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Abstract: The board channel is a connection between a data acquisition system and the sensors of
a plant. A flawed channel will bring poor-quality data or faulty data that may cause an incorrect
strategy. In this paper, a data-driven approach is proposed to detect the status of the enclosed board
channel based on an error time series obtained from multiple excitation signals and internal register
values. The critical faulty data, contrary to the known healthy data, are constructed by using a null
matrix with maximum projection and are labelled as training examples together with healthy data.
Finally, the status of the enclosed board channel is validated by a well-trained probabilistic neural
network. The experimental results demonstrate the effectiveness of the proposed method.
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1. Introduction

Data acquisition systems play a vital role in the data collection of industry [1]. Among
them, the board tunnel, which is usually classified as analog input (AI), analog output
(AO), digital input (DI), and digital output (DO) modules, is a bridge between the proces-
sor and sensors, which ensures the data conversion at the physical level [2]. The tunnel
board is made up of enclosed circuit boards that are convenient to be replaced immedi-
ately once they are found to have any faults occur due to security reasons. In order to
detect the inertial faults of these circuit boards in time, most famous products, such as
Siemens, Honeywell, etc., have provided error codes to help operators [3–5]. However,
these codes are limited to meeting the requirements of board channel diagnosis in a practical
complex application.

Different kinds of methods for fault detection and diagnosis (FDD) have been de-
veloped, which are classified as model-based approaches, signal-based approaches, and
data-driven approaches [6,7]. In model-based approaches, the fault diagnosis algorithms
are developed to monitor the consistency between the measured outputs of the practi-
cal systems and the model-predicted outputs, which are based on an appropriate model,
whether a physical model or equivalent model. Reference [8] proposed a new method by
combining the model-based FDD method and the support vector machine (SVM) method.
In reference [9], the spindle modes are determined through a three-step procedure in
order to overcome these issues of the low number of sensors and the presence of many
harmonics in the measured signals and to extract the characteristics of the system. In refer-
ence [10], based on the information of fault-free data series, fault detection was promptly
implemented by comparison with the model forecast and real-time process. Signal-based
approaches include time-domain analysis, frequency-domain analysis, and both together.
Reference [11] proposed a novel “frequency-domain damping design” using a high-pass
filter for acceleration-based bilateral control (ABC) based on modal space analysis. In
reference [12], a unified measurement model was utilized to simultaneously characterize
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both the phenomena of multiple communication delays and data missing, and a novel
residual matching (RM) approach was developed to isolate and estimate the fault once
it is detected. Reference [13] proposed a least squares support vector machine (LS-SVM)
model optimized by cross validation to implement FDD on a 90-ton centrifugal chiller. Ref-
erence [14] investigated the achievable rates of frequency-division-duplex massive MIMO
systems with spatially correlated channels. In fact, it is difficult for the board tunnel to
build an appropriate model since different boards have different circuit structures. It is also
a challenge to obtain the features of integer signals, especially for the fault cases, because
the flawed board tunnel will be quickly replaced for safety reasons.

Board tunnels always work on a standard enclosed module, which prevents the circuit
from being affected by external factors. This enclosed module is also suitable for quick
disassembly or replacement. However, as a double-edged sword, this method introduces
issues for fault detection and diagnosis because it loses the ability to directly observe
internal states. The data-driven approach [15–20] provides a feasible way to solve this
problem by external observation data. Reference [15] aimed to provide a state-of-the-art
overview on the existing fault diagnosis, prognosis, and resilient control methods and
techniques for wind turbine systems, with which great success has been achieved in fault
detection and diagnosis. Reference [16] focused on data-driven techniques in the digital
era and data analytics in all areas, including process industries. Reference [17] proposed a
new data-driven FDD method, which was named probability-relevant PCA (PRPCA), for
electrical drives in high-speed trains. In reference [18], a fault diagnosis method based on a
deep convolutional neural network model consisting of convolutional layers, pooling layers,
dropout, and fully connected layers was proposed for chemical process fault diagnosis.
In reference [19], an extended deep belief network (EDBN) was proposed to fully exploit
useful information in the raw data. Reference [20] presented a Special Issue on “data-
driven approaches for complex industrial systems”. Using a data-driven approach to the
board tunnel detection, two obstacles should be overcome: (1) A healthy board shows
certain differences in response to the process conditions, working environment, and internal
parameters. This dispersivity is difficult to be covered by limited sample data. (2) Generally,
the stability of a data acquisition system is generally high, and there are few failures; even
if a failure occurs, it will be replaced quickly in order to achieve safety. Therefore, there are
almost no historical faulty data.

From the view of board performance, the healthy data will obey the law of health
probability distribution, though the healthy data are dispersive in different working envi-
ronments. Some excellent methods based on probability analysis, such as the conditional
probability distributions, Bayesian network, etc., have been reported in chemical pro-
cesses [20–23]. Motivated by the probability idea based on the concept that the acquired
data signal is regarded as a realization of the distribution of the board, a probabilistic neural
network (PNN) is proposed based on critical faulty data being artificially constructed to dis-
tinguish between healthy states and faulty states. Firstly, multiple data sources are applied
to activate conditions on the board tunnel, and the internal register values are obtained by
OPC technology. Then, the error time series are constructed to analyze the healthy state of
the enclosed board channel. The critical faulty data are constructed based on the healthy
data by using a null matrix with maximum projection. Finally, the healthy state of the
enclosed board channel is judged by a probabilistic neural network. The advantages of the
proposed approach are summarized as follows:

(1) Multiple input signals are proposed to activate the working state of the board tun-
nel, which extends the scope of exploration for the dispersivity of a healthy board
concerning the working environment and internal parameters.

(2) The critical faulty data are successfully constructed by using the null matrix based on
the health data, which overcomes the difficulty of lacking faulty data.

(3) The PNN is used to adapt to the law of probability hidden in the time series, and case
studies verify the effectiveness.
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The remainder of this article is organized as follows. In Section 2, the acquisition of er-
ror time series and the relationship between multiple input signals and overall performance
of the board tunnel are given. Section 3 describes the proposed approach, including the
probability neural network, the construction of critical faulty data, the structure, and the
workflow. The case studies are illustrated in Section 4, followed by conclusions in Section 5.

2. The Error Time Series of Board Tunnel

The error between input signal and output (memory) mainly affected by internal
factors of the board is regarded as a comprehensive index reflecting the performance of
the board tunnel. A single sample is meaningless for evaluating the board performance
because it is an instance and not enough to observe the law of probability. Thus, an error
time series is taken as an analysis object of the enclosed board tunnel, and the error time
series is obtained, as shown in Figure 1.
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Let the input signal of the board tunnel be {x(k)}∞
k=1 and the value of the correspond-

ing memory be {y(k)}∞
k=1; thus, the error time series is

{z(k)}∞
k=1 = {y(k)}∞

k=1 − {x(k)}
∞
k=1 (1)

where is the sampling time. Formula (1) is abbreviated as Formula (2) by using x, y, z
instead of {x(k)}∞

k=1,{y(k)}∞
k=1,{z(k)}∞

k=1.

z = y− x (2)

Notice that is the converted data of input signal x according to the physical meaning of
the board channel, and z is regarded as a probability model of noisy influences that follows
a normal distribution with a form of Formula (3):

z v N
(

µboard,σ2
board

)
(3)

where µboard and σboard are an expectation and a variance for the board, respectively.
It is worth noting that if the board input x is enough to cover all the work conditions

and influences of the environment, the expectation µboard is equal to the mean, which ideally

satisfies
{

µboard = 0 y = x
µboard 6= 0 y 6= x

. Thus, thereafter, we use the mean instead of the expectation.

In fact, different input signals will cause some changes due to the influence of the
environment and internal parameters. Figure 2 releases the error time series of a healthy
board channel under three kinds of different input signals.
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Each input signal that is long enough will produce its own probability distribution
laws with a form of

zi v N
(

µi,σi
2
)

(4)

where µi and σi are the mean and the variance under the i-th input signal. It is inevitable
for some deviations to occur between µboard and µi. From the view of fault detection and
diagnosis, the board tunnel is considered to be in a healthy state as long as µboard is within
the allowable range. However, these deviations between µboard and µi will disturb the
judgment of healthy states due to the limitation of the sampling data number. In order to
establish the relation between sampling data and board performance, it is assumed that the
mean µboard is equal to the mean of different input signals, that is,

µboard =
1
n ∑n

i=1 µi (5)

Lemma1: The mean µboard and variance σ2
board of the sampling data series z satisfying normal

distribution can be replaced by m sub-sampling data whose mean is µm(i), i = 1, 2, · · · , m and
whose variance is σ2

m(i), i = 1, 2, · · · , m. That is,

µboard =
1
m ∑m

i=1 µm(i) (6)

σ2
board =

1
m− 1 ∑m

i=1 σ
2
m(i) (7)

Proof: For the data series z ∼ N
(
µboard, σ2

board
)

that follows normal distribution with a
mean µboard and variance σ2

board, suppose the data series z has enough data of n samples to
reflect the statistical characteristics of a whole. The unbiased estimate of µboard is z, and the
unbiased estimate of σ2

board is obtained according to

σ2
board =

1
n− 1 ∑n

i=1(zi − z)2 (8)

�
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Consider the relation of the mean between the whole and sub-sampling data. Let the
n samples be divided into m groups with the mean and the length of the k-th group being
zm(k) and Lm(k):

zm(k) =
1

Lm(k)
∑Lm(k)

i=1 zi (9)

Thus, the mean of a whole is

1
m ∑m

k=1 zm(k) =
1
m ∑m

k=1
1

Lm(k)
∑Lm(k)

i=1 zi =
1

∑m
k=1 Lm(k)

∑m
k=1 ∑Lm(k)

i=1 zi =
1
n ∑n

i=1 zi = z (10)

Formula (10) shows the unbiased estimate of z. Therefore, µboard can be estimated by
the above formula.

For a variance, it is well known that the sample mean of normal distribution also
obeys normal distribution according to the mathematical statistical theory. Thus, the mean
zi of each group follows

zi v N(µi,
σ2

board
Lm

) (11)

Let σ2
i =

σ2
board
Lm

; thus, zi v N
(
µi,σ2

i
)
.

For m groups, an unbiased estimate of σ2
i is obtained by

σ2
i =

1
m− 1 ∑m

k=1(zi(k)− zboard)
2 =

1
m− 1 ∑m

k=1(
1

Lm(k)
∑Lm(k)

i=1 (zi − zboard)
2) (12)

Furthermore, the σ2
board of a whole is obtained according to

σ2
board = Lmσ

2
i =

Lm

(m− 1)Lm
∑m

i=1 σ
2
m(i) =

1
m− 1 ∑m

i=1 σ
2
m(i) (13)

As a result, the proof is completed.
The lemma shows that the performance of the board can be obtained through the

combination of different groups. For a board tunnel, this means the total probability of
healthy model can be combined with different input signals.

3. The Proposed Approach
3.1. Probability Neural Network

The probability neural network (PNN) that was proposed by D.F Specht in 1990 is a
kind of statistical neural network model based on a Bayesian minimum risk criterion [24].
It consists of four layers, including the input layer, the pattern layer, the summation layer,
and the output layer. The input layer is responsible for transmitting the feature vector into
the network. The pattern layer takes full connection directly from the input layer through
the connection weight. The pattern layer reflects the spatial distribution of the samples,
in which each sample works in a limited local space, and the whole space constitutes a
distributed probability distribution with a sample combination. This structure accurately
reflects the probability distribution of the sample in the whole space. It is usually trained
with supervised learning based on training samples and the responding patterns. The
distance between the input eigenvector and the trained pattern is used to activate the
Gaussian function of the pattern layer. The summation layer is responsible for connecting
the outputs of the pattern layer and the schema units of each class through the score
probability. Finally, the output layer outputs the category with the highest total score of
schema units of each class in the summation layer. In PNN, the probability density p(x|wi)
is expressed by a radial basis function:

p(x|wi) =
1
Ni

∑Ni
k=1

1

2π
l
2 σl

exp(−|x− xik|2

2σ2 ) (14)
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where xik,Ni, σ, and l are the sample center, the smoothness factor, the hyper-parameters,
and the coefficient, respectively. The discriminant function gi(x) is

gi(x) =
p(wi)

Ni
∑Ni

k=1 exp(−|x− xik|2

2σ2 ) =
p(wi)

Ni
∑Ni

k=1 exp(− xTxik − 1
σ2 ) (15)

where p(wi) is the probability of wi occurrence.
Additionally, the discrimination rule is

if gi(x) > gj(x)∀i 6= j, then x ∈ wi (16)

3.2. The Construction of Critical Faulty Data

The PNN distinguishes the category of input data based on the established relationship
of the train examples and the category belonged to. Different from the weights principle of
direct mapping between input and output, the PNN adopts computing the proximity to
the different sample data and judges the category according to a posterior probability. In
principle, as long as there are faulty data samples and health data samples, the new data
will be classified in healthy states and faulty states, except for an occurrence of posteriori
probability of just 50%. However, the fault samples are in fact in a large range that affects
the accuracy as a criterion. The schematic diagram of critical faulty data construction is
shown in Figure 3.
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In Figure 3, the square represents the entire set of healthy and faulty states, which is
classed as section I (health), section II (vagueness), and section III (fault). The A and the B
are the observed sets that build the health data samples. The F1 and the F2 are the faulty
data samples. Additionally, the T1 and the T2 are the test sets. For a healthy dataset T1, it
is prone to find an observed health set A that is close to T1. However, for a faulty dataset
T2, if one randomly selects the faulty dataset F1 as faulty data samples, it will produce the
incorrect result that the T2 is health because the distance from T2 to B is closer than that
from T2 to F1. If the position of F1 moves to the position of F2 that belongs to section III
but is close to section II, the previous mistakes will be avoided. Thus, the fault samples at
the edge of vagueness and fault are called critical faulty data. Although the critical faulty
data cannot distinguish the dataset of all sections (for example, the M of section II), they
can solve the judgment problem for the most of the datasets.

However, the board channel has almost no historical faulty data to be used because
the board channel is prohibited from working with faults. This makes it impossible to find
the critical faulty data by analyzing historical data. To produce the examples of critical
faulty data from the healthy data, the null matrix is introduced as a vertical cross mode of
the healthy state and the critical faulty data. The null matrix N of a non-full rank matrix X
is defined if there is a matrix N that satisfies XN = 0 and NN = I [25].
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According to the definition of the null matrix, for xi being a sampling vector of healthy
data, there is

Nixi = 0 (17)

where Ni is the corresponding null matrix.
For another sampling vector xj (xj 6= xi), there is

Nixj = bij (18)

where bij is the deviation of xj under the action of null matrix Ni.
Compute the deviation bkl of all samples xl(l = 1 . . . n) and null matrix Nk(k = 1 . . . n)

according to
bkl = Nkxl(k = 1.n; L = 1 . . . N) (19)

Take b = max{bkl , k = 1 . . . n; l = 1 . . . n} and obtain the corresponding null matrix N
for all healthy data, and inequality (20) is satisfied:

Nx ≤ b (20)

The corresponding equation reflects the critical state of fault and health:

Nx = b (21)

Move the left of Formula (21) to the right and replace I with NN−1:

Nx− NN−1b = 0 (22)

where N−1 is a pseudo inverse of N.
We obtain

N
(

x− N−1b
)
= 0 (23)

Let
x́ = x− N−1b (24)

and x́ is the critical faulty data.

3.3. The Structure and Workflow of Proposed Approach

The proposed method is made up with four parts, including the data acquisition, the
data processing, the probability neural network, and the diagnostic output. The excitation
source acts on the board channel with multiple groups of different kinds of signals in order
to expand the detection scope as much as possible. The error time series is built from the
excitation signal and the converted data by a technique of OLE for process control (OPC) [26].
Then, it is transformed to a Hankel matrix by a sliding window in order to adapt to the PNN
training. The diagnostic result is output by the PNN. The structure is shown in Figure 4.
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Step 1: Record the signal generator and use OPC to obtain the internal memory data of
the board tunnel. Thus, the error time series {zk}

j
k=1 combined with different input signals

is formed according to Formula (1).
Step 2: Suppose the length of the sliding window is T, and construct the Hankel matrix

HL with depth L (usually L� T):

HL =


zl zl+1 · · · zl+T−L

zl+1 zl+2 · · · zl+1+T−L
... ...

. . .
...

zl+L−1 zl+T · · · zl+T−1


L×T

(25)

Step 3: The critical faulty dataset HLN is constructed according to Formula (24) of 3.2:

HLN =


źl źl+1 · · · źl+T−L

źl+1 źl+2 · · · źl+1+T−L
... ...

. . .
...

źl+L−1 źl+T · · · źl+T−1


L×T

(26)

Step 4: Construct the sample matrix of the PNN by using input H:

H = [HL HLN ]L×2T =


zl zl+1 · · · zl+T−L źl źl+1 · · · źl+T−L

zl+1 zl+2 · · · zl+1+T−L źl+1 źl+2 · · · źl+1+T−L
...

...
. . .

...
...

...
. . .

...
zl+L−1 zl+T · · · zl+T−1 źl+L−1 źl+T · · · źl+T−1


L×2T

(27)

Moreover, the corresponding category is [0 1], where 0 and 1 represent the healthy
states and the faulty states, respectively.

Step 5: Build the PNN by following three rules: (1) the number of input layers is
the length of the sliding window (T); (2) the number of neurons in the mode layer is
the number of input sample vectors (L); and (3) the summation layer is of class 2, which
represents health and fault.

Step 6: The test sequence {Tk}
j
k=1 is converted to the input sample matrix D by

normalizing the Hankel matrix, denoted as

D = Norm


Tl Tl+1 · · · Tl+T−L T́l T́l+1 · · · T́l+T−L

Tl+1 Tl+2 · · · Tl+1+T−L T́l+1 T́l+2 · · · T́l+1+T−L
...

...
. . .

...
...

...
. . .

...
Tl+L−1 Tl+T · · · Tl+T−1 T́l+L−1 T́l+T · · · T́l+T−1


L×2T

=


D11 D12 · · · D1,2T
D21 D22 · · · D2,2T

...
...

. . .
...

Dq1 Dq2 · · · Dq,2T


q×2T

(28)

The sample reference C is obtained by row normalizing the train of input matrix H
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C = Norm


Zl Zl+1 · · · Zl+T−L Źl Źl+1 · · · Źl+T−L

Zl+1 Zl+2 · · · Zl+1+T−L Źl+1 Źl+2 · · · Źl+1+T−L
...

...
. . .

...
...

...
. . .

...
Zl+L−1 Zl+T · · · Zl+T−1 Źl+L−1 Źl+T · · · Źl+T−1


L×2T

=


C11 C12 · · · C1,2T
C21 C22 · · · C2,2T

...
...

. . .
...

Cl1 Cl2 · · · Cl,2T


L×2T

(29)

where the Norm[•] is an operator of matrix row normalizing.
Step 7: Calculate the Euclidean distance between the input matrix D and the sample

reference matrix C according to

E =



√
2T
∑

j=1

∣∣D1j − C1j
∣∣2 √

2T
∑

j=1

∣∣D1j − C2j
∣∣2 · · ·

√
2T
∑

j=1

∣∣∣D1j − Cl j

∣∣∣2√
2T
∑

j=1

∣∣D2j − C1j
∣∣2 √

2T
∑

j=1

∣∣D2j − C2j
∣∣2 · · ·

√
2T
∑

j=1

∣∣D2j − CTj
∣∣2

...
...

. . .
...√

2T
∑

j=1

∣∣Dqj − C1j
∣∣2 √

2T
∑

j=1

∣∣Dqj − S2j
∣∣2 · · ·

√
2T
∑

j=1

∣∣Dqj − STj
∣∣2


q×2T

=


E11 E12 · · · E1,2T
E21 E22 · · · E2,2T

...
...

. . .
...

Eq1 Eq2 · · · Eq,2T


q×2T

(30)

Step 8: The initial probability matrix P is obtained by activating the Gaussian function
of the pattern layer:

P =


e−

E11
2σ2 e−

E12
2σ2 · · · e−

E1,T
2σ2

e−
E21
2σ2 e−

E22
2σ2 · · · e−

E2,T
2σ2

...
...

. . .
...

e−
Eq1
2σ2 e−

Eq2
2σ2 · · · e−

Eq,T
2σ2


q×2T

=


P11 P12 · · · P1,T
P21 P22 · · · P2,T

...
...

. . .
...

Pq1 Pq2 · · · Pq,T


q×2T

(31)

Step 9: The probability S that q samples belong to two categories (health and fault) is
obtained according to Formula (29):

S =



T
∑

j=1
P1j

2T
∑

j=T+1
P1j

T
∑

j=1
P2j

2T
∑

j=T+1
P2j

· · · · · ·
T
∑

j=1
Pqj

2T
∑

j=T+1
Pqj


q×2

=


S11 S21
S21 S22
· · · · · ·
Sq1 Sq2


q×2

(32)

Step 10: The maximum probability of each row is taken as the category according to
Bayesian decision theory.
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4. Case Studies

The experimental platform is a distributed control system with an engineer station.
Our goal was to test the performance of the board without any destruction. The input signal
of the board tunnel for the test was imposed directly by another board tunnel because the
board channel of the laboratory is not loaded. If the board channel is connected to the
sensor signal, it will reform the input signal by adding a small series signal source (usually
not more than 15% of the normal signal amplitude). This small series signal is used only
to detect the performance of the board tunnel and is easily eliminated by software. The
central control platform of the laboratory is shown in Figure 5.
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There were five groups of healthy data with input signals of 5 V with additional pulse
voltage, piecewise linear voltage, exponential voltage, thermal noise, and chirp signal.
However, it was a challenge to construct any faults of the board tunnel because the board
was not to be disassembled or damaged. Losing faults by changing internal states, there
is only one possibility that uses the calibration function of the control system to change
the AD converted reference signal. Two groups of faulty data were simulated by changing
the AD converted reference signal with the addition of the stochastic disturbance and the
periodic voltage, respectively. The cases of seven groups are shown in Table 1.

Table 1. The cases of 7 groups of signals.

No. Symbols Description

1 Case1 Input signal with additional pulse voltage of duty cycle 50% and frequency 20 Hz

2 Case2 Input signal with additional piecewise linear voltage of slope 0.5; amplitude: 0 to −2 V

3 Case3 Input signal with additional exponential voltage from 0 to 2 V in 5 s

4 Case4 Input signal with additional thermal noise of 1 MHz bandwidth

5 Case5 Input signal with additional chirp signal: initial frequency—0 Hz; final frequency—500 Hz;
amplitude—1 V; delay—0.05 s

6 Case6 The reference signal with additional random noise (Fault1)

7 Case7 The reference signal with periodic voltage signal (Fault2)

4.1. Change the Number of Intermediate Layers of PNN

Eight numbers of sliding window length from 100 to 20,000 were selected to detect
the state of case5 to case 7. It repeated 1000 times per sliding window length. The training
samples were combined with case1, case2, case3, and case4. For each test, the starting of
sliding window was randomly selected from the error time series, and the Hankel depth
was always kept at 10,000, just for simplicity. The results are shown in Table 2.
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Table 2. Effect of sliding window length on detection results.

No. Length of Sliding
Window

Case5 Case6 Case7

Correct/Wrong
(Times) Accuracy Correct/Wrong

(Times) Accuracy Correct/Wrong
(Times) Accuracy

1 100 1000/0 100% 0/1000 0% 0/1000 0%

2 150 1000/0 100% 0/1000 0% 0/1000 0%

3 200 896/104 89.6% 999/1 99.9% 992/8 99.2%

4 500 897/103 89.7% 998/2 99.8% 971/29 97.1%

5 1000 922/78 92.2% 1000/0 100% 1000/0 100%

6 1500 905/95 90.5% 1000/0 100% 1000/0 100%

7 2000 1000/0 100% 1000/0 100% 1000/0 100%

8 20,000 1000/0 100% 0/1000 0% 0/1000 0%

It is seen from Table 2 that the lengths of the sliding window have an effect on the
detection results. Short lengths of 100 samples and 150 samples succeeded in detecting the
healthy states but failed to find the faulty states by mistaking them for the healthy states.
With the lengths expanding to 200 samples and 500 samples, the accuracy of fault detection
increased by more than 99% (case6 and case7 achieve 99.9% and 99.2%, respectively),
although the accuracy of the healthy states was reduced to 89.6% and 89.7%. When the
length of the sliding window reached 2000 samples, the detection of healthy states and two
faulty states could reach 100%. However, it is not that the longer the sliding window length
is, the better the result is. When the window length reached 20,000 samples, the detection
results were all healthy states regardless of healthy states or fault status. In other words,
the faulty states could not be determined at sliding window lengths that were too long.

4.2. Effects of Different Groups of Health Data Combination as Sample Input

The combination of four groups of health data was selected as the training samples to
detect the fifth group of healthy states and the other groups of two faulty states. The length
of the sliding window was 2000 samples, and the depth of the Hankel was 10,000. A test
was done according to the proposed method, and the results are shown in Table 3, which
indicates an accuracy of 100%, whether healthy or faulty.

Table 3. The combination of four groups of health data.

No. Training Examples Test Correct (Times) Wrong (Times) Accuracy

1 Case1/Case2/Case3/Case4

Case5 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

2 Case1/Case2/Case3/Case5

Case4 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

3 Case1/Case2/Case4/Case5

Case3 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

4 Case1/Case3/Case4/Case5

Case2 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

5 Case2/Case3/Case4/Case5

Case1 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%
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A change of combination from four groups to three groups of healthy data was used
to test the effects of training samples from different group combinations. The length of the
sliding window and the depth of the Hankel were kept unchanged. The results are shown
in Table 4.

Table 4. The combination of three groups of health data.

No. Training Examples Test Correct (Times) Wrong (Times) Accuracy

1 Case1/Case2/Case3

Case4 1000 0 100%

Case5 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

2 Case1/Case2/Case4

Case3 1000 0 100%

Case5 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

3 Case1/Case2/Case5

Case3 1000 0 100%

Case4 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

4 Case1/Case3/Case4

Case2 687 314 68.7%

Case5 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

5 Case1/Case3/Case5

Case2 680 320 68%

Case4 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

6 Case1/Case4/Case5

Case2 667 333 66.7%

Case3 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

7 Case2/Case3/Case4

Case1 879 121 87.9%

Case5 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

8 Case2/Case3/Case5

Case1 792 208 79.2%

Case4 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

9 Case2/Case4/Case5

Case1 811 189 81.1%

Case3 1000 0 100%

Case6 1000 0 100%

Case7 1000 0 100%

10 Case3/Case4/Case5

Case1 184 816 18.4%

Case2 762 238 76.2%

Case6 998 2 99.8%

Case7 1000 0 100%
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Table 4 shows that the most health and faults can be detected by combining three
groups of health data as training examples via the proposed method. However, a few health
cases are in states of poor accuracy because the training examples can partly cover the
information of other health cases. This will be further confirmed by reducing the number
of groups for training examples. In the cases of taking two groups as a combination of
training examples, the situation is similar to before. Most health and faults can be detected
correctly, but there are some incorrect detection results for healthy states. For example,
taking case1 and case5 as training examples, the results of case2 and case4 are correct, but
the results of case3 are all wrong in 1000 tests. These results are not listed here due to
space limitations. By analyzing the above situations, we found that incorrect detection is
related to some kinds of healthy data. It is due to the reason that the training data do not
completely cover the characteristics of the test samples. We also notice that the detection
results for faulty states are correct, which shows that the null matrix plays an important
role. A conclusion is drawn that the feature coverage of training samples is more important
than the number of groups.

4.3. Comparison with LDM

The classical linear discriminative method (LDM) was used to detect the fault of board
channel. The 10,000 groups combined from the time series were selected as training samples
whose length of the sliding window was 2000 samples, and a random 1000 groups of each
case were tested for imitating the situation with known historical data. The results are
shown in Table 5.

Table 5. The results of CNN for labeled data.

Case1 Case2 Case3 Case4 Case5 Case6

Correct 993 1000 1000 1000 997 1000

Incorrect 7 0 0 0 13 0

Accuracy 99.3% 100% 100% 100% 99.7% 100%

The 1000 groups of data from case7 were used be tested as unknown faulty data, and
the results are shown in Table 6.

Table 6. The results of CNN for unlabeled data.

Health Fault

Case1 Case2 Case3 Case4 Case5 Case6

Case7
164 133 0 0 0 703

Total: 297

It is seen from Table 5 that for the labeled data, the LDM has a high accuracy of more
than 99.3%, and it can be divided into more detailed categories. However, Table 6 shows
that the accuracy of the LDM for a new fault is 70.3%, which is low. Compared with the
LDM, the proposed approach, which is shown in Table 3, can achieve good results only by
using healthy data.

5. Conclusions

At present, there is no practical method to detect the enclosed board tunnel except
for returning it to the factory or an error code display. Failure to find the abnormal board
brings a great potential threat to the control system of the plant. This paper proposes an
approach for fault detection of an enclosed board channel by using a PNN based on an
error time series excited by various external signals. The critical faulty data, contrary to
the known healthy data, are constructed by using a null matrix with maximum projection
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and are labelled as training examples together with healthy data. This provides the mode
criteria of PNN training. Thus, the problem of PNN lacking faulty data examples has been
solved to some extent. The proposed approach is a data-driven method that can detect the
abnormal state or fault of an enclosed board channel without knowing any internal circuit
of the board channel. It only needs a small number of additional hardware devices and
does not need any mechanism knowledge on the board channel, which greatly reduces
the costs and the professional knowledge for staff. In the future, cases where the output
probabilities of the health mode and fault mode are similar will be studied, which should
improve the accuracy of the proposed approach in some special scenarios.
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