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Abstract: Introduction: Obstructive sleep apnea (OSA) can cause serious health problems such as
hypertension or cardiovascular disease. The manual detection of apnea is a time-consuming task, and
automatic diagnosis is much more desirable. The contribution of this work is to detect OSA using
a multi-error-reduction (MER) classification system with multi-domain features from bio-signals.
Methods: Time-domain, frequency-domain, and non-linear analysis features are extracted from
oxygen saturation (SaO2), ECG, airflow, thoracic, and abdominal signals. To analyse the significance
of each feature, we design a two-stage feature selection. Stage 1 is the statistical analysis stage, and
Stage 2 is the final feature subset selection stage using machine learning methods. In Stage 1, two
statistical analyses (the one-way analysis of variance (ANOVA) and the rank-sum test) provide a
list of the significance level of each kind of feature. Then, in Stage 2, the support vector machine
(SVM) algorithm is used to select a final feature subset based on the significance list. Next, an
MER classification system is constructed, which applies a stacking with a structure that consists
of base learners and an artificial neural network (ANN) meta-learner. Results: The Sleep Heart
Health Study (SHHS) database is used to provide bio-signals. A total of 66 features are extracted.
In the experiment that involves a duration parameter, 19 features are selected as the final feature
subset because they provide a better and more stable performance. The SVM model shows good
performance (accuracy = 81.68%, sensitivity = 97.05%, and specificity = 66.54%). It is also found
that classifiers have poor performance when they predict normal events in less than 60 s. In the
next experiment stage, the time-window segmentation method with a length of 60 s is used. After
the above two-stage feature selection procedure, 48 features are selected as the final feature subset
that give good performance (accuracy = 90.80%, sensitivity = 93.95%, and specificity = 83.82%). To
conduct the classification, Gradient Boosting, CatBoost, Light GBM, and XGBoost are used as base
learners, and the ANN is used as the meta-learner. The performance of this MER classification system
has the accuracy of 94.66%, the sensitivity of 96.37%, and the specificity of 90.83%.

Keywords: feature extraction; feature selection; polysomnography; sleep apnea detection

1. Introduction

Obstructive sleep apnea (OSA) is the most common breathing disorder during sleeping,
which is caused by repeated partial or total obstruction of the upper airway [1]. The obstruc-
tion of the upper airway may last for 10 s or more. OSA has a risk for several complications,
such as hypertension and cardiac diseases. The number of apneas and hypopneas in one
hour during sleep (apnea–hypopnea index, AHI) diagnosis the severity of OSA. Clinically,
for diagnosing OSA, polysomnography (PSG) is considered the gold standard. PSG records
overnight electrocardiogram (ECG), electromyogram (EMG), electrooculogram (EOG),
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electroencephalogram (EEG), airflow, respiratory effort, oxygen saturation (SaO2), body
position, and snore signals. The diagnosis of OSA by trained specialists requires expensive
human resources and relies on the experience level of a specialist. It is a time-consuming
and difficult task for expert physicians to analyse a large volume of data that is collected
overnight. Thus, an automatic OSA detection system is desirable to help doctors during a
diagnostic process.

Recently, studies on automatic detection methods using PSG signals were reported.
The recent work had shown that SaO2 signals provided discriminative information in
sparse representation to detect apnea–hypopnea events [2]. Systematic and sporadic
noise were removed from airflow signals using the sliding window and short-time slice
methods. Then, a Bayesian criterion is used to classify apnea or hypopnea events [3].
Vaquerizo-Villar et al. [4] used anthropometric variables, time-domain features, and spectral
features from SaO2 recordings to classify apnea from the normal events using the multi-
layer perceptron. In [5], unlabelled ECG signals provided features obtained by the sparse
auto-encoder method, and an artificial neural network (ANN) was employed to detect OSA.
Then, the hidden Markov model was used to improve the performance. An optimised
convolution neural network structure was used to develop the apnea event, and SaO2
signals were used [6]. In Study [7], the authors proposed a new probabilistic algorithm.
A Gaussian mixture probability model was used to detect apnea events based on the
posterior probabilities of the respective events. In Study [8], the authors used a hybrid
feature selection method to obtain multi-domain significant features from ECG, SaO2,
and abdominal signals. Mahsa Bahrami [9] used ECG recordings and hybrid deep models to
achieve high performance. Yao Wang [10] designed a single-channel EEG sleep monitoring
model based on the bidirectional long and short-term memory network (the accuracy of
92.73%).

The four contributions of this paper are as follows. First, we extracted new time-
domain, frequency-domain, and non-linear features from multiple bio-signals.
Second, we designed a two-stage feature selection to select a feature subset. Third, for prac-
tical reasons, we proposed a time-window method and combined it with classifiers to
achieve good results. Fourth, we designed a multi-error-reduction (MER) classification
system that utilises the proposed feature extraction and selection to improve classification
performance.

This paper is organised as follows. Section 2 discusses the general structure, dataset,
feature extraction methods, two-stage feature selection, and some classification algorithms.
Section 3 reports results with discussions. A conclusion will be drawn in Section 4.

2. Methodology
2.1. General Structure

Figure 1 illustrates the basic components of the proposed OSA detection system. The
process starts with PSG signal collection, followed by a signal pre-processing module with
segmentation and filtering. Then, a feature extraction module obtains features from the
PSG signals. Next, a feature selection module determines a useful feature subset. Finally,
the selected features are added to the MER classification system. Each input event can be
labelled as normal or apnea.
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Figure 1. Components of OSA detection system.

2.2. Collection of Sleep Studies from a Database

To construct our apnea classification system, we use the Sleep Heart Health Study
(SHHS) database provided by the National Heart Lung and Blood Institute. The dataset
covers people over 40 years old and consists of thoracic, abdominal, airflow, SaO2, and ECG
signals. Thoracic and abdominal excursions are recorded by inductive plethysmography
bands and sampled at 10 Hz. The bands are placed on a subject’s thorax and abdomen.
SaO2 signals are collected by a finger-tip pulse oximetry and sampled at 1 Hz. Airflow
signals are collected by a nasal-oral thermocouple and sampled at 10 Hz. The airflow
sensors are placed under a subject’s nose. ECG is collected by a bipolar lead, sampled at
125 Hz, with two leads placed R subclavicle-L lower rib. Heart rate (RR intervals) signals
are derived from ECG signals sampled at 1 Hz. A sleep physiologist labels each apnea
event, and its start and end points. Figure 2 shows SaO2 signals, an apnea event, and its
start and end points. In this study, ECG, abdominal, thoracic, airflow, and SaO2 signals
are used.
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Figure 2. One apnea event duration in SaO2 signals; the duration is between the apnea start line and
the apnea end line.

2.2.1. Feature Extraction Using SaO2 Signals

We use 12 multi-domain extraction methods to obtain features from the SaO2 signals.
They are features 1–12 in Table 1. The mostly used index for diagnosing OSA is the cumula-
tive time that lasts below a threshold. As a preprocessing of the data, non-physiological
artifacts are considered as artifacts when the point-to-point difference is more than 8%,
and the median value is calculated for the beginning 10 s to replace the artifacts.
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Table 1. Feature selection results in the experiment with event duration using statistical analysis
(Features 1–12 from the SaO2 signals, features 13–22 from the airflow signals, features 23–28 from the
abdominal signals, features 29–34 from the thoracic signals, and features 35–66 from the ECG signals;
four dashed lines divide the table into five parts according to the kind of signals); * denotes selected
best feature subset.

Feature λfeature Feature λfeature

1. med 581 34. sum_PSD80/100 341
2. MM2 748 35 * . NN50_RR 1432
3. kur 651 36. SDSD_RR 351
4. var 582 37. tSD_RR 563
5. min 661 38. std_RR 330

6 *. mean 1414 39. var 678
7 *. NumZC 997 40. kur 671

8 *. comp 1215 41. mean_RR 637
9. SD1 774 42. CV_EDR 168

10 *. Bel98 1509 43 *. SS 1477
11 *. Abo98 831 44 *. SD 1178

12 *.
mean_PSD0.016/0.05

1565 45 *. entropy_D1 1497

13. mean 136 46 *. entropy_D2 1505
14. med 149 47 *. entropy_D3 1522
15. std 167 48 *. entropy_D4 1529

16. mean_PSD0/0.1 427 49 *. entropy_D5 1527
17. mean_PSD0.4/0.5 417 50 *. entropy_D6 1529

18. mean_D1 12 51 *. entropy_D7 1497
19. mean_D2 17 52. var_D1 606
20. mean_D3 18 53. var_D2 645
21. mean_A3 131 54. var_D3 668

22. comp 635 55. var_D4 700
23 *. sum_abs 1475 56. var_D5 660

24. std_abs 474 57. var_D6 626
25. mean 590 58. var_D7 610

26 *. mean_PSD80/100 947 59. WSD_RR 350
27. mean_D2 31 60. max_PSD0.03/0.5 352
28. mean_D1 26 61. mean_PSD10/20 711

29. sum 23 62. mean_PSD80/100 586
30. med 446 63. SCrC_3_RR 392
31. std 428 64. SCrC_4_RR 336

32. mean 16 65 *. max_dia_kPCA 1526
33. var 363 66. RP_2_PC 558

In this study, the feature set covers multi-domain features that include the median
of each window (med), the maximum-to-minimum changes which were more than 2%
of each window (MM2), the kurtosis of each window (kur), the variance of each window
(var), the minimum of each window (min), the mean of each window (mean), the num-
ber of zero-cross in the window (NumZC), and the complexity of each window (comp).
Complexity represents the length of the shortest description in an SaO2 window. The Poincare
SD1 is computed, which shows the short-term variability of each SaO2 window [11]. Two
features are the time spent below and above the 98% maximum in each window (Bel98 and
Abo98). Finally, the power spectral density (PSD) method is used to show the intensity of
desaturation events. A 5th-order Yule–Walker autoregressive estimate is used to obtain the
mean of PSD in the 0.016–0.05 Hz frequency band in each window (mean_PSD0.016/0.05).

2.2.2. Feature Extraction Using Airflow Signals

Airflow recordings provide features 13 to 22 shown in Table 1. The apnea index
from airflow signals is related to a decrease to at least 10% of its basal value that sustains
for at least 10 s [12]. The apnea events are scored for at least two missed breaths [13].
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To preprocess that data, we obtain the median of a 10 s window, which is used to correct
the baseline. For noise removal, a 3rd-order Butterworth low-pass filter with a cut-off
frequency of 3 Hz is used. Airflow recordings are re-sampled at 1 Hz.

In each window, there are statistical features, including the mean (mean), median
(med), and standard deviation (std). On the other hand, the decreases and increases
of airflow signals throughout the night are related to the frequency domain. PSD and
the wavelet algorithm are used to explore the differences in the spectral information
between the sleep apnea positive and negative groups. The Welch method uses a segment
length of five samples with 2.5 overlapped samples. The mean within the frequency
ranges of 0–0.1 Hz and 0.4–0.5 Hz in each window is calculated (mean_PSD0/0.1 and
mean_PSD0.4/0.5). The depth of wavelet transformation is three, and Daubechies wavelets
three is used. The wavelet can decompose a given window signal to obtain means of one
approximation level and three detail coefficient levels (mean_D1 to mean_A3). Finally,
there is a variable called complexity in each window (comp).

2.2.3. Feature Extraction Using Abdominal and Thoracic Signals

We use time-domain and frequency-domain methods to process abdominal and tho-
racic recordings. Features 23–28 are extracted from the abdominal recordings, and Features
29–34 are extracted from the thoracic recordings, as shown in Table 1. The collapse of the
upper airway leads to OSA, which causes activities of the respiratory muscles. For ab-
dominal and thoracic recordings, we use the median of a 60 s window to start the baseline
correction. A Butterworth filter with a pass-band of 0.05–4 Hz is then used to remove noise.

The feature set includes the summation and the standard deviation of each absolute
window (sum_abs and std_abs) and the mean of each window (mean). The Yule–Walker
method and wavelet transformation are used to extract frequency-domain features. The seg-
mentation length of the Yule–Walker method is 40 samples, and the mean of the 80–100 Hz
frequency range in each window (mean_PSD80/100) is obtained. The wavelet is Daubechies
2 with a depth of two, and the mean of the first and second detail levels are computed
(mean_D1 and mean_D2) in each window. Next, features in the frequency domain and
time domain are extracted from thoracic recordings. This feature set consists of the median,
summation, mean, variance, and standard deviation of each window (sum, med, std, mean,
var). The summation of the 80–100 Hz frequency band (sum_PSD80/100) in each window is
computed by the Yule–Walker method.

2.2.4. Feature Extraction Using ECG Signals

In this study, three kinds of feature extraction methods are used to obtain features from
ECG signals. Table 1 shows them as features 35–66. To process the data, first, the 0.05–40 Hz
band-pass thirrd Butterworth filter is applied to remove noise and takes baseline correction.
Then, the R-peaks are found by the modified Pan–Tompkin algorithm. QRS series are
extracted by a symmetric window of 120 ms around the R-peaks. Because of the low ECG
quality, there is a processing step to calculate a corrected RR interval sequence. In this work,
we use the heart rate correction method from [14]. Finally, ECG-derived respiratory (EDR)
signals are obtained from the ECG recordings by the Physionet EDR method since EDR
signals can reflect the motion of the thoracic cavity during sleep.

We first obtain features using time-domain methods. These features include the
number of pairs of adjacent RR intervals that the later RR interval is more than the previous
one by more than 50 ms (NN50_RR), the standard deviation of the RR interval (SDSD_RR),
the standard deviation of the RR interval between the standard deviation at the first 30 s
and the one at the second 30 second (tSD_RR), the standard deviation of RR interval
(std_RR), the variance, the kurtosis of each ECG window (var and kur), the mean of each
RR interval window (mean_RR), and a ratio of the standard deviation to the mean of each
EDR window (CV_EDR).

Second, we use PSD and wavelet transformation to extract frequency-domain features.
In each window, we extract spectral features, such as spectral spread (SS) and spectral



Sensors 2022, 22, 5560 6 of 17

decrease (SD). The wavelet transformation with a Symlet wavelet of order three and a level
number of seven is used. Shannon’s entropy (entropy_D1 to entropy_D7) and variance
(var_D1 to var_D7) are computed using seven detailed coefficient levels. Wavelet spectral
density (WSD) is used to analyse the RR series (WSD_RR). PSD is used to process the RR
series and ECG signals. In each RR interval window, the dominant frequency is found in
the 0.03–0.5 Hz frequency range (max_PSD0.03/0.5). In each ECG window, we extract the
mean of PSD in 10–20 Hz and 80–100 Hz (mean_PSD10/20 and mean_PSD80/100).

Finally, two serial correlation coefficients are extracted from each RR interval window
(SCrC_3_RR to SCrC_4_RR). Here, the kernel principal component analysis (kPCA) is done
on the QRS recordings, and the maximum of the diagonal matrix of kPCA (max_dia_kPCA)
and the relative power of the second principal component (RP_2_PC) are calculated in each
QRS window.

In summary, we obtain 66 features. Features 1–12 are from SaO2 signals, Features
13–22 are from airflow signals, Features 23–28 are from abdominal recordings, Features
29–34 are from thoracic recordings, and Features 35–66 are from ECG signals, which are
shown in Table 1.

2.3. Feature Selection

A large number of features increase the processing time, but it might not be needed, as
some features could be redundant. Hence, a feature selection is used to remove redundant
features before the classification stage, which helps to prevent over-fitting and reduce
computational load. We apply a two-stage procedure to make the feature selection. Stage 1
is the statistical analysis stage, and Stage 2 is the final feature subset selection stage using
machine learning methods. First, we use the one-way analysis of variance (ANOVA) and
then the rank-sum test to evaluate each feature. Redundant features are removed from the
feature set according to the results. Second, the reduced feature set is divided into different
classes. The performance is evaluated by a support vector machine (SVM) model with
different kernels and parameters. The hill-climbing method is also applied to select the best
feature subset.

2.3.1. Statistics Analysis Stage

To determine the significance of each feature, ANOVA and the rank-sum test are
used. We use a simple threshold (p-value of ANOVA < 0.05) to select positive features.
Similarly, in the rank-sum test, there is a simple value (p-value = 1) to detect positive
features. For each patient, the pair of p-values for each feature is obtained. If both p-values
are positive for a feature, it is considered significant to a patient. After obtaining the
p-values of 66 features for all patients, we set λfeature as the number of positive pairs
for each feature, and the maximum value of λfeature is the number of processed patients’
PSG signals.

In this study, to select useful features, we set a threshold as half of the processed PSG
signals. One feature is put into the selected subset if its λfeature is more than the threshold.
The selected features are then divided into different classes depending on the distribution
of their λfeature values. In the next stage, the hill-climbing algorithm is used to confirm the
best feature subset with the classes.

2.3.2. Support Vector Machine Selection Stage

To confirm the best feature subset, we used the SVM method to select the best classes
with the most relevant information separating apnea from normal according to the classes
obtained from the former stage. Initially, the features in the top class are fed to SVM models,
and the performance is recorded. Then, the same is done to the next class. The process
is repeated until all classes are done. The SVM algorithm is implemented with different
kernels and parameters. In this stage, we compare the performance of different kernels.
The kernels used in this paper are shown in Table 2.
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Table 2. List of kernel functions used in SVM.

Kernel Parameters Mathematical Formula

Linear K(xi,xj) = xi,xj

Polynomial K(xi,xj) = (xi,xj+1)d d is the degree
of polynomial

Radial Basis Function (RBF) K(xi,xj) = e−
∥∥xi−xj

∥∥2
/2σ2

To verify the performance, we use four measures, namely accuracy, sensitivity , speci-
ficity, and AUC (the area of ROC curve).

sensitivity =
TP

TP + FN
(1)

specificity =
TN

TN + FP
(2)

accuracy =
TP + TN

P + N
(3)

where P is condition positive, N is condition negative, TP is true positive, TN is true
negative, FP is false positive, and FN is false negative. Ideally, if the sensitivity value is 1
and the specificity value is 0, AUC has the largest value (AUC = 1).

2.4. Multi-Errors-Reduction Classification System

To improve the performance of apnea classification, we propose an MER classifica-
tion. A classifier has its error, and the errors of different classifiers are in different fields.
MER classification can combine the results of classifiers and minimise an error of a clas-
sifier using other classifiers, and provide labels more accurately. The MER classification
consists of five phases. First, the selected features are fed to the MER classification system.
Second, some classifiers with good performance are considered as basic learners in level-0.
Third, we implement the classifier combination method as a potential solution to improve
the classification performance. The basic assumption of classifier combination is that the
misclassified instances of individual classifiers do not overlap, and different individual clas-
sifiers can provide different perspectives of classification. Classifier combinations may use
complementary information to improve performance. Some basic classifier combination
schemes include maximum voting, average voting, and weighted average voting. In this
paper, we use the stacking ensemble method to conduct the classifier combination. In the
last phase, a meta-learner is used to make the final prediction.

The above method borrows a boosting concept, which is based on the idea that a
combination of simple classifiers can have better performance than any of the simple
classifiers alone [15]. With the same training data, a simple classifier (basic learner) is able
to produce labels with a probability of error. Then, the final learner is able to minimise
small error probability arbitrarily and predict labels more accurately by combining the
basic learners (as illustrated in Figure 3).
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Dataset

Subset 1

Subset 2

Subset n

Model 1

Model 2

Model n

Final

Prediction

Figure 3. The concept of boosting.

In this paper, some boosting methods are used, including Gradient Boosting, CatBoost
from Yandex, Light Gradient Boosting (Light GBM), and XGBoost [16]. Classic boosting
methods minimise the errors by updating the weights of a training set, but Gradient Boost-
ing uses the mistake-residual error directly. CatBoost is a kind of gradient boosting based
on decision trees. “Cat” comes from “Categories”, and CatBoost can handle categorical
features in a large dataset quickly. Light GBM is also an algorithm based on a decision tree,
and it fits data to split the tree. It can reduce the loss and improve accuracy. The progress
is made based on the leaf-wise method when growing on the same leaf. XGBoost is a
decision-tree-based algorithm. It uses tree-pruning, parallel processing, handling missing
values and regularization to avoid overfitting and optimise the classic boosting algorithm
for enhanced performance.

Stacking is one of the most widely used ensemble approaches [17]. It combines
predictions of base classifiers (level-0) for a meta-level (level-1) classifier. The meta-level
classifier corrects the decisions of the base classifiers and predicts the final labels, as shown
in Figure 4. To train the meta-level classifier, the k-fold cross-validation is used [18]. To form
a meta-instance, the decisions from base classifiers are combined with the gold standard
in each training fold. Then, a meta-level classifier is trained based on the meta-instances.
When a new instance is classified, the outputs of the base classifiers are calculated first.
Then these outputs are fed to the meta-classifier for the final results.

Dataset

Model 1

Model 2

Model n

Final

Prediction

Meta-

instances

Meta-

classifier

Base classifiers

(level-0)

level-1

Figure 4. The concept of stacking.

The meta-classifier (level-1) is an ANN, extensively used for binary classification
in sleep apnea studies. In Figure 5, the ANN schematic representation is shown. Each
input vector is put into the input layer, and it is distributed to a neuron in the first hidden
layer. Each neuron has its weight vector associated with the connections to the input
vector. The neuron sums the inputs, which is processed by a non-linear activation function.
The output vector of the hidden layer is multiplied by other weight vectors. The final
prediction is obtained from the final layer. The number of nodes will affect the perfor-
mance of the ANN. Too few hidden nodes may not fit for complex tasks. However, if the
network has too many hidden nodes, the noise in the training data causes the overfitting
problem [19,20].
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Input layer Hidden layer

Output layer

Prediction from

XGBoost

Prediction from

Light GBM

Prediction from

CatBoost

Prediction from

Gradient Boosting

Figure 5. The structure of an artificial neural network.

The meta-classifier (level-1) is an ANN, which is extensively used for binary classifica-
tion in sleep apnea studies. In Figure 5, the ANN schematic representation is shown. Each
input vector is added to the input layer, and distributed to a neuron in the first hidden
layer. Each neuron has its weight vector associated with the connections to the input
vector. The neuron sums the inputs, which is processed by a non-linear activation function.
The output vector of the hidden layer is multiplied by other weight vectors. The final
prediction is obtained from the final layer. The number of nodes will affect the performance
of the ANN. Too few hidden nodes may not fit for complex tasks. However, if the network
has too many hidden nodes, the noise in the training data make causes the overfitting
problem [19,20].

3. Results and Discussion

The experiment is divided into two parts. First, the segmentation is conducted based
on event duration as it is reported by the doctor directly. It is shown in Figure 2. In this
experiment part, we extract 66 features based on event duration, use the two-stage feature
selection to confirm a feature subset, and then use a classifier to complete sleep apean
detection. Second, the segmentation is conducted based on a common time window. In
this experiment part, we extract 66 features based on a time window, use the two-stage
feature selection, and then use the MER system to improve performance. Furthermore,
the dataset is divided into the training set and the testing set. All feature selections and
training processes were used in the training set, and the testing set was only used to
evaluate performance.

3.1. Experiment with Event Duration
3.1.1. Feature Selection

Sixty-six features were obtained by the extraction methods shown in Table 1. In this
study, 1574 patients’ PSG signals were used to provide features. For each feature, there
were 1574 pairs of p-values. λfeature is the number of positive pairs for a feature. The values
of λfeature are shown in Table 1. For example, it can be seen that λfeature of Feature 12 is
1565, which means that 1565 pairs of Feature 12 are positive. To select useful features, we
set the threshold to 787 (which is half of the number of processed PSG signals). A feature is
considered significant if its λfeature is larger than the threshold. Finally, nineteen features
were considered as significant features, which are marked with an asterisk in Table 1.

To determine the final feature subset using machine learning methods, we put the se-
lected features into four classes {Classes A, B, C, and D} by comparing the distribution of 19
λfeature values. The Classes are shown in Table 3. They were employed in the hill-climbing
method in Stage 2. Kernels affect the performance of the SVM method. In this paper, we
evaluate the linear (R), polynomial (R and d), and RBF (R and σ) kernels. The data were
preprocessed by the under-sampled balance method, and outliers are removed. In Stage 2
of the feature selection phase, 66 features were added to SVM models with different kernels
and parameters. The performance with 66 features is considered the standard. After the
hill-climbing algorithm, performance was recorded and shown in Table 4. From this table,
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we can compare the sensitivity, specificity, and accuracy to confirm the best feature subset.
The performance is bold if accuracy is more than 70%.

Table 3. Feature classes via the distribution of λfeature in the experiment with event duration.

Feature No. Class A Class B Class C Class D
1526–1574 1491–1525 1301–1490 787–1300

SaO2 12 10 6 7 8 11
Airflow

Abdominal 23 26
Thoracic

ECG 48 49 50 65 45 46 47 51 35 43 44

From Table 4, under all features, the SVM model with RBF, σ = 25, R = 0.2 had a
sensitivity of 92.26% and a specificity 63.75% is considered as the standard. From the
stability perspective, we can see that Class ABC and Class ABCD are better than Class A,
Class AB, and all features. Class ABCD was more stable than Class ABC, but Class ABC
had the best accuracy (79.06%). Thus, AUC was used to evaluate Class ABC and Class
ABCD. A comparison of AUC under different feature subsets is shown in Table 5. The AUC
of Class ABCD was better than the AUC of Class ABC. It can be found that Class ABCD
had better effectiveness and robustness. Thus, Class ABCD is considered as the feature
subset. Features 6, 7, 8, 10, 11, and 12 were extracted from the SaO2 signals, Features 23
and 26 were extracted from the abdominal signals, and Features 35, 43, 44, 45, 46, 47, 48, 49,
50, 51, and 65 were extracted from the ECG signals.

Table 4. Sensitivity (%), specificity (%), and accuracy (%) based on the hill-climbing method using
SVM models with different kernel functions and parameters in the experiment with event duration.

Kernels R
Class A Class AB Class ABC Class ABCD All Features

Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc

RBF σ = 1
0.2 99.31 40.84 70.07 98.94 50.94 74.94 98.85 54.06 76.46 98.15 56.91 77.53 93.99 7.25 50.62
1 99.12 43.10 71.11 98.90 51.87 75.39 98.68 54.92 76.80 98.24 57.88 78.06 93.70 11.66 52.68
10 98.82 47.96 73.39 98.72 54.12 76.42 98.49 56.21 77.35 97.61 59.98 78.80 93.14 14.15 53.64

RBF σ = 5
0.2 99.06 44.87 71.96 99.09 46.42 72.75 99.15 45.85 72.50 97.58 59.99 78.78 91.76 62.07 76.92
1 99.12 45.08 72.10 99.01 46.28 72.65 99.34 46.54 72.94 97.21 60.36 78.79 91.39 63.25 77.32

10 99.27 40.08 69.68 99.08 48.99 74.04 98.63 54.41 76.52 97.82 58.69 78.26 89.41 65.43 77.42

RBF σ = 25
0.2 99.96 19.78 59.87 99.84 31.44 65.64 99.80 33.55 66.67 99.63 43.77 71.70 92.26 63.75 78.00
1 99.96 24.15 62.06 99.75 35.53 67.64 99.74 37.24 68.49 98.71 49.18 73.94 91.11 64.49 77.80

10 99.41 39.48 69.45 99.26 42.35 70.81 99.34 42.87 71.10 96.19 60.95 78.57 91.49 64.44 77.96

Poly d = 2
0.2 98.68 45.45 72.07 98.55 52.64 75.60 98.62 54.84 76.73 97.58 59.63 78.60 14.01 91.35 52.68
1 98.79 45.43 72.11 98.47 52.70 75.58 98.48 55.95 77.21 97.75 59.07 78.41 11.99 91.43 51.71

10 98.09 49.56 73.83 94.10 56.01 75.06 98.13 57.59 77.86 47.75 64.68 56.21 1.41 98.98 50.20

Poly d = 3
0.2 99.70 33.62 66.66 3.73 96.74 50.24 0 99.42 49.71 0 99.48 49.74 0 1 50.00
1 95.91 38.44 67.18 1.02 99.65 50.34 0 99.42 49.71 0 99.84 49.97 0 1 50.00

10 99.35 40.68 70.01 21.01 89.92 55.47 0 99.99 49.99 0 1 50.00 0 1 50.00

Poly d = 4
0.2 0 1 50.00 3.67 95.92 49.80 0 99.26 49.63 0 99.98 49.99 0 1 50.00
1 0 99.99 49.99 0 99.92 49.96 0 99.97 49.98 0 99.95 49.98 94.24 7.21 50.72

10 0 1 50.00 1 00.73 50.36 0 99.93 49.96 0 99.94 49.97 0 1 50.00

Linear
0.2 99.92 20.30 60.11 99.67 35.00 67.34 99.46 43.94 71.70 96.01 61.00 78.50 90.41 64.69 77.55
1 99.91 20.31 60.11 99.65 35.05 67.35 99.01 46.86 72.94 95.80 61.00 78.40 90.62 64.67 77.65

10 99.92 20.29 60.10 99.76 34.75 67.26 97.60 60.52 79.06 96.30 60.96 78.63 33.31 82.37 57.84



Sensors 2022, 22, 5560 11 of 17

Table 5. AUC (%) obtained from SVM models with different kernels and parameters using Class
ABC and ABCD in the experiment with event duration.

Kernels R Class ABC Class ABCD

RBF σ = 1
0.2 76.45 77.53
1 76.80 78.06

10 77.35 78.79

RBF σ = 5
0.2 72.50 78.78
1 72.94 78.78

10 76.52 78.25

RBF σ = 25
0.2 66.67 71.70
1 68.49 73.94

10 71.10 78.57

Poly d = 2
0.2 76.73 78.60
1 77.21 78.41

10 77.86 56.21

Poly d = 3
0.2 49.71 49.74
1 49.71 49.92

10 49.99 50.00

Poly d = 4
0.2 49.63 49.99
1 49.98 49.97

10 49.96 49.97

Linear
0.2 71.70 78.50
1 72.93 78.40

10 79.06 78.63

3.1.2. Classification

Classification methods include the SVM algorithm, the decision tree algorithm, the k-
nearest neighbour algorithm, the random forest algorithm, the extra trees algorithm, the lin-
ear discriminant analysis algorithm, and the logistic regression algorithm. The results of
each classifier are shown in Table 6 and the 19 selected features are the inputs. The per-
formance of each classifier was evaluated by sensitivity, specificity, accuracy, and AUC.
The SVM method gave the highest performance (accuracy = 81.68%, sensitivity = 97.05%,
specificity = 66.54%, and AUC = 81.79%).

Table 6. Performance of each classifier with the selected features in the experiment with event duration.

Classifiers Acc (%) Sen (%) Spe (%) AUC (%)

SVM 81.68 97.05 66.54 81.79
Random Forest 81.60 85.27 77.98 81.62
Decision Tree 76.78 75.41 78.13 76.77

Extra Trees 81.35 85.25 77.50 81.38
K-Neighbors 78.28 84.03 72.61 78.32

Logistic Regression 81.28 96.18 66.60 81.39
Linear Discriminant 73.80 88.69 59.13 73.91

The sensitivity of different classification methods was around 85.00%, as shown in Table 6,
which means these methods are able to classify apnea events. However, the specificity was
just about 68.00%, which means that normal events are not so detected by the classification
methods. To improve specificity, we checked the performance of each testing set and compared
the difference between the sets with good and bad results. For example, it can be found that
the No. 1537 patient had 98.18% accuracy, 100% specificity, and 96.42% sensitivity, while the
No. 1490 patient only had 80.52% accuracy, 61.45% specificity, and 100% sensitivity. The duration
of all normal events of the No. 1537 patient was more than 60 s, and the normal events were
classified. On the other hand, the normal events of the No. 1490 patient that had the 30 s duration
were not labelled as normal episodes. It is found that classifiers show poor performance when
they predict normal events whose duration is less than 60 s.
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3.2. Experiment with a Time-Window Algorithm
3.2.1. Feature Selection

Based on the result that normal events with a duration of less than 60 s are not able
to be classified, the time-window method was used. The length of the time window was
60 s. As mentioned in the feature extraction methods, 66 features were extracted from the
ECG, SaO2, airflow, thoracic, and abdominal signals in Table 7. Before the feature selection
stage, the balanced and cleaned data were used. The statistical analysis results of λfeature
are shown in Table 7. Features 1–12 are from the SaO2 signals, features 13–22 are extracted
from the airflow recordings, features 23–28 are extracted from the abdominal recordings,
features 29–34 are extracted from the thoracic signals and features 35–66 are extracted from
the ECG signals.

Table 7. Feature selection results in the experiment with time-window using statistical analysis
(features 1–12 from the SaO2 signals, features 13–22 from the airflow signals, features 23–28 from the
abdominal signals, features 29–34 from the thoracic signals, and features 35–66 from the ECG signals;
four dashed lines divide the table into five parts according to the kind of signals); * denotes selected
best feature subset.

Feature λfeature Feature λfeature

1 *. med 542 34 *. sum_PSD80/100 603
2 *. MM2 1036 35 *. NN50_RR 497
3 *. kur 508 36 *. SDSD_RR 520
4 *. var 1032 37 *. tSD_RR 553
5 *. min 1079 38 *. std_RR 551

6 *. mean 1079 39 *. var 564
7 *. NumZC 572 40 *. kur 596

8 *. comp 1325 41 *. mean_RR 583
9 *. SD1 837 42 *. CV_EDR 534

10 *. Bel98 480 43 *. SS 570
11 *. Abo98 693 44 *. SD 561

12 *.
mean_PSD0.016/0.05

662 45 *. entropy_D1 554

13. mean 54 46 *. entropy_D2 580
14. med 253 47 *. entropy_D3 600
15 *. std 422 48 *. entropy_D4 588

16 *. mean_PSD0/0.1 427 49 *. entropy_D5 535
17. mean_PSD0.4/0.5 54 50 *. entropy_D6 587

18 *. mean_D1 378 51. entropy_D7 138
19. mean_D2 151 52 *. var_D1 334

20 *. mean_D3 345 53. var_D2 329
21. mean_A3 324 54 *. var_D3 410

22 *. comp 394 55. var_D4 265
23. sum_abs 332 56. var_D5 293
24. std_abs 198 57. var_D6 311
25. mean 213 58 *. var_D7 333

26. mean_PSD80/100 331 59. WSD_RR 119
27. mean_D2 282 60 *. max_PSD0.03/0.5 399

28 *. mean_D1 516 61 *. mean_PSD10/20 470
29 *. sum 516 62 *. mean_PSD80/100 615
30 *. med 602 63. SCrC_3_RR 78
31 *. std 618 64. SCrC_4_RR 70

32 *. mean 671 65 *. max_dia_kPCA 578
33 *. var 574 66 *. RP_2_PC 615

The hill-climbing algorithm was used to identify the most discriminative features.
Initially, the single-best feature was picked according to the largest λfeature value. In Table 7,
the single-best feature was found to be feature 8 comp (λfeature = 1325) from the SaO2 signal.
It was added to the SVM method, and the performance was obtained. The next best feature
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was then added to the SVM method, and the performance obtained. This process was
repeated until all features were added, and the best feature subset was determined by com-
paring all the obtained performances. Considering 66 features as inputs, the classification
performance is presented in Table 8. The sensitivity was found to be 92.22%, the specificity
was 81.03%, the accuracy was 88.76%, and the AUC was 86.61%. These results suggest
that the performance with 66 features can be considered as the gold standard. The feature
subset with similar or better performance than the gold standard was considered as the
final feature subset since it can hold good performance and reduce training time. Based
on the results of the hill-climbing algorithm, the best feature subset contains 48 features
marked with an asterisk in Table 7, which achieves a maximum accuracy of 88.80%, with a
good sensitivity of 91.95%, a specificity of 81.82%, and an AUC of 86.89%. These fea-
tures are extracted from the ECG, SaO2, airflow, thoracic, and abdominal signals. Overall,
the classifier discriminates OSA well when it is trained with the 48 features.

Table 8. Two best performances in hill-climbing iterations with 48 and 66 features.

Features Acc (%) Sen (%) Spe (%) AUC (%)

48 kinds of features 88.80 91.95 81.82 86.89
A total 66 features 88.76 92.22 81.03 86.61

3.2.2. Multi-Error-Reduction Classification

To improve the performance of apnea classification, we propose an MER classification,
as shown in Figure 6, which consists of five phases. First, the selected features are fed to
the MER classification system. Second, some classifiers with good performance are used
as basic learners in level-0. The third phase is the classifier combination method, which
potentially improves the classification performance. We use the stacking ensemble method
to do the classifier combination. Finally, a meta-learner is used to provide final predictions.

48 Selected

Features

Basic Learners

in Level 0

Combination

Method
Meta-Learner

Final Prediction

of Apnea/Normal

Figure 6. Basic components of the multi-error-reduction classification system.

It is one of the crucial tasks to determine the basic learners in the MER classification
system. Classification methods are used to provide results, including the SVM algorithm,
Gradient Boosting, CatBoost, Light GBM, and XGBoost. The results of each classifier
are shown in Table 9 with 48 selected features. From Table 9, it can be seen that the
boosting methods have better performance than other classifiers. The best performance
(accuracy = 90.71%) is obtained from CatBoost, with a specificity of 89.00% and a sensitivity
of 91.94%. The four boosting methods are considered as the basic learners in level-0.
After applying the stacking ensemble method, an ANN is used as the meta-learner. After the
training, the ANN has one input layer, one hidden layer with four nodes, and one output
layer. This ANN is used to provide the final prediction.

Table 9. Performance of each classifier with the 48 selected features in the 60 s experiment.

Classifiers Acc (%) Sen (%) Spe (%) AUC (%)

SVM 88.80 91.95 81.82 86.89
Gradient Boosting 90.60 93.23 86.94 90.08

CatBoost 90.71 91.94 89.00 90.47
Light GBM 90.34 91.88 88.20 90.04

XGBoost 90.55 91.73 88.90 90.32

In the 60 s time-window experiment, the results of the MER classification system
(accuracy = 94.66%, sensitivity = 96.37%, specificity = 90.83%, and AUC = 93.60%) have
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higher performance than the results from the four basic learners. Compared with the SVM
model shown in Table 6, the MER classification system improves the accuracy from about
89% to 94.66%, and there is an increase in the specificity from 80% to 90.83%. The MER
classification system is also used in the event duration experiment. The results of the MER
system show an accuracy of 85.14%, a sensitivity of 94.96%, a specificity of 75.45%, and an
AUC of 85.21%. Table 6 shows the results of other classifiers, and the MER classification
system outperforms these classifiers.

We also compare our results with the results in other papers. Study [10] shows a 92.73%
accuracy. In Study [9], accuracy, sensitivity, specificity are 88.13%, 84.26%, and 92.27%,
respectively. In Study [2], the ROC curve analysis shows AUC, sensitivity, and specificity
of 93.70%, 85.65%, and 85.92%, respectively. Our results are greater than their results, and it
means the MER classification system uses multi-domain features from multi-bio signals
and an ensemble system to achieve better performance. It is the potential to be used in
actual doctor diagnoses and helps doctors reduce workload.

3.3. Discussion

In the experiment with the event duration, we found that Class ABCD is the feature
subset with high discrimination, which includes 19 features. The most widely used index to
diagnose OSA is that the oximetry value is less than a certain threshold or the cumulative
time spent is below a threshold. In oximetry values, sudden downturns and recoveries
affect the frequency band. Feature 12 is the mean of PSD within the 0.016–0.05 Hz fre-
quency range (mean_PSD0.016/0.05). Feature 6 is the mean of the window (mean), Feature
7 is the number of zero-cross in the window (NumZC), and Feature 8 is the complexity
(comp). Features 10 and 11 are the time spending above and below the 98% maximum
(Bel98 and Abo98). Feature 12 reflects the change of the frequency band, and Features
6, 7, 8, 10, and 11 reflect the change of sudden downturns and recoveries in the time
domain. In the abdominal signals, Feature 23 is the summation of the absolute window
(sum_abs), and Feature 26 is the mean in the 80–100 Hz frequency range (mean_PSD80/100).
These features are related to the active abdominal muscles during sleep apnea events.
Patients with OSA show beat-to-beat variation at lower heart rates relative to healthy
subjects during apnea events. The lower heart rate and the multi-domain changes lead
to the selected ECG features. Feature 35 is the number of pairs of adjacent RR intervals
where the later RR interval is more than 50 ms than the previous one (NN50_RR). Features
43 and 44 are spectral spread (SS) and spectral decrease (SD), respectively. Features 45–51
are Shannon’s entropy (entropy_D1 to entropy_D7) using seven detail coefficient levels.
Feature 65 is the maximum of the diagonal matrix of kPCA (max_dia_kPCA).

The time-window segmentation method is used because there is no duration parame-
ter in the actual data. The 48 features are related to the bio-physiological criteria. In the
experiment with the event duration, only 19 features from the ECG, SaO2, and abdom-
inal signals are put into the feature subset, and classifiers can offer good performance.
However, in the experiment with the time-window method, more features were added
to the feature subset, and the airflow and thoracic signals also provided some selected
features. Classifiers have to fit the larger feature subset and achieve similar performance in
this experiment because there is no detection of the duration of each event.

The performance of boosting methods is better than other classic machine learning
methods. The reason is that the classic machine learning methods usually use the training
data once, but the boosting methods repeatedly use the training data with different weights
to obtain some basic classifiers. In each iteration of the boosting algorithm, the weight of
each instance of the training data is estimated by the accuracy of the previous classifiers.
Thus, this algorithm is able to focus on instances that are incorrectly detected. In this way,
the boosting methods are able to process complex multi-domain features from different
bio-signals. Figure 6 demonstrates the basic components of the MER classification sys-
tem. The basic assumption of classifier combination is that the misclassified instances
of individual classifiers do not overlap, and different individual classifiers can provide
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different perspectives for classification. The classifier combination can use complementary
information to improve the performance.

4. Conclusions

The aim of this study is to construct an apnea classification system to detect apnea
events. To achieve this aim, we design the apnea classification system, which consists of
three parts: the multi-domain feature extractions, the hybrid feature selection, and the MER
classification system. Multi-bio signals from PSG recordings are used to generate features,
and the PSG signals are collected from the SHHS database. We adopt 1574 patients’ PSG
recordings from the database. The feature extraction algorithms include time-domain,
frequency-domain, and non-linear analysis.

In the experiment with the event duration, we obtain 19 selected features from dif-
ferent domains. These features are extracted from the ECG, SaO2, and abdominal signals.
They reflect the change of bio-physiological signals of OSA. With the 19 features, an SVM
model is used as the classifier and provides good performance (accuracy = 81.68%, sensi-
tivity = 97.05%, specificity = 66.54%, and AUC = 81.79%). We find that classifiers do not
predict the normal events of shorter than 60 s perfectly to give good specificity results.
Thus, we conduct another experiment with the time-window method.

In the experiment with a time-window segmentation, 66 features are extracted from
the ECG, SaO2, airflow, thoracic, and abdominal signals. The length of the time window is
set at 60 s. After the feature selection stage, 48 features are selected from the five kinds of bio-
signals. The SVM model shows good performance (accuracy = 88.80%, sensitivity = 91.95%,
specificity = 81.82%, and AUC = 86.89%) with 48 features. In the MER classification system,
four basic classifiers are used. They are Gradient Boosting, CatBoost, Light GBM, and XG-
Boost. The meta-learner is realised as an ANN. The combination method is the stacking
method. The system offers a higher performance (accuracy = 94.66%, sensitivity = 96.37%,
specificity = 90.83%, and AUC = 93.60%).
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Abbreviations
The following abbreviations are used in this manuscript:

OSA Obstructive Sleep Apnea
MER Multi-Error-Reduction
ANOVA Analysis of Variance
SVM Support Vector Machine
ANN Artificial Neural Network
SHHS Sleep Heart Health Study
AHI Apnea–Hypopnea Index
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PSG Polysomnography
ECG Electrocardiogram
EEG Electroencephalogram
EOG Electrooculogram
EMG Electromyogram
AF Airflow
AB Abdominal
TH Thoracic
SaO2 Oxygen Saturation
HRV Heart Rate Variability
EDR ECG-Derived Respiration
PSD Power Spectral Density
WSD Wavelet Spectral Density
PCA Principal Component Analysis
AUC Area Under The ROC Curve
RBF Radial Basis Function kernel
kNN k-Nearest Neighbour Algorithm
Light GBM Light Gradient Boosting
Sen Sensitivity
Spe specificity
FN False Negative
TN True Negative
N Condition Negative
FP False Positive
TP True Positive
P Condition Positive
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