoC to connect these resources. Therefore, to realize the reuse of resources
and improve the utilization rate of resources, we have studied several common structures of
NoC systems. Traditional single-chip processors use a bus-type on-chip network structure.
When an operation occupies bus resources, other operations cannot be performed. This
structure performs poorly in parallelism. The “fat tree” structure [21] adopts a tree-like
structure. The computing unit is located at the leaf position of the tree, and the branches of
the tree are used for addressing the problem, as shown in Figure 2a. The structure is simple,
but the flexibility is poor, and thus, it is not suitable for large-scale parallel processing
scenarios. The “ring” and the improved structure [22] adopt a ring structure, as shown
in Figure 2b. When the number of ring nodes increases, the network diameter increases,
and the communication delay increases. This structure is prone to blocking parallel signal
processing. The 2D-mesh structure [21] is one of the most widely used NoC structures, as
shown in Figure 2c, which adopts a two-dimensional array. It is more flexible and has better
parallelism. However, the routing design is more complex, and routing takes up more
resources. The Torus structure [23] adds ring routing to 2D-mesh, which further improves
routing flexibility and consumes more resources for routing.

(a) The “fat tree” structure. (b) The “ring” structure. (c) The 2D-mesh structure.

Figure 2. Different types of NoC structures.

In summary, the multi-signal processing requirements of edge devices are complex and
require high real-time performance. Moreover, edge devices are limited in performance and
power consumption. The traditional serial architecture has problems such as low execution
efficiency and long multi-signal processing time. The traditional parallel architecture has
problems such as more resource occupation and poor flexibility. The idea of NoC provides a
new idea for the multi-signal processing of edge devices. However, the current research on



Sensors 2022, 22, 5720 3 of 17

the NoC structure is mainly aimed at available on-chip multi-core systems. The uncertainty
of the routing path is high, the routing structure is complex, and it occupies many hardware
resources, so it is not suitable for multi-signal processing of edge devices. In this paper,
based on the above research, we propose a resource-saving customizable pipeline network
architecture for multi-signal processing in edge devices. The main contributions of this
paper are summarized as follows:

1. This paper proposes a resource-saving customizable pipeline network (RSCPN) ar-
chitecture. This architecture significantly improves the flexibility of multi-signal
processing in edge devices, improves resource utilization, and further increases the
performance potential of edge devices.

2. This paper proposes a space-optimized resource allocation method for RSCPN. Under
the premise of comprehensively considering the reusability of processing units, exe-
cution time of different processing units, resource occupancy, real-time performance
and other factors, the method realizes the optimal allocation of space resources.

3. This paper designs a flexible and customizable pipeline routing unit, establishes a
resource-saving irregular topology, and proposes a coordinate addressing method for
irregular topology. The method reduces the useless paths of the traditional routing
topology and reduces the consumption of routing resources to ensure the flexibility of
signal pipeline processing.

The remainder of this paper is organized as follows. Section 1 introduces the current
status of the signal processing method and network-on-chip technology and proposes the re-
search content of this article. Section 2 introduces the resource-saving customizable pipeline
network architecture. Section 3 introduces the comparative experiments of RSCPN and
other methods. Section 4 analyzes the advantages and disadvantages of different methods
based on the experimental results, and Section 5 summarizes the paper’s conclusion.

2. Resource-Saving Customizable Pipeline Network Architecture

In view of the fact that the multi-signal processing process is relatively fixed, and
different signals may require the same processing unit, combined with the idea of the
network-on-chip, we have designed a resource-saving customizable pipeline network
architecture for multi-signal processing in edge devices, as shown in Figure 3.
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Figure 3. The resource-saving customizable pipeline network architecture.
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This structure regards the signal processing unit as a resource and uses a customiz-
able pipeline routing between resources to realize data transmission, which significantly
improves the flexibility of pipeline signal processing. At the same time, the structure uses
the pipeline routing unit to multiplex the processing units with the same function, which
reduces resource consumption. Each processing unit adopts a pipeline structure, which can
support the continuous processing of pipeline data, as shown in the green part of Figure 3.
The data transmission between the routing units also adopts the pipeline structure. The
routing unit does not cache data, but only caches the routing information of the data so that
the data can be processed and output at the same time, as shown in the blue part of Figure 3.
The traditional NoC routing unit generally needs to wait for data packet transmission
to be completed before processing, and its transmission time will significantly increase
the overall processing time. In this structure, the transmission and processing of data are
carried out simultaneously in the form of pipelines, and the transmission time has little
influence on the overall processing time.

2.1. Space-Optimized Resource Allocation Method

In order to reduce the resource occupancy of RSCPN for multi-signal processing, we pro-
pose a spatially optimal resource allocation method. Suppose a processing system has N input
signals, S = {s1, s2, . . . , sn}, and the corresponding sampling rate
Sap = {sap1, sap2, . . . , sapn}. Under normal circumstances, the data sampling speed will be
lower than the data processing speed, so we generally package the data first and then process it
to reduce the waiting time consumption and improve the utilization rate of hardware resources.
The amount of data to be processed in each signal is PKGn = {pkgn1, pkgn2, . . . , pkgnn}.
We obtain the ready time of each packet Tpkg = {tpkg1, tpkg2, . . . , tpkgn} according to the
sampling rate:

Tpkg =
PKGn

Sap
(1)

where tc represents the period in which all signals will appear an integer number of times
and at least once. tc should be equal to the least common multiple of TPKG:

tc = LCM(tpkg1, tpkg2, . . . , tpkgn) (2)

Assume that there are m different processing units PU in the above signal processing.

PU = {pu1, pu2, . . . , pum} (3)

A processing unit may be used in multiple signal processing. PUsi represents the
processing units PUi used in k signals:

PUsi = {sui1, . . . , suik}, k ∈ [1, n] (4)

The time occupied by each operation TPUi is positively related to the complexity of
the operation O(PUi) and the length of the data processed by the operation. We can use
this feature to estimate the maximum time for each operation.

TPUmi ∝ {tpkgi, O(PUi)}, i ∈ [1, n] (5)

According to Equations (4) and (5), the total processing time required by the processing
unit in a certain cycle can be calculated as

TPUpi =
k

∑
j=1

TPUmuij ×
tc

tpkguij
(6)
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In order to avoid the problem that a processing unit is blocked due to too many tasks,
the following conditions must be met:

∀TPUpi ≤ tc, i ∈ [1, n] (7)

To increase the robustness of resource planning, we add a redundancy factor θ to the
above equation. The general value range of θ is (0.8, 1).

∀TPUpi ≤ tc × θ, i ∈ [1, n] (8)

If there is TPUpi that does not satisfy Equation (8), we increase the number of PUi in
this system:

Npui = d
tc

TPUpi
e (9)

We evenly distribute the original signal to be processed by PUsi in Equation (4) to
Npui PUsi. We then loop through all PUsi until all PUsi meet the above conditions. Then,
these processing units are connected by pipeline units in processing order.

In addition, when some processing units have simple logic and occupy fewer resources,
it may happen that the resources saved are less than the resources consumed by the pipeline
routing unit:

Rpui × Npui < Rpri (10)

where Rpui represents the resources occupied by the processing unit i, and Rpri represents
the resources occupied by the corresponding routing unit i. In this case, we can implement the
corresponding signal processing by direct connection without using the pipeline routing unit.

2.2. Pipeline Structure Establishment and Coordinate Assignment of Processing Units

The multi-signal processing unit forms an irregular pipeline network structure after
the space-optimized resource allocation method. We use an example to describe the pipeline
structure establishment and the coordinate assignment of the processing units. Suppose
that there is such a requirement for multi-signal processing independent of each other, as
shown in Figure 4. Each signal undergoes multiple signal processing operations to obtain
the output result; for example, sa1 needs to go through P11, P12, and P13 to obtain the
output result. The ID of the processing unit is marked by 2D coordinates. The color of the
processing unit in the figure represents the type of processing unit. Processing units of the
same color have the same function; for example, processing units P11, P21, P31 have the
same function.
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Figure 4. An assumption of the independent multi-signal processing method.

Assuming that these same processing units meet the constraints of the spatially opti-
mal resource allocation method, the structure of the independent multi-signal processing
method after the spatially optimal resource allocation method is shown in Figure 5. In
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order to improve the utilization of coordinate IDs, we rearranged the IDs in Figure 4. First
of all, we divided the signals with the same processing operation into a group; then, the
6 signals can be divided into 3 groups, G1, G2, and G3, as shown in Equation (11).

G1 = {SA1, SA2, SA3}
G2 = {SB1, SB2}
G3 = {SC1} (11)

Then, the processing units of each group are numbered according to the 2D coor-
dinates. The abscissa represents the group num(Gx); for example, the abscissas of the
processing units in G1, G2, and G3 are [1, 2, 3], and the ordinate represents the sequence of
the processing units.

Pg1 = {P11, P12, P13} (12)

If the processing unit in the previous group is used in the current group, then the
number of the previous group is used directly, as shown in Equation (13). The resulting
pipeline structure of independent multi-signal processing method is shown in Figure 5.

Pg2 = {P21, P12, P23}
Pg3 = {P21, P32, P33, P34} (13)

Signal SA1
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Figure 5. The pipeline structure of the independent multi-signal processing method.

Except for the above-mentioned multi-signal independent situation, multi-signal
fusion processing is also common in signal processing. We use an example of multi-signal
fusion processing to show the structure of multi-signal fusion processing. Suppose there
is such a requirement for multi-signal fusion processing, as shown in Figure 6. Signal
SA1 first passes through processing units P11 and P12. Signal SB1 first passes through
processing units P21 and P22, and signal SC1 first passes through processing units P31
and P32. Then, signal SA1, SB1, SC1 are, respectively, input into the P13 fusion processing
unit to obtain the processing result. Assuming that these same processing units meet
the constraints of the spatially optimal resource allocation method, the structure of the
independent multi-signal processing method after the spatially optimal resource allocation
method is shown in Figure 7. Due to the uncontrollable routing delay, multiple groups of
signals that need to be merged and processed may not arrive at the fusion processing unit
in sequence. Therefore, in order to avoid functional errors, we do not merge the fusion
processing units P13 and P23.
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Figure 6. An assumption of the fusion-type multi-signal processing method.
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Figure 7. The pipeline structure of the fusion-type multi-signal processing method.

2.3. Coordinate Addressing Method for Irregular Topology

Different from the traditional regular NoC structure, we cut out the unnecessary
routing paths in RSCPN, which further reduces the complexity of routing addressing and
the consumption of routing units. Different routing units in Figure 5 have different numbers
of interfaces. The traditional coordinate addressing method cannot be used in this irregular
routing structure. Therefore, on the basis of coordinate addressing, we propose a coordinate
addressing method for irregular topology. Irregular routing addressing is mainly divided
into two cases. In RSCPN, most routing addressing can find the corresponding processing
unit at the next level of routing. To further increase flexibility, the structure also supports
addressing across processing units.

2.3.1. Flexible and Customizable Pipeline Routing Unit Design

Traditional NoC routing units generally have complex arbitration mechanisms, data
buffers, etc., which occupy a large amount of resources. In order to meet the routing
addressing requirements of irregular topologies and reduce the resource occupation of
traditional NoC routing units, we have designed a resource-saving pipeline routing unit
that can be flexibly tailored, as shown in Figure 8a. The unit consists of multiple groups
of child interfaces (Nc), multiple groups of parent interfaces (Np), local interfaces, switch
switches, and routing management units. The structure of the child and parent interface
mainly includes a data interface and routing interface. The data interface is responsible
for data transmission, using the AXI bus of Xilinx; the child is the slave, and the parent is
the master. The local interface is responsible for connecting with processing resources and
also uses the AXI bus for data transmission. The switch is responsible for establishing the
connection between child, parent and local processing resources. The routing interface is
responsible for routing addressing and routing establishment, as shown in Figure 8b. “R2
Status” represents the current status of route R2; “R2 function” represents the function code
of the processing unit connected to route R2 and is also the coordinates of route R2. “R1
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Request” represents route R1 sending a connection request to R2; “R2 Reply” represents the
result of routing R2’s reply to R1. “R1 remaining function codes” represents the remaining
operations of the packet sent by routing R1.

Routing 
Management 

Child 1

  

Child Nc

Parent 1

  

Parent Np

Local

Switch

(a) Pipeline routing unit.

R1 R2

R2 Status

R1 Request

R2 Function

R1 remaining 
function codes

R2 Reply

(b) Pipeline routing interface.

Figure 8. The pipeline routing unit and its interface.

The inside of the pipeline routing unit is also designed with the idea of the pipeline.
With the pipeline processing unit, the pipeline processing unit can realize simultaneous
input, processing and output operations, as shown in the Figure 9. The “child” represents
the data of the input interface, and the “parent” represents the data of the output interface
after processing. Different from the traditional packet routing method, the pipeline structure
realizes that when data is input, it can be output at the same time, which greatly improves
the efficiency of data processing.

Figure 9. An example of simultaneous input and output. “child” represents the input data [0, 1, . . . ,
22], “process” represents the data in the process [100, 101, . . . , 122], “parent” represents the output
data [100, 101, . . . , 122].

The pipeline routing unit can quickly obtain new routing units with different num-
bers of child and parent interfaces by cutting. The resource occupation of routing units
with different numbers of interfaces is shown in Figure 10. Using routing units with a
corresponding number of interfaces in actual use will reduce resource waste. Compared
with the traditional routing unit structure of the network-on-chip, the pipeline routing
unit saves a lot of resources due to its simple structure. According to reference [24], we
compare the routing unit structure and pipeline routing structure of the traditional on-chip
network, as shown in Figure 11. Under the same condition with 4 interfaces, the pipeline
routing unit consumes the least resources. The LUTS of the pipeline routing only occupies
30.8% of the “MESH” routing. The FFS of the pipeline routing only occupies 67.2% of the
“MESH” routing.
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Figure 10. Resource occupation of pipeline routing units with different numbers of interfaces.
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Figure 11. Comparison of resource occupancy of routing units with 4 interfaces in different topologies.

2.3.2. Route Establishment Process of a Single Pipeline Routing Unit

Based on the pipeline routing unit, we design a route establishment process of pipeline
processing method. The route establishment process of a single pipeline routing unit is
shown in Algorithm 1.

Algorithm 1 Route establishment process.
initial: R(i− 1): The previous routing unit;
R(i): The current routing unit;
R(i + 1): The next routing unit;
R(i)in = [R(i)in1, R(i)in2, R(i)inm]: R(i) has m input ports;
R(i)out = [R(i)out1, R(i)out2, R(i)outn]: R(i) has n output ports;
input: R(i− 1)req: Connection request from R(i− 1);
R(i− 1)r f c: Remaining function codes of R(i− 1);
R(i + 1)loc f : R(i + 1)’s local function code;
R(i + 1)sts: R(i + 1)’s current state;
output: R(i)rpy: R(i)’s reply to the request of R(i + 1);
R(i)sts: R(i)’s current state;
R(i)loc f : R(i)’s local function code;
R(i)r f c: Remaining function codes of R(i);
R(i)req: R(i)’s Connection request to R(i + 1)

1: R(i)sts = 0;

2: R(i)loc f = LOCF; //Local f unctioncode

3: for j = 1 : m //Respond to connection requests

4: if R(i− 1)req ∈ R(i)inj 6= 0 && R(i)sts == 0

5: R(i)rpy = 1; //ready to trans f er data

6: R(i)sts = 1;

7: if(R(i− 1)r f c & 0x f f == R(i)loc f )

8: R(i)loc f = (R(i− 1)r f c >> 8;

9: endif

10: endfor

11: if R(i)sts 6= 0 //Send connection request to the next route(ignore local processing)

12: for k = 1 : n
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13: if((R(i + 1)sts ∈ R(i)outk) == 0) &&((R(i + 1)loc f ∈ R(i)outk) == R(i)loc f &0x f f )

14: R(i)req = 1;

15: endfor

16: endif

2.3.3. Route Establishment Process of the RSCPN

We use the structure in Figure 5 as an example to describe the entire route search
and establishment process, as shown in Figure 12. For the convenience of showing the
processing flow of the pipeline method, we assume that each processing unit takes the
same amount of time and ignore the route establishment time. In practice, the time of each
processing unit is different, but the processing flow of the pipeline is consistent.
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Figure 12. The processing flow of the pipeline method. T1–T6 in the figure represent different
moments and T1 < T2 < T3 < T4 < T5 < T6.

Based on the structure of Figure 5, we built a pipeline processing system as shown in
Figure 13 in vivado to verify the pipeline processing function of the system. In order to facil-
itate verification, all processing units use multiplication and addition operation units with
the same function and different IDs. Part of the simulation results are shown in Figure 14.
The process of multi-signal processing is addressed, processed and transmitted according
to the coordinate addressing method of our design of irregular topology. The figure shows
the process of part of the signal passing through different signal processing units.
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3. Experiment

In order to verify the effect in the actual scene, we designed a relatively common signal
processing scene, as shown in Table 1. A total of 6 groups of signals with different sampling
rates and characteristics underwent amplitude transformation, denoising reduction/low
pass filters, and FFT (fast Fourier transform)/STFT (short-time Fourier transform).

Table 1. An instance of the need for multiple signal processing.

Signal ID Sampling Rate Amount of Data
at One Time Process 1 Process 2 Process 3

SA1 10 Msps 1024 P11:*10
(4.148 us)

P12:Denoising Reduction
(4.256 us)

P13:FFT
(12.818 us)

SA2 10 Msps 1024 P11:*10
(4.148 us)

P12:Denoising Reduction
(4.256 us)

P13:FFT
(12.818 us)

SA3 10 Msps 1024 P11:*10
(4.148 us)

P12:Denoising Reduction
(4.256 us)

P13:FFT
(12.818 us)

SB1 10 Msps 512 P21:*20
(2.056 us)

P12:Denoising Reduction
(2.208 us)

P23:STFT
(6.584 us)

SB2 10 Msps 512 P21:*20
(2.056 us)

P12:Denoising Reduction
(2.208 us)

P23:STFT
(6.584 us)

SC1 1 Msps 256 P21:*20
(1.035 us)

P32:Low Pass Filter
(1.180 us)

Among them, SA1, SA2, SA3, SB1, and SB2 have the same sampling rate, and need
to perform the same denoising reduction operation; SA1, SA2, SA3 have the same single
processing data length, amplitude transformation operation (*10), and the same FFT op-
eration; SB1, SB2, SC1 have the same amplitude transform operation (*20); and SB1, SB2
have the same single processing data length and the same STFT operation. The times below
each processing operation are estimated processing times with a system clock of 250 MHz.
We use the RSCPN, parallel structure and computer, respectively, to implement the above
multi-signal processing, and then compare the resource consumption, execution time and
execution results of the three methods.
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We use the space-optimized resource allocation method to handle the above require-
ments:

Tpkg = { 1024
10Msps

,
1024

10Msps
,

1024
10Msps

,
512

10Msps
,

512
10Msps

,
256

1Msps
}

= {102.4us, 102.4us, 102.4us, 51.2us, 51.2us, 256us}
tc = LCM(Tpkg) = 512us

TPUp11 = 4.418us ∗ 512us
102.4us

∗ 3 = 66.27us

TPUp12 = 4.256us ∗ 512us
102.4us

∗ 3 + 2.208us ∗ 512us
51.2us

∗ 3 = 130.08us

TPUp13 = 12.818us ∗ 512us
102.4us

∗ 3 = 192.27us

TPUp21 = 2.056us ∗ 512us
51.2us

∗ 2 + 1.035us ∗ 512us
256us

= 43.19us

TPUp23 = 6.584us ∗ 512us
51.2us

∗ 2 = 131.68us

TPUp32 = 1.180us ∗ 512us
256us

∗ 1 = 2.36us

∀TPUpi ≤ tc × θ = 512us ∗ 0.8 = 409.6us

The allocation of all processing units met the requirements of the space-optimized
resource allocation method. Then, we obtained the pipeline structure shown in Figure 15a,
and the execution results are shown in the Figure 15b. The red text and boxes in the figure
represent the input and output positions of the signal on the time axis.
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Figure 15. The pipeline structure and execution results for multi-signal processing in Table 1.
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In addition, we used the parallel pipeline method and the computer to realize the
above-mentioned multi-signal processing. The structure diagram and simulation results
of the parallel pipeline method are shown in Figure 16. The computer configuration is as
follows: CPU I7-7700K, GPU GTX1060-6G, environment Matlab.
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Figure 16. The parallel pipeline structure and execution results for multi-signal processing in Table 1.

For the convenience of comparison, we started from the beginning of a certain large
period (tc), at which time all signals were ready for a set of data to be processed, as shown
in Figures 15b and 16b At this time, the processing task was the heaviest, which better
reflects the execution effect. Partial signal results were obtained by different processing
methods, as shown in the Figure 17. The results obtained by the above 6 groups of signals
through the three methods are consistent.

From the point of view of resources, the method of using computer processing takes up
the most resources. The resource comparison between RSCPN and the traditional parallel
method is as shown in Figure 18. The resources occupied by RSCPN are far less than the
traditional parallel methods. LUTs only occupy 45.3%, FFs only 43.7%, BRAM only 37.5%,
and DSP only 35.4%. Under the premise of meeting the execution time requirements, the
more the same processing units, the more obvious the effect of this resource saving will
be. Figure 19 shows the execution time when different methods perform the busiest multi-
signal processing operation. Before the arrival of the next valid data (appearance time of the
next data packet of SB1 and SB2: 51.2 us), both RSCPN and traditional parallel processing
methods have completed the above operations, and the computer did not complete the
execution until 2073.85 us. Therefore, both RSCPN and traditional parallel processing
methods can meet the requirements of real-time signal processing.
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Figure 17. Partial signal results obtained by different processing methods.
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Figure 19. Execution time comparison of different methods.

4. Disscusion
4.1. Compared with the Single-Chip Signal Processing System

Traditional single-chip signal processing systems collect and process data serially,
while multi-channel signals are collected and processed by serial number polling. The
RSCPN designed in this paper adopts the pipeline processing method, which dramatically
improves data collection and processing ability and speed. The traditional single-chip signal
processing system has a simple design suitable for situations with low sampling and a low
number of signals. The RSCPN is more suitable for high-speed, multi-channel situations.

4.2. Compared with the Computer

The computer is more suitable for non-real-time large-scale signal processing, and its
performance is relatively poor in real-time systems. Furthermore, the resources, cost, and
power consumption of computers are not applicable to edge devices.

4.3. Compared with Traditional Parallel Processing System with FPGA

A traditional parallel processing system with FPGA is suitable for multi-channel,
high-rate scenarios. However, as the number of signal processing channels increases, the
resources occupied by this method are correspondingly doubled. The RSCPN designed
in this paper can avoid this situation. However, with the increase in the number of signal
processing channels, the resources occupied by the RSCPN designed in this paper will
also increase, although the increase will be lower than that of the FPGA parallel signal
processing system.

4.4. Compared with Network-on-Chip

The routing unit of the network-on-chip includes functions such as data buffering and
more complex routing arbitration. It has a complex structure and occupies many resources.
However, the pipeline routing unit structure in RSCPN does not cache data, and routing
arbitration is relatively simple, occupying fewer resources.

4.5. Discussion of Flexibility

The RSCPN designed in this paper encapsulates commonly used signal processing
operations in processing units and uses pipeline routing units to connect these signal
processing operation units. Since the signal processing unit adopts the same design method,
we can quickly carry out the secondary design through the configuration software according
to the requirements. When the required changes are small, we can modify the input signal
processing function sequence to complete the function change.

5. Conclusions and Extensions

With the rapid development of edge computing, the requirements for industrial condi-
tion monitoring, fault diagnosis, and health management are becoming more and more
complex. Traditional serial and parallel signal processing architectures cannot resolve the
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conflict between increasingly complex processing requirements and resource-constrained
edge devices. Therefore, we propose a resource-saving customizable pipeline network
architecture for multi-signal processing in edge devices. This architecture reduces the
resources required for multi-signal processing, further exploiting the performance potential
of edge devices. This paper designs a space-optimized resource allocation method, which
significantly reduces the resource requirements of multi-signal processing on the premise
of meeting the real-time requirements. This paper designs a pipeline routing unit and a
coordinate addressing method for irregular topology, which greatly reduces the resource
consumption and time consumption in the routing process on the premise of ensuring
flexibility and reliability. This architecture has positive significance for the performance
improvement of edge devices and provides a new solution to the rapidly developing edge
computing needs. In typical edge computing scenarios such as industrial site monitoring,
fault diagnosis, and health management, this architecture can reduce the cost of edge
devices and bring great economic benefits.

Author Contributions: Conceptualization, P.S. and Y.Q. (Youtian Qie); Formal analysis, P.S., Y.Q.
(Youtian Qie) and C.H.; Investigation, Y.Q. (Youtian Qie) and H.L.; Methodology, P.S., Y.Q. (Youtian
Qie), Y.L. and Y.Z.; Project administration, C.H. and P.S.; Resources, C.H., Y.L. and Y.H.; Validation,
P.S., Y.Q. (Youtian Qie), Y.H., H.L. and Y.Z.; Writing—original draft, Y.Q. (Youtian Qie) and Y.L.;
Writing—review & editing, Y.Q., Y.L., H.L., Y.Z. and Y.Q. (Yishen Qi). All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Basic Scientific Research Program of China
(Grant No. JCKY2019602B002 and No. JCKY2020204C021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated Learning in Edge Computing: A Systematic Survey. Sensors 2022, 22, 450.

[CrossRef] [PubMed]
2. Liu, D.; Liang, H.; Zeng, X.; Zhang, Q.; Zhang, Z.; Minhong, L. Edge Computing Application, Architecture, and Challenges in

Ubiquitous Power Internet of Things. Front. Energy Res. 2022, 10 . [CrossRef]
3. Chen, S.; Eldar, Y.C.; Zhao, L. Graph Unrolling Networks: Interpretable Neural Networks for Graph Signal Denoising. IEEE

Trans. Signal Process. 2021, 69, 3699–3713. [CrossRef]
4. Yang, F.; Enzner, G.; Yang, J. A Unified Approach to the Statistical Convergence Analysis of Frequency-Domain Adaptive Filters.

IEEE Trans. Signal Process. 2019, 67, 1785–1796. [CrossRef]
5. Nadarajan, S.; Panda, S.K.; Bhangu, B.; Gupta, A.K. Online Model-Based Condition Monitoring for Brushless Wound-Field

Synchronous Generator to Detect and Diagnose Stator Windings Turn-to-Turn Shorts Using Extended Kalman Filter. IEEE Trans.
Ind. Electron. 2016, 63, 3228–3241. [CrossRef]

6. Ruiz-Carcel, C.; Jaramillo, V.H.; Mba, D.; Ottewill, J.R.; Cao, Y. Combination of process and vibration data for improved condition
monitoring of industrial systems working under variable operating conditions. Mech. Syst. Signal Process. 2015, 66–67, 699–714.
[CrossRef]

7. He, J.; Yang, Q.; Wang, Z. On-line fault diagnosis and fault-tolerant operation of modular multilevel converters-A comprehensive
review. CES Trans. Electr. Mach. Syst. 2020, 4, 360–372. [CrossRef]

8. Qin, A.; Hu, Q.; Lv, Y.; Zhang, Q. Concurrent Fault Diagnosis Based on Bayesian Discriminating Analysis and Time Series
Analysis With Dimensionless Parameters. IEEE Sens. J. 2019, 19, 2254–2265. [CrossRef]

9. Liu, X.; Song, P.; Yang, C.; Hao, C.; Peng, W. Prognostics and Health Management of Bearings Based on Logarithmic Linear
Recursive Least-Squares and Recursive Maximum Likelihood Estimation. IEEE Trans. Ind. Electron. 2017, 65, 1549–1558.
[CrossRef]

10. Wang, D.; Tsui, K.L.; Miao, Q. Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health
Indicators. IEEE Access 2018, 6, 665–676. [CrossRef]

11. Peng, B.; Wan, S.; Bi, Y.; Xue, B.; Zhang, M. Automatic Feature Extraction and Construction Using Genetic Programming for
Rotating Machinery Fault Diagnosis. IEEE Trans. Cybern. 2021, 51, 4909–4923. [CrossRef] [PubMed]

http://doi.org/10.3390/s22020450
http://www.ncbi.nlm.nih.gov/pubmed/35062410
http://dx.doi.org/10.3389/fenrg.2022.850252
http://dx.doi.org/10.1109/TSP.2021.3087905
http://dx.doi.org/10.1109/TSP.2019.2896133
http://dx.doi.org/10.1109/TIE.2016.2535959
http://dx.doi.org/10.1016/j.ymssp.2015.05.018
http://dx.doi.org/10.30941/CESTEMS.2020.00043
http://dx.doi.org/10.1109/JSEN.2018.2885377
http://dx.doi.org/10.1109/TIE.2017.2733469
http://dx.doi.org/10.1109/ACCESS.2017.2774261
http://dx.doi.org/10.1109/TCYB.2020.3032945
http://www.ncbi.nlm.nih.gov/pubmed/33237874


Sensors 2022, 22, 5720 17 of 17

12. Jiang, X.; Zeng, X.; Sun, J.; Chen, J. Distributed Solver for Discrete-Time Lyapunov Equations Over Dynamic Networks with
Linear Convergence Rate. IEEE Trans. Cybern. 2022, 52, 937–946. [CrossRef] [PubMed]

13. Song, W.; Liu, W.; Pan, Y. Design of Intelligent Rainwater Detection Window Based on STM32 Single-Chip Microcomputer. In
Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 278–281. [CrossRef]
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