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Abstract: Survival analysis is a data-driven approach that is widely used in various fields of biomed-
ical prognostic research, and it is highly reliable in the processing of time-event data. This study
developed a method for evaluating the service performance of bridge superstructures using the
built-in acceleration sensor of smartphones and the prediction of survival analysis theory. It will be
used to assist in the daily maintenance and repair of small and medium bridges. The effects of the
upper load-bearing structure, upper general structure, bearings, deck paving, expansion joints, and
frequency ratio on the deterioration of the bridge superstructure were investigated. The results show
that the first-order vibration frequency of the bridge can be effectively detected by the built-in acceler-
ation sensor of the mobile phone, but its low sensitivity and high output noise make it impossible to
accurately detect the higher-order frequencies of the bridge. The upper load-bearing members, the
upper general structure, the bearing, the deck pavement, and the frequency ratio are all related to the
changing trend of the technical condition level of the bridge superstructure.

Keywords: Cox; survival analysis; smartphone; bridge superstructure; life prediction

1. Introduction

With the continuous acceleration of infrastructure construction, the transportation
industry has developed by leaps and bounds. However, with the continuous growth
of transportation capacity, the traffic density and vehicle load on highways at all levels
are also increasing, which makes a considerable number of existing highway bridges
unable to meet the needs of transportation [1,2]. In particular, the deterioration of a large
number of small- and medium-span bridges is particularly prominent. Accurate prediction
of highway bridge superstructure performance is critical for effective maintenance and
repair, as superstructures such as bridge decks are a major concern and budget factor for
transportation agencies [3,4]. Therefore, it is imminent to carry out safety status assessments
and real-time health monitoring of existing bridge structures, especially small- and medium-
span bridge structures. At present, most of the assessments and early warnings of the
safety status of bridge structures are carried out by installing sensors and other monitoring
equipment on the bridge structure to conduct long-term real-time monitoring of the bridge
operation status and related physical quantities [5,6]. However, the objects of long-term
health monitoring of bridge structures are mostly large, and large bridges, as well as
medium and small span bridges with unique shapes and important positions. There are
few related studies on the health monitoring of common medium and small span bridges
with a large number of bases. In addition, the existence of censored data is a common
data problem in bridge data samples, which can affect bridge degradation analysis [7].
Survival analysis theory has been widely used in medicine, pharmacy, patient prognosis,
economics, and other fields because it can process censored data and does not require
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many assumptions about the form of survival function [8-12]. Therefore, survival analysis
has been gradually applied to the deterioration analysis of the service performance of
engineering structures in recent years [13,14]. However, the data sources for the survival
analysis of existing bridge structures are mainly assessed by visual inspection by bridge
inspectors, which leads to a great deal of subjectivity.

At present, the most widely used bridge performance degradation prediction methods
mainly include deterministic methods and random methods. The deterministic methods
gradually reduce the attention of researchers because they cannot reflect the randomness
in the bridge operation process [15]. The probabilistic method of bridge performance
degradation prediction is mainly to simulate the degradation process of each component of
the bridge over time by establishing different forms of probability density functions, such
as establishing a continuous-time Markov process degradation model of concrete highway
bridges [16,17], established a semi-Markovian process based on Weibull distribution to
simulate the degradation process of urban bridges [18], established a concrete highway
bridge deck deterioration model based on Bayesian survival theory to explore the impact
Factors in Bridge Deck Performance [4]. Stevens et al. [19] proposed a new application of
survival analysis based on visual inspection of sparse data based on four types of data:
bridge construction type, function, number of spans, and road class. However, because
these data are too superficial, it is difficult to reflect the different degradation trends of
various components of the bridge, and there is a large bias caused by subjective influence.
Therefore, these methods cannot make an accurate assessment of the deterioration of bridge
structures.

With the continuous development of smartphones, sensor technology has been widely
used in mobile phones. Due to the continuous improvement of sensor performance, in-
depth research has been carried out in indoor positioning [20], user behavior recognition [21,
22], and scenario simulation [23] in recent years. In addition, sensors such as accelerometers
embedded in smartphones can also be used to detect the smoothness of the road surface
and identify the modal characteristics of bridges [24-26]. Therefore, the fundamental
frequency of the bridge can be quickly detected by smartphones arranged at key sections
of the bridge structure and introduced into the bridge survival analysis as a research
factor. Liu et al. [27] used two Android mobile phones and the SPAN-IGM-A1 inertial
integrated navigation system to conduct a comparative experiment on the acceleration
signal and vibration detection of Xuzhou Han Bridge, which verifies the feasibility of
portable and low-cost Android smartphones for bridge vibration detection. Zhao et al. [28]
carried out experiments such as the stay cable force test and bridge vibration test to
prove that smartphones can accurately measure the natural frequency of the first mode of
bridge structures, but it is difficult to obtain the natural frequencies of higher-order modes.
Elhattab et al. [29] effectively improved the sensitivity of smartphone accelerometers by
exploiting the phenomenon of stochastic resonance. The feasibility of their proposed SR
filter is verified by comparing the bridge vibration characteristics measured by an iPhone
device with a high-sensitivity wireless sensor network consisting of 15 accelerometers. In
summary, the built-in acceleration sensor in smartphones is feasible in bridge structure
vibration signal acquisition and bridge health monitoring and has great advantages due to
its large number of devices and simple operation.

To analyze the effects of many factors on survival outcomes and survival time at the
same time, a multivariate analysis method is required. However, traditional multivariate
analysis methods are not applicable, cannot deal with both survival outcomes and survival
time, and cannot take full advantage of the incomplete information provided by the
censored time [15]. In addition, most of the research factors considered in the existing bridge
performance prediction models are based on appearance inspection and environmental
factors, and the accuracy of the obtained data is largely affected by human factors.
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Considering that it is unrealistic to do real-time health monitoring for a large number
of small- and medium-span bridges. This study developed a method for evaluating the
service performance of bridge superstructures using the built-in acceleration sensor of
smartphones and the prediction of survival analysis theory. It will be used to assist in
the daily maintenance and repair of small and medium bridges. The effects of upper
load-bearing structure (PCCla), upper general structure (PCCIb), bearings (PCClc), deck
paving (DMCla), expansion joints (DMClIb), and frequency ratio (the ratio of the current
frequency to the initial frequency of the bridge superstructure, which is named Fb in this
article) on the deterioration of the bridge, superstructures were investigated. Firstly, the
measurement structure of the built-in accelerometer of the smartphone is compared with
the measurement structure of Donghua’s accelerometer in the field, which further verifies
the effectiveness of the built-in accelerometer of the mobile phone to detect the natural
frequency of the bridge. Secondly, the initial vibration frequency of the bridge is calculated
by the finite element modeling and the formulas in the relevant codes. Finally, all the
collected research factors are brought into the survival analysis model, and the influence of
each research factor on the deterioration of the bridge superstructure in different periods is
calculated. The research protocol is shown in Figure 1.
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Figure 1. Overview of research methods.

2. Experimental Verifications
2.1. Methodology for Android Phone Sensors

To allow developers to quickly access the sensor and easily read the raw data collected
by the sensor, the Android SDK provides developers with a very convenient open interface,
which enables developers to access the sensors to obtain the required data. Android sensor
framework development mainly includes the following four categories:

(1) Sensor Manager: Users are allowed to access the built-in sensor class of the device by
creating an instance of this class, obtaining the list of sensors in the device, registering
event listeners, and logging out event listeners when the program exits. Various
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sensor constants such as sensor accuracy and set sampling frequency can be realized
by Sensor Manager.

(2) Sensor: Users are allowed to create a specific instance of a sensor, through which the
user can obtain a specific sensor type.

(38) Sensor Event: It can be used to create an object of a sensor event and obtain event
information related to the sensor, such as sensor type, timestamp, raw data, and data
accuracy.

(4) Sensor Event Listener: It is used to create a callback method. When the data collected
by the sensor or the accuracy of the sensor changes, two callback functions can
be used to help developers obtain data and interrupt through callbacks. During
the development of Android sensors, the sensor must be registered through Sensor
Manager and the sampling frequency should be set. The actual sampling frequency is
related to the specific software and hardware configuration of the mobile phone.

The short-time Fourier transform (STFT) is a general tool for speech signal processing.
It defines a very useful class of time and frequency distributions, where the complex
magnitude of an arbitrary signal is specified as a function of time and frequency [30]. In
practice, the process of computing the short-time Fourier transform is that the longer-time
signal is divided into shorter segments of the same length, and the Fourier transform
is performed on each of the shorter segments. The basic idea is that a long-term non-
stationary stochastic process is regarded as the superposition of a series of short-term
stochastic stationary signals, and the short-term nature can be realized by adding a window
function in time (that is, intercepting a part of the source data). With this approach,
whatever frequency component is found, it must occur within the specified period in which
the signal is being intercepted, avoiding recording an incorrectly long frequency band and
affecting the entire spectrogram. The specific implementation method is to multiply the
window function and the source signal in the Fourier transform to realize the addition of
the window and translation in the vicinity, and then perform the Fourier transform [31].

The definition of the short-time Fourier transform is given in Equation (1).

STFTy(t, f) = /+oo x(T)h(T — t)e 2t dr )

where x(7) is the input signal, and STFT(t, f) is the short-time Fourier transform of the
signal x(7).

The center E{h(t)} and radius A{h} of the window function /(t) are shown in Equa-
tions (2) and (3), respectively. The width of the window function h(t) is 2A{h}.
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The interface of the mobile phone acceleration acquisition program is shown in
Figure 2.
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Figure 2. Mobile phone acceleration acquisition application: (a) acceleration test waiting interface;
(b) acceleration acquisition interface.

In general, the analytical performance of the short-time Fourier transform can be
judged by the shape and area of the time—frequency window rectangle. The shape of the
time—frequency window is fixed, and the smaller the window area is, the stronger the
time-frequency analysis capability of the short-time Fourier transform is, otherwise it is
poor.

The inverse of the short-time Fourier transform is shown in Equation (4):

x(1) = /_J:o/::oSTFTx(t,f)h(T,t)eiZTEftdfdt @)

It can be seen that the analysis performance of the short-time Fourier transform
depends to a large extent on whether the selected window function is reasonable, and the
selection of the appropriate window function can effectively improve the time—frequency
analysis performance of the short-time Fourier transform.

When performing a short-time Fourier transform analysis on a signal, on the one
hand, the length of the selected window function should be as short as possible, which can
improve the time precision of the short-time Fourier transform. On the other hand, the time
width of the selected window function should be as long as possible, which can improve
the frequency accuracy of the short-time Fourier transform. Therefore, in this experiment,
the original data of 500 s is selected, the time course of 10 s is used as a band, the interval of
5 s is used as the selection interval, and 0-10, 5-15, 10-20, 12-25 ... are selected in turn. The
method of overlapping panes to select experimental data can effectively avoid inaccurate
results caused by human errors and acquisition errors, and reduce experimental errors.
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2.2. Experimental Specimens

To verify the reliability of the mobile phone accelerometer on simply supported girder
bridges and continuous girder bridges, Zhengzhou Xiaoliu Bridge and Nancun Yellow
River Bridge are selected for the experiment. The specific information about these two
bridges is shown in Table 1.

Table 1. Basic Information of Experimental Bridges.

. Pier and Span Width
Bridge Name Superstructure Foundation (m) Length (m) (m)
Xiaoliu Bridge Simply supported Double pile pier 35 252 25

beam
Double pile pier
Na.ncun Y.ellow Continuous beam  rectangular hollow 50 1456 7.5
River Bridge pier

2.3. Experimental Conditions and Setup

In this experiment, the pulsation method is used to measure the vibration character-
istics of the bridge to test the accuracy of the measurement results of the mobile phone
accelerometer. The equipment used in the experiment is shown in Table 2.

Table 2. Experimental Equipment.

Equipment Specifications Quantity Purpose
Dynamic Signal Analyzer DHB8302 1 Signal processing

Accelerometer DH610V 6 Data collection

Signal processor HP 1 Process and store data
Data transmission line / 6 Transfer data

Redmi K40 1 Data collection

Huawei P30 1 Data collection

Motorola Edge X30 1 Data collection

As shown in Figure 3, the field experimental setup consisted of a dynamic signal
analyzer, six accelerometers, a signal processor, several data transmission lines, and three
smartphones with vibration data collection software installed.

Smartphone Vibration Data Collection

Figure 3. Experiment site layout.
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Through the preliminary finite element calculation results, it can be seen that the
significant positions of the free vibration deformation of the simply supported girder
bridge are mainly at the third and fourth points of the test span. At the same time, the
significant positions of free vibration deformation of continuous girder bridges are mainly
distributed in the quarter point section of the test span. To effectively detect the dynamic
characteristics of the bridge, the acceleration sensor and the smartphone were arranged at
the1/4L,1/2L, and 3/4 L sections of the test span.

First, six accelerometers (DH610V) were placed at 1/4L, 1/2 L, and 3/4 L on both
sides of the bridge with the same span, and were connected to the dynamic signal analyzer
(DH8302) through data cables. Then, place the three mobile phones in the middle of the
bridge deck at the 1/4 L, 1/2 L, and 3/4 L sections, respectively. Finally, the vibration
data from the corresponding locations are measured using vehicle excitation and artificial
excitation.

2.4. Experimental Results

First, the finite element calculation frequency and the bridge natural vibration fre-
quency obtained by professional test equipment are compared and calibrated, and the
bridge natural vibration frequency obtained from the test is used as the reference frequency.
Then, a short-time Fourier transform is performed on the mobile phone test data to obtain
a time—frequency map. Several significant frequency intervals can be obtained from the
time-frequency diagram (see the bright area in Figure 4), and the upper and lower lim-
its of the bright area where the reference frequency is located are used as the frequency
confidence interval. Finally, the mobile phone sensor is used to quickly test to obtain the
time history data of the bridge. A new time—frequency map can be obtained by performing
a short-time Fourier transform on the time-history data. Select the bright area that falls
within the frequency confidence interval, and take the middle value as the test frequency.
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Figure 4. Vibration signal acquisition principle.

According to the bridge design data and site survey investigation, ANSYS finite ele-
ment analysis software is used to establish a model to calculate the dynamic characteristics
of the structure. The calculated span of the simply supported beam is 50 m, and the cal-
culated first six-order frequency values of the bridge are 2.92, 3.16, 8.15, 10.29, 10.57 and
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17.37 Hz, respectively. In addition, the accelerometer and smartphone field vibration test
results are shown in Figure 5. Figure 5a clearly shows the high precision and low noise
of the traditional accelerometer test, which can clearly analyze the natural frequency of
the bridge. However, the built-in accelerometers in smartphones are flawed in the identifi-
cation of high-order frequencies due to the problem of noise acquisition. Therefore, only
the first-order frequency of the smartphone test is considered to be introduced into the
subsequent survival analysis as the base frequency.

0 10 20 30 40 50 0 10 20 30 40 50
Frequency (Hz) Frequency (Hz)

(a) (b)

Figure 5. Nancun Yellow River Bridge natural vibration frequency test results: (a) accelerometer
vibration test results; (b) vibration test results for smartphones.

3. Deterioration Prediction of Superstructure

In this study, the Cox proportional hazards regression model was used to consider
the influence of various influencing factors on the deterioration of the bridge superstruc-
ture. The Cox proportional hazards model is the most popular mathematical modeling
method for estimating survival curves when multiple explanatory variables are considered
simultaneously, and it can be used to model the time to a specific event based on the value
of a given covariate [32]. The Cox proportional hazards regression model is shown in
Equation (5).

hi(t,x) = ho(t) exp(B1xi1 + BoxXio + -+ + BnuXin) ®)

where h;(t, x) = the hazard rate for the ith case at time t; /1,(¢) = baseline hazard at time t;
n = number of covariates; ,; = value of the nth regression coefficient; and x;,, = value of the
ith case of the nth covariate.

It can be seen from Equation (5) that the index part is a parametric model and the
benchmark risk function f(t) is a non-parametric model because it can use different
distribution models according to different data due to its uncertainty. Therefore, the Cox
model is a semi-parametric model. The condition for the establishment of the Cox model is
that each covariate satisfies the proportional hazards assumption (PH). The hazard ratio
(HR) for the two individuals is shown in Equation (6).

~ hi(t,x) ho(t) exp(Bixin + BaXip 4 - - + BuXin) - oy oy
= h]-(i',x) = ho(t)exp(,glle+;32x]'2+“.+:8nxjn) - exp(i’]gllgl(xm X]H))
(6)

From Equation (6), it can be seen that the hazard ratio is independent of time t, and
the hazard ratio is a constant, which means that the covariate regression coefficient is fixed.
In addition, B; > 0 leads to a hazard ratio HR > 1, which means that it increases the risk
of the outcome event. Similarly, 8; < 0 leads to the HR < 1, which reduces the risk of
the outcome event [3,7,33]. The calculation of the regression coefficients of the covariates

HR
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requires a partial likelihood function, which is estimated using the maximum likelihood.
The partial likelihood function is shown in Equation (7).

L(B) = ﬁ gi = exp(B1Xi1 + B2 Xin + -+ - + BuXin) ”

i=1 iE, = 1 Lser(Ty) XP(B1Xs1 + PoXso + -+ - + BnXsn)

where the values T; and E; are the respective event time and event indicator for the ith
observation. The equation is defined over the set of bridges with an observable event
E; = 1. Therisk set R(T;) = {i:T;} is the set of bridges still at risk of failure at time
t [34].

Define f(t) as the probability density function of bridge superstructure degradation.
The probability of degradation of the bridge superstructure at time t can be expressed as
F(t). The specific form of F(t) is shown in Equation (8). Therefore, the survival probability
of the bridge superstructure at time ¢ (the probability that the bridge superstructure still
maintains the original state level) can be obtained by 1 — F(t). The specific form of the
survival function is shown in Equation (9).

t
F(t) = P(T< 1) = /Of(u)du 8)

S(H) = P(T>1t) = 1-F(t) = /toof(u)du )

h(t) in Equation (5) is defined as the conditional probability of death of the bridge
superstructure at time f, which can also be expressed as Equation (10).

P(t <T <t+AHT >t) f(#) a0

ht) = tim, At =S T s (10)

Integrating both sides of Equation (10) yields Equation (11).

S(t) = e HO) = o= [ohlwdu a1

3.1. Research Factors

Bridge stiffness changes due to material deterioration, cracks, and other diseases. The
reduction in bridge stiffness directly leads to a decrease in its natural frequency. Therefore,
it can be considered to obtain the fundamental frequency of the bridge through the vibration
test, analyze the change law of the inherent fundamental frequency and the overall stiffness
of the bridge, and then understand the actual operating state of the bridge [35]. Therefore, to
evaluate and predict the actual operating state of the bridge as comprehensively as possible,
we consider introducing the fundamental frequency of the bridge into the prediction model.

In addition to the bridge dynamic parameters collected by the mobile phone accel-
eration sensor, this paper also uses the inspection records of 279 highway bridges stored
in the bridge periodic inspection database in a certain province to predict and model the
service performance of highway bridges. The bridges collected in this paper are all less
than 20 years old. More than 90% of the bridge’s upper load-bearing structure, upper
general components, bearings, bridge deck pavement, and expansion joints are grades 1-3,
and almost no bridge components are grade 5. The technical state-level distribution of each
component of the bridge is shown in Figure 6.
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Figure 6. Distribution of technical status of bridge components: (a) Overall distribution of bridge
component status grades; (b) Number of bridges in different state levels.

According to the author’s previous research results, it can be found that the decay
speed of the bridge deck system, superstructure, and substructure levels is accelerated
in turn [33]. We consider the performance decay prediction based on the technical status
of the bridge superstructure and further explore the influence of each component of the
bridge superstructure on the service performance of the bridge [16]. However, since the
deck system of a girder bridge mainly includes deck pavement, expansion joint devices,
sidewalks, railings and guardrails, drainage systems, lighting and signs, and other compo-
nents, most of these components have little impact on the operational safety of the bridge
structure. Considering that the weight of bridge deck pavement and expansion joint device
in the comprehensive evaluation of the whole bridge is 8% and 5%, respectively [36], and
their quality has a significant impact on the driving comfort. Therefore, we decided to use
the evaluation grades of bridge decking and expansion joint devices as research factors in
this paper.

3.2. Data Preprocessing

The technical condition grades of bridges are divided according to the provisions in
the “Standards for Technical Conditions Evaluation of Highway Bridges” [36]. See Table 3
for details. Therefore, the upper load-bearing structure class, the upper general structure
class, the bearing class, the deck pavement class, and the expansion joint class are regarded
as multivalued ordered independent variables.

Table 3. Bridge Technical Condition Classification Limit.

Technical Technical Status Level D;
Status 1 o 3 4 5
Dr 95, 100) [80, 95) [60, 80) [40, 60) [0, 40)
Condition Well/Good Better Normal/Poor Poor Danger

The initial base frequency of the bridge should be calculated by the finite element
method. For the following conventional structures, when there is no more precise method
to calculate, the following formula can also be used to estimate:
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(1) Simply supported girder bridge

T [EIl

fl = @ rrTC (12)

In Equation (12), I refers to the calculated span of the structure, m; E refers to the elastic
modulus of the structural material, Pa; I, refers to the moment of inertia of the mid-span
section of the structure, m*; m, refers to the mass per unit length at the midspan of the
structure, kg/m.

(2) Continuous girder bridge

13.616 [El

23651 [EI
= 220 [k 14
f2 27712 e ( )

In Equations (13) and (14), when calculating the positive bending moment effect and
shear force effect caused by the impact force of the continuous beam, the fundamental
frequency f; is used; when calculating the negative bending moment caused by the impact
force of the continuous beam, the fundamental frequency f; is used.

Different bridge structure types and spans have different fundamental frequencies
of bridge structures. To measure the change of the fundamental frequency of the bridge
uniformly, we propose the frequency ratio F, as a unified indicator to characterize the
change of the fundamental frequency of the bridge. The calculation formula of the frequency
ratio index is shown in Equation (15).

Fy
F, = 5 (15)

In Equation (15), Fy refers to the current fundamental frequency of the bridge, Hz; Fy
refers to the initial fundamental frequency after the bridge is built, Hz. In addition, it can
be seen from Equation (5) that F, < 1, the better the bridge state, the closer F; is to 1.

The frequency ratio is graded concerning the relevant content on the delineation of the
technical condition grade boundaries of bridges in the “Standards for Technical Conditions
Evaluation of Highway Bridges” [36]. The change of the natural frequency of the bridge
gradually slows down with the extension of time. To accurately describe the change of the
bridge frequency ratio index in the early stage of the bridge construction, the limit range of
the bridge frequency ratio grade gradually becomes larger with the increase in the grade.
The specific classification method is shown in Table 4. After the frequency ratio rank is
divided, the frequency ratio rank can be introduced into the survival analysis model as a
multivalued ordered independent variable.

Table 4. Frequency Ratio Classification Limit.

Frequency Ratio Level
1 2 3
[95, 100] [80, 95) [0, 80)

Bridge inspection data may have data missing, reporting errors, and data errors
caused by human factor observation. Therefore, it is necessary to preprocess the data before
introducing the data to ensure the accuracy of the prediction model results. This paper
mainly carries out the following data processing steps. First, delete the record that the
technical condition level of the whole bridge has dropped by more than 2 in the adjacent
two years [15]. The reason is that in this case, the bridge may have design defects, the
bridge is located in a relatively harsh environment, or it has been damaged by human
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factors. Then, correct the human subjective bias in the detection process. By examining the
data collected this time, it was found that some bridges were rated better than the previous
ones. However, the bridge did not undergo repairs during this period. Further inspection
found that the reason was that different engineers had different subjective scores for the
same bridge at the level boundary of technical conditions. Therefore, the detection records
of the bridges at the technical condition grade dividing line are screened out, and then
the two technical condition grades of the bridge are treated as equal, that is, the event is
regarded as not occurring.

3.3. PH Assumption Verification

To verify whether the upper load-bearing members, upper general members, supports,
bridge deck paving, expansion joints, and frequency ratio conform to the PH assumption,
and to understand the influence of these factors on the bridge superstructure grade, the
Kaplan—-Meier method was used to analyze the above several influencing factors draw
survival curves.

If the univariate survival curves are disjoint or substantially disjoint, it indicates that
the corresponding variables can be introduced into the Cox survival analysis. The survival
curve drawn by the Kaplan—-Meier method is shown in Figure 6.

It can be seen from Figure 7 that, except for the level of expansion joints, the survival
curves of the other research factors basically do not cross. It can be preliminarily determined
that PCClIa, PCCIb, PCClc, DMCla, and Fb basically meet the PH assumption, and can be
introduced into the following Cox survival analysis model as research factors.
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Figure 7. Univariate survival curve: (a) survival curve of PCCla; (b) survival curve of PCCIb;
(c) survival curve of PCClc; (d) survival curve of DMCla; (e) survival curve of DMCIDb; (f) survival
curve of Fb.
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As can be seen from Table 5, except for expansion joints, the significance tests of Log
Rank, Breslow, and Tarone-Ware for the remaining five variables are all less than 0.005. This
further indicates that PCCla, PCCIb, PCClc, DMCla, and Fb are statistically significant and
can be used in the Cox multivariate survival analysis model. The significance of all three
tests for expansion joints is greater than 0.05, which means that the expansion joint rating
is not statistically significant and should be removed from the model.

However, expansion joints will be damaged due to changes in external temperature
difference, thermal expansion, contraction of concrete, and bridge deflection caused by
various loads, bridge deck longitudinal slope, and driving braking force [37,38]. Then, the
joints fall off or the cast-in-place concrete surface is partially peeled off or even damaged.
This will not only cause bumps when vehicles go down the bridge, but also reduce the
overall service level of the bridge, and even affect the safety of the bridge [39]. Damage to
expansion joints can lead to water seepage. Water seepage not only erodes the beam body
but also corrodes the support, which affects the normal shrinkage of the beam body. In the
end, the stress on the related structure of the beam body is much larger than the design
stress, which affects the overall structural safety of the bridge. Therefore, the expansion
joint was still introduced into the multivariate Cox survival analysis model as a research
factor.

Table 5. Chi-Square and Significance Tests.

Covariate Index Log Rank Breslow Tarone-Ware
Chi-Square 67.491 56.001 62.714
PCCla Sig. <0.001 <0.001 <0.001
Chi-Square 59.299 71.599 68.905
PCCIb Sig. <0.001 <0.001 <0.001
Chi-Square 63.976 86.470 79.177
PCCle Sig, <0.001 <0.001 <0.001
Chi-Square 13.089 28.334 20.699
DMCla Sig. 0.004 <0.001 <0.001
Chi-Square 7.904 7.009 7.950
DMCIb Sig. 0.095 0.135 0.093
o Chi-Square 119.583 118336 121.984
Sig. <0.001 <0.001 <0.001

3.4. Cox Survival Analysis

PCClIa, PCCIb, PCCIc, DMCla, DMCIb, and Fb were introduced into the model as
multivalued ordered independent variables. The independent variables are entered into the
equation according to the probability of the score test and then removed according to the
partial likelihood ratio test. Since PCCla, PCCIb, PCCIc, DMCla, DMClIb, and Fb all have
more than three levels in the bridge data collected this time, this variable is transformed
into a dummy variable and introduced into the model. The regression coefficient (B) of
each variable, the standard error (SE) of B, its Wald test significance value, the significance
value of the coefficient, and the average marginal effect are shown in Table 6. If significance
< 0.05, then the researcher concludes that the covariate is useful to the model. Positive
regression coefficients mean the covariate increases hazard, whereas negative coefficients
correspond to reduced hazard. The hazard ratio (HR) for a given covariate appears as
Exp(B) in the output, which is also the predicted change in the hazard for a unit increase in
the predictor [40].
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Table 6. Regression Coefficients and Significance Tests.

Covariate B SE Wald Sig. Exp(B) Lower Upper
PCClay 48.772 0.000
PCClay 2.096 0.309 46.127 0.000 8.132 4.442 14.889
PCClas 2.572 0.452 32.360 0.000 13.089 5.396 31.748
PCCIby 28.872 0.000
PCClIb, 0.628 0.152 16.993 0.000 1.874 1.390 2.527
PCClIbs 1.350 0.279 23.478 0.000 3.857 2.234 6.658
PCClIcy 43.641 0.000
PCClc, 0.486 0.273 3.174 0.075 1.625 0.953 2.773
PCClcs 1.490 0.304 24.086 0.000 4.439 2.448 8.050
PCClcy 2.074 0.510 16.547 0.000 7.593 2.928 21.600
DMCla; 17.179 0.003
DMClay 0.402 0.417 0.931 0.335 1.495 0.660 3.386
DMClas 0.491 0.184 7.086 0.008 1.633 1.138 2.344
DMClay 1.710 0.493 12.051 0.001 5.529 2.105 14.518
Fbq 9.880 0.008
Fb, 0.415 0.154 7.274 0.007 1.515 1.120 2.048
Fbs 0.808 0.297 7.417 0.006 2.243 1.254 4.012
DMCIb, 0.373
DMCIb, 0.276
DMClIbs 0.204
DMClIby 0.248
DMCIbs 0.339

Note: PCClay, represents bridges with superstructure class 1, and similarly PCCla,, and PCClas, represent
bridges with superstructure classes 2 and 3, respectively. PCCIb, PCCIc, DMCla, DMClIb, and Fb have the same
meanings as above.

It can be seen from Table 6 that the upper load-bearing structure, the upper general
structure, the bearing, the deck pavement, and the frequency ratio are the important factors
affecting the survival time of the bridge superstructure. The p-values for the expansion
joint test were all greater than 0.05, indicating that it was not statistically significant and
was excluded from the model. The data in column B of the table represent the regression
coefficients of each covariate. It can be seen that the regression coefficients of all inde-
pendent variables in the equation are positive, which indicates that the risk of degrading
the bridge superstructure class increases with the increase in the superstructure, upper
general members, bearings, and deck pavement, and frequency ratio class. In addition,
the influence of frequency ratio, upper general members, bridge deck pavement, bearings,
and upper load-bearing members on the service performance of bridge superstructure
gradually increases. Exp(B) in Table 6 represents the downgrade risk of a bridge with a
certain component level relative to the superstructure level of a bridge with a corresponding
component level of 1 when other variables are equal. For example, the degradation risk of
bridge superstructure grade with PCCla, is 8.132-fold that of PCClay, and the degradation
risk of bridge superstructure grade with PCClIaj is 13.089-fold that of PCCla;.

The risk function derived from the maximum likelihood estimation results in Table 6
is shown in Equation (16).

h(t) = ho(t) exp (2.096 x PCCla, +2.572 x PCClas + 0.628 x PCCIb,
+1.350 x PCClIbs + 0.486 x PCClIcy + 1.490 x PCClcs
+2.074 x PCClcy + 0.402 x DMClay + 0.491 x DMClas
+1.710 x DMClay + 0.415 x Fby + 0.808 x Fbg)

(16)

The linear combination part of the variables on the right side of the risk function
expression is proportional to the risk function. The larger the value, the greater the risk,
reflecting the prognosis of an individual, which is called the prognostic index (PI). The
prognostic index of this example is shown in Equation (17).
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PI = 2.096 x PCCla, +2.572 x PCClaz + 0.628 x PCCIby + 1.350 x PCCIbs
40.486 x PCClIcy + 1.490 x PCClcs + 2.074 x PCClcy
+0.402 x DMClay + 0.491 x DMClaz + 1.710 x DMClay
+0.415 x Fby + 0.808 x Fbs

(17)

Through the relationship between the risk function and the survival function of the
bridge superstructure, the survival function curve of each influencing factor can be obtained.
The Cox survival function plot is shown in Figure 8. As can be seen from Figure 8a, the
rate of deterioration of the bridge superstructure began to accelerate in the sixth year.
The median superstructure survival times for bridges with superstructure classes 1, 2,
and 3 were 16, 7.8, and 8.9 years, respectively, which implies that the decay rate of the
superstructure gradually decreased over time. In the initial stage of bridge construction,
the mid-span deflection is mainly caused by the shrinkage and creep of concrete. With the
extension of the service time of the bridge, the shrinkage and creep effect of the concrete
gradually slows down, and the deflection of the superstructure caused by it also gradually
decreases. However, with the prolongation of service time, the corrosion of steel bars,
cracks of beams and slabs, and spalling of concrete voids gradually appear, which will
have a very adverse effect on the superstructure of bridges and accelerate the increase in
mid-span deflection. In addition, the median survival times of deck pavement classes 1, 2,
3, and 4 were 10.3, 9.2, 9, and 6.2 years, respectively, indicating that the effect of decking on
the superstructure varies with time gradually increases. With the prolongation of bridge
service time, the bridge deck pavement will appear cracks, damaged voids, and other
phenomena. The continuous deterioration of bridge deck pavement causes the bridge
superstructure to receive a greater level of dynamic load, which will accelerate the damage
to bridge pavement. In addition, the continuous deterioration of the bridge deck pavement
greatly reduces driving comfort. The significant reduction in driving comfort will adversely
affect the driver’s future route selection, which in turn will gradually reduce the traffic
volume on the route.
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Figure 8. Cox survival curve: (a) Cox survival curve of PCCla; (b) Cox survival curve of PCClIb;
(c) Cox survival curve of PCClIc; (d) Cox survival curve of DMCla; (e) Cox survival curve of Fb.
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Finally, the model is tested for the PH assumption through the relationship between
the survival function and the hazard function (see Equation (11) for details), and a plot of
Ln[—LnS(t)]-Time is plotted in Figure 9. Except for the expansion joints, the parallel curves
of the different state levels of the components prove that they meet the requirements of the
PH assumption.

The expansion joints in this study did not meet the significance test and were not
included in the model, but it did not mean that the expansion joints did not affect the use
state of the superstructure [37]. On the one hand, the bridge survival data collected this
time did not classify the bearing types, and different bearing forms may have different
effects on the degradation of the bridge superstructure. On the other hand, expansion joints
will be more or less blocked and stuck no matter what state the bridge is in as a whole.
Expansion joints are attachments that are subjected to maximum dynamic loads during
bridge use. The small unevenness of the bridge deck will make it bear a large impact force,
which can easily cause damage to the expansion joint. When the expansion joint device
is damaged to a certain extent, it will cause the bridge deck to jump, thus affecting the
structural safety of the bridge. Therefore, the bridge expansion joint is very important to
the overall structure of the bridge.
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Figure 9. PH Assumption verification: (a) Ln[—LnS(t)]-T curve of PCCla; (b) Ln[—LnS(t)-T curve
of PCCIb; (¢) Ln[—LnS(t)]-T curve of PCClIc; (d) Ln[—LnS(t)]-T curve of DMCla; (e) Ln[—LnS(t)]-T
curve of Fb.

4. Conclusions

With the continuous increase in service time, the service performance of bridges will
gradually decay at different rates. Accurately predicting the decay trend of bridge service
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performance is of great significance for the safe operation and maintenance of bridges.
Considering that it is impossible to arrange real-time sensors on thousands of small and
medium bridges to monitor structural safety, this study developed a method to analyze
the fundamental frequency of bridges by collecting dynamic parameters of bridges with
smartphone sensors.

Bridge fundamental frequency and routine inspection data were used as research
factors to analyze the deterioration trend of the superstructure of bridges in service. The
variation characteristics of the upper load-bearing member, upper general structure, bear-
ing, bridge deck pavement, expansion joint, and bridge fundamental frequency with
time under different technical condition levels were investigated. The following main
conclusions were obtained.

The built-in acceleration sensor of an Android smartphone can effectively collect the
first-order vibration frequency of the bridge, but its low sensitivity and high output noise
level make it impossible to directly measure the higher-order vibration frequency of the
bridge.

The upper load-bearing members, the upper general structure, the bearing, the deck
pavement, and the frequency ratio are all related to the changing trend of the technical
condition level of the bridge superstructure. The median survival period of the super-
structure of the bridge with the upper load-bearing member grade 1 is 16 years, which is
much larger than that of the bridge with the higher load-bearing member grade. The re-
search results are consistent with the actual deterioration trend of the bridge superstructure.
The bridge superstructure degradation prediction method based on survival analysis and
bridge fundamental frequency makes full use of the information provided by incomplete
bridge survival data. This not only improves the prediction accuracy of the model but also
reduces the artificial subjective influence caused by the visual inspection data to a certain
extent. The research has a certain guiding significance for the decision-making of the bridge
maintenance management department.

In this paper, the rapid collection of bridge frequencies by smartphone is combined
with survival analysis theory to study the decay law of bridge superstructure over time, but
the comparison with other bridge service performance prediction models is not considered.
In addition, prediction methods based on machine learning and deep learning theory are
gradually being applied to the prediction of structural life in recent years. However, due
to the small amount of bridge health detection data, the above methods cannot be more
efficiently applied in bridge service performance prediction. In the future, the author
plans to infer the general decay law of bridge structures through a large amount of data
analysis, combine hyperparameter optimization to generate a large number of bridge
survival simulation data, and then apply it to the prediction model based on deep learning
theory.
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