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Abstract: The increase in the number of tillers of rice significantly affects grain yield. However, this
is measured only by the manual counting of emerging tillers, where the most common method is to
count by hand touching. This study develops an efficient, non-destructive method for estimating the
number of tillers during the vegetative and reproductive stages under flooded conditions. Unlike
popular deep-learning-based approaches requiring training data and computational resources, we
propose a simple image-processing pipeline following the empirical principles of synchronously
emerging leaves and tillers in rice morphogenesis. Field images were taken by an unmanned aerial
vehicle at a very low flying height for UAV imaging—1.5 to 3 m above the rice canopy. Subsequently,
the proposed image-processing pipeline was used, which includes binarization, skeletonization, and
leaf-tip detection, to count the number of long-growing leaves. The tiller number was estimated
from the number of long-growing leaves. The estimated tiller number in a 1.1 m × 1.1 m area is
significantly correlated with the actual number of tillers, with 60% of hills having an error of less than
±3 tillers. This study demonstrates the potential of the proposed image-sensing-based tiller-counting
method to help agronomists with efficient, non-destructive field phenotyping.

Keywords: plant phenotyping; image analysis; synchronous emergence of leaf and tiller theory

1. Introduction

Rice (Oryza sativa L.) is the staple food for nearly half of the population worldwide.
Monitoring its yield is essential for regional and global food security, farmers’ livelihoods,
and marketing strategies [1]. Advanced contracts with supply volume guarantees enable
farmers to sell directly to restaurants and consumers at a high price. Additionally, farmers
often adjust rice management practices, such as fertilizer applications to the crop, which
necessitates real-time plant diagnosis.

Four main growth attributes for the grain yield of rice are (a) panicle number, (b) grain
number per panicle, (c) ripening percentage, and (d) 1000-grain weight [2]. Tillers partially
die, and the remainder become panicles. The number of tillers in the late growth stage
is a key factor in determining panicle number. However, counting the number of rice
panicles or tillers depends on manual work, which is labor-intensive. High throughput
field-phenotyping techniques are expected to address such limitations.

In recent years, research on the image analysis of rice-panicle numbers has progressed
remarkably (Table 1). In the early stages, the estimation of panicles from RGB images with
feature-extraction methods was studied [3]. Their accuracy and availability have been
rapidly improved from 50% to over 90% by applying deep-learning techniques, such as
a Bayesian inference method, to eliminate the process of preparing supervisory data [4]
and a density-map method instead of the object-detection method [5]. To date, 90% of the
accuracy in rice-panicle counting can be expected using region-based fully convolutional
networks (R-FCN) [6] and 95% by segmenting panicles, leaves, and background. However,
it requires more sophisticated analysis than merely estimating panicle numbers [7].
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Table 1. Summary of various methods and their accuracy for panicle counting (not tiller counting).

Accuracy Method
Reference

Recall Precision Imaging Analysis

50% Not Available fixed-point camera SVM [3]
88% 87% UAV improved R-FCN [6]
95% 75% UAV Unsupervised Bayesian learning [4]

82.50% Not Available field scanner SVM [8]
95% 56% fixed-point camera SVM [9]
94% Not Available turntable camera ANN [10]
73% 82% GAV SVM [11]
89% 82% fixed-point camera CNN [12]
70% 85% fixed-point camera CNN [13]
62% 99.6% fixed-point camera CNN [14]

In addition to panicle counting during rice harvesting, monitoring tiller numbers
before flowering in yield estimation is imperative. Tiller counting at the vegetative and re-
productive stages enables farmers to adjust crop management for rice growth [15]. However,
only a few image analyses for rice-tiller counting have been conducted using pot-grown
plants in a laboratory or greenhouse. There was an attempt to observe the structure of
leaves and tillers in three dimensions by setting wheat plants on a turntable and collecting
multi-angle images [16]. The tiller number was estimated by capturing images of the plant
base [17]. For the image analysis in the field, some studies estimated the tiller number
from rice-stubble images after harvesting [18,19]. No study has provided an effective
tiller-counting method under flooded conditions, particularly around the panicle-formation
stage. This is because of the difficulty in image processing due to the complete overlapping
of neighboring plants. Counting tillers directly from the image is difficult because they are
hidden behind the leaves.

Conversely, the emergence of lateral tillers in rice plants is highly synchronized with
the leaf appearance on the main tiller [20,21]. Previous studies discovered that a new
(lateral) tiller emerges from three nodes below the main tiller (Figure 1). Thus, when a new
tiller emerges, the leaves that grew from the three upper nodes extend. That means the
number of tillers should concomitantly increase with the number of leaves on the main
tiller. The discovery of the empirical principle in tillering dynamics of rice was a milestone
achievement in morphogenetic research of gramineous species [22], and various studies
have confirmed this theory [23–25].
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The ultimate goal is to develop a practical image-processing pipeline based on the
empirical principle of rice morphogenesis. In particular, this study applies the basic rules
of rice tillering to the algorithm in image analysis to estimate the tiller number in the field.
The tiller number can be estimated by counting the long leaves of each hill, assuming that
leaves growing from the main tiller reach a higher point and are visible at the top of the
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plant. The target period was set at the vegetative and reproductive stages when tillers that
eventually bear panicles emerge [26]. When the rice is grown, it is difficult to observe tillers
directly, so I observed leaves emerging from the main stem instead. This study is the first
to apply biological knowledge of tillering behavior of rice plants into algorithm design,
instead of only considering the image with complicated image-processing algorithms, such
as deep learning.

2. Materials and Methods
2.1. Data Acquisition

Field experiments were conducted at the lowland farm of the Institute for Sustainable
Agro-ecosystem Services, University of Tokyo, Tokyo, Japan (35◦44′19.3′′ N 139◦32′28.4′′ E).
A popular japonica rice cultivar, Koshihikari, was grown in the summer of 2021. Twenty-
one-day-old seedlings were transplanted on June 3 at a density of 21.2 hills m−2. Crop
management, such as irrigation, fertilizer applications, and pest and disease control, fol-
lowed Japan’s conventional rice farming systems [2]. The number of transplants per hill
was arbitrarily varied from three to five seedlings to facilitate the evaluation of the effective-
ness of the method. Images were acquired using an unmanned aerial vehicle (UAV), and
the ground truth of the number of tillers on each hill was manually acquired (Figure 2). The
UAV flew automatically and photographed the field with the onboard RGB camera. The
right side of Figure 2 demonstrates the flight. Ground truth tiller numbers were observed
for about 250 hills on each date in a 7 m × 6 m field plot.
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Figure 2. Experimental field. (Dotted arrows indicate flight paths).

For field survey and algorithm validation, poles with markers were set in the field to
identify the location of hills in the field.

Aerial images were captured using a commercial-grade UAV (DJI Mavic Pro 2, Shenzhen,
China) and an onboard camera with a resolution of 5472 × 3648 and a field of view of 77◦.
Poles with markers were set in the field to identify the location of hills. The images were
captured on July 3 from a 1.5 m height with a 35◦ angle of elevation. The shooting angle
was set as shallow as possible within the range where the rice in the foreground did not
hide the rice base in the image. The shallower the angle, the more accurately the rice leaves
could be measured automatically. Based on the height of the rice plants, the altitude of
the flight, and the distance between the hills, a 35◦ angle of elevation is suitable for this
experiment. Using the same method as that used for calculating the 35◦ angle of elevation,
the angle of elevation was changed to 60◦ because the rice plants grew, and the plants in the
front began to interfere with the plants in the back. The altitude was changed to 3 m, such
that the downwash wind would not affect the plants in the shooting area at 60◦ elevation.
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2.2. Analysis Method

Only the leaf tips above the momentum height were measured throughout the pre-
liminary study (Figure 3). To calculate the momentum, each white pixel was weighted
the same.

Ntiller+main stem = Nlea f on main stem ≈ Nlea f tips above momentum height (1)

Sensors 2022, 22, x FOR PEER REVIEW 4 of 13 
 

 

the angle of elevation was changed to 60° because the rice plants grew, and the plants in 
the front began to interfere with the plants in the back. The altitude was changed to 3 m, 
such that the downwash wind would not affect the plants in the shooting area at 60° ele-
vation. 

2.2. Analysis Method 
Only the leaf tips above the momentum height were measured throughout the pre-

liminary study (Figure 3). To calculate the momentum, each white pixel was weighted the 
same. 𝑁௧௜௟௟௘௥ା௠௔௜௡ ௦௧௘௠  ൌ 𝑁௟௘௔௙ ௢௡ ௠௔௜௡ ௦௧௘௠ ൎ 𝑁௟௘௔௙ ௧௜௣௦ ௔௕௢௩௘ ௠௢௠௘௡௧௨௠ ௛௘௜௚௛௧ (1)

 
Figure 3. Phenotyping approach. Only the leaf tips above the momentum height (indicated by 
Inverted triangle) were counted. 

Considering the lens distortion and occlusion effect due to inadequate elevation an-
gle, we only observed about 2 m2 (1 m × 2 m) in the center of a single image. Furthermore, 
seedlings that fluttered heavily in the wind were removed from the analysis. In the latter 
growth stage, rice plants tend to be affected by wind more, and more images were re-
moved from the analysis. Finally, ten out of thirty patches were extracted and selected 
from each image. 

A computer with a 64-bit Windows 10 operating system (Core i5 1.2 GHz, 8 GB RAM, 
Surface) was used to process and analyze the image data. The algorithm was written in 
Python using Google Colaboratory (Google Corporation, Menlo Park, CA, USA). The im-
ages acquired were saved in JPG file format. The flowchart of image processing is shown 
in Figure 4. These steps will be described further in the following sections. The following 
libraries were used for the thinning process (https://github.com/magikerwin1993/Line-
Following-Python, accessed on 1 September 2021). The following libraries were used for 
the decorrelation stretching (https://github.com/lbrabec/decorrstretch, accessed on 10 
September 2021). The rest of the program is self-coded. After ground truth tiller number 
and estimated leaf tip number were obtained, statistical analysis such as correlation coef-
ficient analysis and t tests were conducted using Excel 2019 (Microsoft Corporation, Red-
mond, WA, USA). 

Figure 3. Phenotyping approach. Only the leaf tips above the momentum height (indicated by
Inverted triangle) were counted.

Considering the lens distortion and occlusion effect due to inadequate elevation angle,
we only observed about 2 m2 (1 m × 2 m) in the center of a single image. Furthermore,
seedlings that fluttered heavily in the wind were removed from the analysis. In the latter
growth stage, rice plants tend to be affected by wind more, and more images were removed
from the analysis. Finally, ten out of thirty patches were extracted and selected from
each image.

A computer with a 64-bit Windows 10 operating system (Core i5 1.2 GHz, 8 GB RAM,
Surface) was used to process and analyze the image data. The algorithm was written
in Python using Google Colaboratory (Google Corporation, Menlo Park, CA, USA). The
images acquired were saved in JPG file format. The flowchart of image processing is
shown in Figure 4. These steps will be described further in the following sections. The
following libraries were used for the thinning process (https://github.com/magikerwin1
993/Line-Following-Python, accessed on 1 September 2021). The following libraries were
used for the decorrelation stretching (https://github.com/lbrabec/decorrstretch, accessed
on 10 September 2021). The rest of the program is self-coded. After ground truth tiller
number and estimated leaf tip number were obtained, statistical analysis such as correlation
coefficient analysis and t tests were conducted using Excel 2019 (Microsoft Corporation,
Redmond, WA, USA).

https://github.com/magikerwin1993/Line-Following-Python
https://github.com/magikerwin1993/Line-Following-Python
https://github.com/lbrabec/decorrstretch
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Figure 4. The overall process of image analysis.

Trimming and Thresholding: A field image was cropped into small patches with
one hill. Only hills that could be seen without being considerably obscured by other hills
were selected manually. Hills located from the bottom 25% to the middle of the vertical
position in the field image were mostly used. Subsequently, a threshold-based method
was utilized for green segmentation. The decorrelation stretching method was utilized to
emphasize the color difference. Decorrelation stretching is a procedure for enhancing the
color separation of an image with significant band-to-band correlation. The exaggerated
colors easily improve visual interpretation. Binarization was applied based on the green
value of each pixel. The same threshold value was used for each observation day. The
threshold values were determined based on preliminary experiments and were set to
1.1–0.9 times the entire image average. Finally, a white pixel area with a size less than the
threshold was removed. The threshold value was set to 500 pixels. All the leaves of a single
plant were large, while some leaves with contour sizes of more than 100 pixels, reflected on
the water surface, were falsely detected.

Skeletonization: This process was implemented using the line-following method. The
two types of skeletonization methods are iterative and non-iterative. An iterative method
is currently the most popular method; however, it often causes disordered boundary image
processing problems. Non-iterative methods, which suit in-field images, are less sensitive
to the smoothness of boundaries. The line-following approach draws a skeleton away from
the leaf curve as the rice grows; however, it does not critically affect the detection of leaf
tips in most cases.

Leaf-tip Counting: Leaf tips above the center of gravity were detected in the skeleton
image. The pixels around the point were verified to determine if a pixel was a leaf tip.
This is a method of scanning while setting up a window around the decision point. This
study calls this the peak-in-window method (Figure 5). Subsequently, the hills average was
calculated from the tiller number for each patch image. The pixel was adjudged a leaf tip
when both of the following conditions were satisfied. The window sizes were fixed for all
patch images through all observation dates in both Conditions 1 and 2.
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Condition 1: There should be no skeleton in the window set above the judgment
point because there should be no leaf area above a leaf tip (25 × 12 pixels above the
judgment point).

• In the image of this experiment, the width of the leaf appeared to be at least 12 pixels.
The distance from the centerline of the leaf to the leaf edge would be at least six pixels.
Therefore, two leaves that do not overlap should have a centerline distance of at least
6 + 6 pixels. The window size was set to 25 pixels in the horizontal direction to observe
12 pixels on each side.

• The window size in the horizontal direction was set to 12 pixels. The tip of the skeleton
has a maximum distance of six pixels from the actual leaf tip, owing to the setting
of the line-following method. Therefore, the distance between the skeleton tip of the
non-overlapping leaf tip and the centerline of another leaf that interrupts the leaf tip is
approximately 6 + 6 pixels.

◦ The line-following method sets a parameter for the interval between the place-
ment of decision points. Each unevenness caused by a single shade is recog-
nized as a tiller of the skeleton if the parameter value is significantly small.
Conversely, the skeleton is drawn from multiple leaves if the set value is con-
siderably large. For the images captured in this experiment, the best parameter
setting in the preliminary study was seven pixels. When placing the decision
point at a point seven pixels off, the tip of the skeleton will have a maximum of
six-pixel separation from the actual leaf tip.

Condition 2: No point is recognized as a leaf edge in the window set around the
judgment point. When the skeleton was zigzagged owing to the line-following method
characteristic, multiple points on a single leaf were misclassified as leaf tips. To alleviate this
error, a leaf tip with another leaf tip in the immediate neighborhood was eliminated from the
leaf tip detection point (window size was set based on a preliminary experiment: horizontal
direction was 31 pixels, and vertical direction was 20 pixels above the judgment point).

The flowchart of the peak-in-window method is described below (Figure 6).
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Figure 6. Flowchart of the peak-in-window method.

3. Results

The results of image estimation of the number of tillers per hill were compared with
those of the field observation of the manually measured value. Judging from the average of
multiple hills, the standard deviation became smaller (Figure 7). For 25 hills’ average, the
error variance dropped to about 1.0, and the error average dropped to 1.1 on 3 July and
7 August. The error average remained above 3 on 23 July.
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Figure 7. Accuracy of tiller-number estimation of multiple hills’ average (When there are various
estimates for the same hill, the average value was used. Only observable hills in the range were
considered. Data with observed values in more than one-third of the range were deemed to be valid.
Observed average of grayed-out hills around red-painted hills.).

The error of the proposed method was analyzed in two steps.
Step 1: Verify whether the true tiller number (A) can be estimated by manually

counting leaf tips from RGB images (B).
Step 2: Compare the precision of manual leaf-tip counting (B) and automatic leaf-tip

counting (C).
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a. True tiller number (A)—Manually counted leaf-tip number (B)

The effectiveness of the phenotyping approach was evaluated, which was inspired
by the synchronous growth theory in the development of rice tillers (Figure 8). The tiller
number measured manually in the field was compared with the leaf-tip number measured
visually by a human from RGB images. The variance increased as the growth stage
progressed; the number of visual measurements from the image was approximately 1 larger
than the true tiller value, regardless of the growth stage. The pair-wise t test between true
stem number and manual leaf-tip count implies that the difference is statistically significant
(p-value showed less than 0.1%).
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b. Manually counted leaf-tip number (B)—Automatically counted leaf-tip number (C)

The manually counted leaf-tip number from RGB images was compared with the
automatically counted number. Similar to that in the automatic measurement, we calcu-
lated the momentum height, displayed the line on the image, and measured the leaf tip
extending above it. The variance increased as the growth stage progressed; the automatic
measurements were approximately 2–4 times larger than manual counting (Figure 9). The
pair-wise t test between manual and automatic leaf-tip counts implies that the difference is
statistically significant (p-value showed less than 0.1%).

c. True tiller number (A)—Automatically counted leaf-tip number (C)

Finally, the error between the true tiller number and the automatically counted leaf-tip
number was evaluated. The variance increased as the growth progressed; the automatic
measurements were approximately 0.6–2.5 times larger than manual counting (Figure 10).
The pair-wise t test between true tiller number and automatic leaf-tip count showed a
p-value of 11% on 7 August, which implies that the difference is not statistically significant.
On 7 and 23 July, the t test implies that the difference is statistically significant (p-value
showed less than 0.001%).
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Figure 10. Error histogram between true tiller number and automatically counted leaf-tip number.

The statistics of the observation results are described below (Table 2). For correlation
coefficients, ground truth tiller numbers and manually counted leaf-tip numbers were
0.7–0.8 regardless of the growth stage; manual and automatically counted leaf-tip numbers
were 0.5–0.3, and ground truth tiller number and automatic leaf-tip counting were 0.3–0.2.
A t test between (A), (B), and (C) was also conducted, and the p value was less than
0.01 percent in most cases. There are statistically significant differences between the true
tiller number (A), manually counted leaf-tip number (B), and automatically counted leaf-tip
number (C).

Table 2. Detailed table of observation results.

True Tiller Number—Manual
Leaf Tip Counting

Manual Leaf Tip
Counting—Automatic Leaf

Tip Counting

True Tiller Number—Automatic
Leaf Tip Counting

3 July 23 July 7 August 3 July 23 July 7 August 3 July 23 July 7 August

R (correlation coefficient) 0.73 0.83 0.73 0.49 0.47 0.30 0.27 0.25 0.21
error average −1.12 −1.16 −1.14 2.15 3.68 1.70 1.03 2.53 0.56
error variance 1.53 1.55 2.06 2.18 2.52 3.46 2.55 2.99 3.68
t-test p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11
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Table 2. Cont.

True Tiller Number—Manual
Leaf Tip Counting

Manual Leaf Tip
Counting—Automatic Leaf

Tip Counting

True Tiller Number—Automatic
Leaf Tip Counting

3 July 23 July 7 August 3 July 23 July 7 August 3 July 23 July 7 August

Histogram of
errors (sample

number for
each error)

−7 or less 1 0 1 0 0 3 1 0 3
−6 1 1 3 0 0 1 1 0 3
−5 3 1 0 0 0 3 1 0 4
−4 12 2 6 1 0 2 6 1 5
−3 18 11 22 5 0 2 16 1 5
−2 63 29 21 9 1 4 16 9 10
−1 71 19 17 12 4 9 25 3 11
0 61 18 22 26 5 11 40 8 15
1 21 9 13 49 11 16 41 17 15
2 7 5 4 40 11 23 38 12 15
3 0 0 7 47 10 10 33 10 5

4 1 0 0 38 16 13 21 11 7
5 0 0 0 16 17 6 12 6 8
6 0 0 0 10 6 3 3 5 5

7 or more 0 0 0 6 14 10 5 12 5

4. Discussion

The tiller number can be estimated accurately from long leaf-tip counting using
automated image analysis. For practical use, the accuracy is improved by estimating
multiple plants per hill at once (Figure 7). Manual leaf-tip counting overestimates tiller
numbers by evaluating the phenotyping approach (Figure 8). Additionally, automated
counting underestimates compared to manual counting (Figure 9). The error bias of over-
and undercounting offsets each other when comparing true tiller numbers with automatic
leaf-tip counting. This results in moderate accuracy (Figure 10).

The error standard deviation became smaller with an increase in the hill number for
average calculation; the error variance decreased to approximately one when 25 shares were
observed. The error average did not decrease with an increase in the number of hills; it was
approximately one on 3 July and 7 August, and three on 23 July (Figure 7). Tiller numbers
per hill ranged from 5 to 17, with an average of 11 on August 7. Its range and average were
nearly the same regardless of the day of observation. Since the tiller-number range was
approximately 13, an error of 1–3 would not be a major practical problem. Considering the
error of each hill, more than 60% of hills had an error of less than ±3 tillers regardless of
the observation date (3 July: 81%, 23 July: 63%, 7 August: 66%).

The error factors were individually verified for each patch image in which the auto-
mated leaf-tip counting and tiller number deviated by four or more. Error causes could be
categorized into four types (Figure 11):

Error (1) (overlapping leaves are seen as a single leaf) occurs most frequently and is
considered the main cause of counting errors. It is difficult to distinguish the leaf tips of
overlapped leaves even by human judgment when observing the images after binarization.
The approach of extracting the contour and boundary could achieve higher accuracy
compared to the approach with binarization. Additionally, machine learning could be used
to measure RGB images for higher accuracy.

Error (2) (invasion of neighboring hills’ leaves) does not explain the overcounting, but
it decreases the correlation coefficient. Similar to Error (2), accuracy could be improved if
the numbers of leaf tips of multiple plants were observed at once. Leaves reflected from
neighboring plants based on the orientation of the leaves could be removed.

Error (3) (skeleton misfit and less peak count) occurs mainly at the left and right edges
of the patch. The fitting of the skeleton fails when the leaves go out of the image. If we
avoid cutting the image into pieces as patches and alter the approach to measuring multiple
plants at once, higher accuracy can be achieved.

Error (4) (shooting elevation is sufficiently large that non-main stem leaves are counted):
the long leaves growing from the main stem are a counting target, but they are also mea-
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sured along with the short leaves together in some cases, which causes over counting.
When observing rice with a large elevation angle, it is difficult to distinguish between long
and short leaves. The drone’s flight altitude and position were not stable due to wind and
caused large elevation angle shots.

A previous study found that the number of leaves on the main stem and the number
of tillers have an error of about one leaf [25]. If the error mentioned above is reduced, more
accurate observations can be made.
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Figure 11. Error type in automatic tiller counting. Undercounting due to leaf-region overlap, over-
counting due to invasion of neighboring hills’ leaves, undercounting due to skeleton misfit, and
overcounting due to large shooting elevation angles, which counts non-main stem leaves (error larger
than four, August 7 observation). In bottom image, white lines represent skeleton of leaves, and green
dots represent points which is regarded as leaf tips above center of gravity line.

The wind conditions during UAV observation also seem vital in counting accuracy. For
example, a high wind speed (3.2 m/s) on 23 July caused leaf disruption, which enlarged Er-
rors (1) and (2). Furthermore, windy conditions complicate UAV altitude control, affecting
the spatial resolution of images to be captured as well as image processing performance.

A versatile observation method could be implemented with less adjustment cost by
utilizing crop science knowledge that has been tested for suitability in various cultivation
environments. Although the data varied in terms of sunlight conditions and growth stage,
it is easy to adjust the image-processing method. Only the binarization threshold parameter
was adjusted for each observation date; the other parameters were consistently set to the
same value.

The hill-trimming step was manually performed at the current stage. Several studies
have reported the possibility of rice-hill extraction at early growth stages [27,28], but
none for later stages when rice plants are heavily overlapped. We plan to develop such a
whole-stage auto trimming algorithm to achieve a higher throughput of tillering counting.

As explained in the introduction, predicting the number of panicles from the tiller at
an early stage is important. The data-assimilation method with a growth model is viable
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to improve the panicle-number prediction accuracy. Growth models such as WOFOST
and ORYZA have been developed to simulate crop growth. WOFOST is a generic crop
model that simulates many different crops using the same principles and algorithms, while
ORYZA is a rice-specific model [29,30]. For example, WOFOST calculates attainable crop
production for a location given knowledge about soil type, irradiation, temperature, plant
characteristics, availability of water, and plant nutrients. Either model simulates major
biological processes in order, which are phenological development, CO2-assimilation, respi-
ration, and the partitioning of assimilates to the various organs. In this model, partitioning
weight parameters between roots, stems, storage, and leaves are important parameters to
describe crop conditions. Theoretically, the weight ratios of tillers are highly sensitive to
prediction accuracy [31]. Tiller number counting could contribute to estimating current
crop partitioning parameters by combining other observables such as biomass. The growth-
model prediction could enhance accuracy through data assimilation with phenotyping
results [32,33]. Data-assimilation methods with panicles and tillers could be further studied.

5. Conclusions

We proposed a simple image-processing pipeline that followed the empirical principles
of synchronously emerging leaves and tillers in rice morphogenesis to non-destructively
estimate the number of tillers at the vegetative and reproductive stages under flooded
conditions. A non-destructive method for observing the tiller number of rice plants for
this stage did not exist, and this method showed moderate accuracy. The estimated tiller
number in a 1.1 m × 1.1 m area is significantly correlated with the actual number of tillers
(error average = 1.02 of error standard deviation = 1.09 at the early reproductive stage),
with 60% of hills having an error of less than ±3 tillers. As a novel research topic, the
performance of the proposed method has been proven acceptable for practical usage and is
expected to help agronomists with high throughput field-phenotyping tasks.
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