
Citation: Kang, M.; Baek, J. Efficient

and Accurate Synthesis for Array

Pattern Shaping. Sensors 2022, 22,

5537. https://doi.org/10.3390/

s22155537

Academic Editor: Shuai Zhang

Received: 4 July 2022

Accepted: 22 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient and Accurate Synthesis for Array Pattern Shaping
Minseok Kang 1 and Jaemin Baek 2,*

1 Division of Electrical, Electronic, and Control Engineering, Kongju National University,
Cheonan 31080, Korea; mskang@kongju.ac.kr

2 Department of Mechanical Engineering, Gangneung-Wonju National University, Wonju 26403, Korea
* Correspondence: jmbaek@gwnu.ac.kr; Tel.: +82-33-760-8746

Abstract: Array pattern synthesis (APS) aims to create the desired array pattern as closely as possible
to the prescribed mask template by varying the element excitations of the array. Herein, an efficient
approach for the APS to control the sidelobe level is proposed. After designing the mask template to
meet the prescribed sidelobe requirements and the waveform pattern, a set of element excitations is
calculated through the Fourier transform performed on the projection the waveform pattern onto the
mask template. Then, a desired array pattern can be synthesized from this updated set of excitation
coefficients. The proposed APS approach directly presents a mathematical formulation of the exact
set of excitations without any iterative optimization process. The proposed method is particularly
suited for many array elements in linear antenna array. Thus, the proposed APS achieves substantial
improvements in terms of computation complexity, performance, and ease of implementation in the
algorithm when compared with conventional methods. Several simulation results are provided to
verify the efficacy and effectiveness of the proposed method.

Keywords: array pattern synthesis; mask template; phased arrays antenna; waveform pattern

1. Introduction

The use of array pattern synthesis (APS) in applications can be maximized through
several essential factors, including digital beamforming, array pattern optimization, and
subarrays. An array pattern can electronically scan array beams in space even if the array
does not physically move [1–4]. The phased-arrays can exhibit arbitrary APS characteristics,
which are based on an adequate control of sidelobe level (SLL), by varying the amplitude
and phase excitations for each element [5–8]. Generally, element currents are iteratively
investigated through the optimization process to reduce the error between the desired APS
and the prescribed mask template [9–12].

To address the APS problem, numerous methods have been devised in the litera-
tures [13–23]. The APS optimization problem is addressed by many effective approaches,
such as non-convex (namely stochastic optimizer) optimization, convex optimization, and
sparse recovery method. Non-convex optimization techniques based on nature-inspired
algorithms (e.g., stochastic optimizers such as particle swarm optimization (PSO) [9], ge-
netic algorithms [13], differential evolution algorithm [14] and ant colony optimization
algorithm [15]) adjust the trial solutions and attempt to converge to the global optimum by
repeatedly evaluating the cost function with different trial solutions. The resultant opti-
mized patterns for these optimizers perfectly fit the mask template. However, stochastic
optimization methods are associated with huge amounts of computational complexity, since
the required number of synthesis iterations considerably increases depending on the size
of the array [24–26]. Meanwhile, convex optimization techniques, such as quadratic error
minimization and linear programming (LP), is successfully applied in handling the issue
of APS optimization problem [16,17]. An analytical technique proposed in [16] is efficient
for solving the problem by means of LP procedure followed by a polynomial factorization.
Furthermore, the authors extended a preliminary version of theory and procedures in [16]
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for the case where an even distribution is required on element excitations [17]. In [18], the
author utilizes successive fast-Fourier transform (FFT) to produce the thinned APS. This
method achieves improvements in terms of computation complexity and ease of implemen-
tation in the algorithm. However, the method suffers from drawbacks such as sensitivity to
the selection of the initial point, which results in a huge number of iterations to acquire the
desired results. The efficient APS approaches based on the iterative convex optimization
are introduced in [19,20]. However, the interior point method requires high computational
complexity to solve convex optimization related to APS tasks with large-sized array [21].
Likewise, the large-sized array makes it challenging to provide efficient APS approaches
using the matrix enhancement and matrix pencil synthesis method proposed in [22], due to
the requirement of a huge amount of computing resources and memory. In [23], the authors
present a novel APS scheme using a fast iterative shrinkage-thresholding algorithm (FISTA)
based on sparse optimization. However, in some cases, this approach fails to find the global
minimum corresponding to the desired APS due to the cost surface being trapped in local
minima when dealing with large-sized arrays [27].

Motivated by the problems of the conventional optimization methods [13–23], a completely
different approach for the APS is presented in this paper. The proposed scheme is composed
of three steps: (1) design of arbitrary mask template and waveform pattern, (2) discrete
Fourier transform (DFT) process of the projection of the waveform pattern onto the mask
template, and (3) the calculation of the desired AF using the updated set of element
excitations. The proposed APS approach directly provides a mathematical formulation
of the exact set of element excitations, which yield the desired APS without any iterative
optimization process. Since the core calculations in the proposed approach rely on the
fast-Fourier transform (FFT) operations, the proposed method is computationally more
efficient than the traditional optimization process, essentially coming down to trial and
error. Furthermore, the proposed method is especially suited for many array elements in
linear antenna array.

The organization of this paper is as follows: In Section 2, we introduce the problem
statement of APS. In Section 3, a mathematical framework for the proposed method is
derived in detail. The results of several simulations are provided to demonstrate the
proposed scheme in Section 4. Section 5 discusses the results in perspective of previous
studies, highlighting certain future research directions. Finally, several conclusions are
presented in Section 6.

2. Problem Formulation and Brief Description of Proposed Method

The array factor (AF) resulting from an array of identical discrete elements is the sum
of the radiations for each element excited by the spatial phase delay from each element to
the far-field point. The AF sum can be obtained in an approach that is similar to a Fourier
series. The desired function of AF(u) can be represented as a Fourier series in the interval
−d/λ < u < d/λ as [6]

AF(u) =
∞

∑
i=−∞

ciej2πi d
λ u (1)

ci =
d
λ

∫ λ
2d

− λ
2d

AF(u)e−j2πi d
λ udu (2)

where λ is the wavelength. It is assumed that the elements are uniformly spaced at distance
d and u = cos θ, where θ is the angle from the line of the linear array. The summation of (1) is
recognized as the AF of an array with an infinite number of elements with currents ci, called
as i-th element excitation. The AF(u) arising from these element currents approximates the
desired function. The complete pattern representation for the array is found using pattern
multiplication. The pattern multiplication means that the complete pattern is calculated by
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multiplying the element pattern E(u) and AF(u). In (3), it is shown the total pattern P(u)
for the array of element excitations:

P(u) = E(u)× AF(u) (3)

It is generally assumed that E(u) is identical for each element in the electronically
scanned arrays when the mutual coupling effect is negligible.

In this paper, we focus on the estimation of a set of amplitudes and phases of the exci-
tation source ci to synthesize the desired AF(u) by exploiting the direct solution approach,
rather than solving the optimization problem related to APS. Then, the desired AF(u) as
closely as possible to the prescribed mask template can be obtained from the superposition
of the element pattern from an updated set of element excitations. A brief description of
the proposed beamforming approach based on the mask template and waveform pattern is
provided below. Consider a linear array of K elements with an array of length (K−1)d. The
mask template vector mdB designed to meet the prescribed sidelobe requirements in decibel
scale is transformed to linear scale data m = (m1, m2, · · · , mK) ∈ RK for implementing the
proposed method. The desired AF can be represented as

a = m�w (4)

where � denotes the Hadamard operator (entrywise product), a = (AF1, AF2, · · · , AFK) ∈
RK is the desired AF, which can be interpreted as the projection of the vector w whose
entries (w1, w2, · · · , wK) ∈ RK consist of the designed waveform in K sampling points
onto the mask template m discretized in the same positions. Furthermore, a can also
be rewritten as the product of the inverse DFT matrix and the excitation source vector
c = (c1, c2, · · · , cK) ∈ CK:

a = FHc (5)

where FH is the Hermitian of F ∈ CK×K DFT matrix with entries Fn,k = 1/
√

Ke−j2πnk/K and
denotes the inverse DFT. Therefore, from (4) and (5), we can obtain the following relation:

ĉ = F[m�w]. (6)

Based on the descriptions in (4)–(6), an updated set of element excitations ĉ can
yield the desired AF, which fully matches the SLL requirements related to the prescribed
mask template. The proposed beamforming method based on the efficient and robust
approach allows extremely fast excitation source estimation by significantly reducing the
computational load. The mathematical framework for the proposed method is derived in
detail in the following paragraph.

3. Mathematical Formulation of Efficient Approach to Array Pattern Synthesis

The proposed beamforming method can be formulated with the help of mask template
design and waveform pattern. The mask template is comprised of the rectangular functions
as a one of the families of orthogonal functions used to form a basis. Thus, any mask
template could be written as a linear combination of the rectangular function:

m(u) =
L−1
∑

n=0
bnΠ

(
u−un

τn

)
= bMΠ

(
u−uM

τM

)
+

L−1
∑

n = 0
n 6= M

bnΠ
(

u−un
τn

)
, (7)

where L represents the total number of rectangular functions, Π(·) denotes the rectangular
function, bn is the scaling constant of the n-th rectangular function. Further, un and τn are a
time-delay and width of the n-th rectangular, respectively. Similar to the description of the n-
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th rectangular, bM, uM, and τM are defined in the M-th rectangular function corresponding
to the mainlobe.

To design the waveform pattern, a one-to-one correspondence between the mask
template and the waveform pattern should be established in sine space (−1 < u < 1).
Furthermore, zero-crossing points of sinc function should be calculated with respect to
the initial beam pattern, since it is imperative that the waveform pattern has the same
zero-crossing points without the attenuation of the sinc function. The waveform pattern
w(u) can be expressed as:

w(u) =

 cos(2παu), |u
∣∣∣≤ 1

4α

sin{2π(2α)u}, |u
∣∣∣> 1

4α

, (8)

where α denotes the parameter to be determined by the mainlobe width (considering the
presence of a large number of array elements) of the mask template. The first zero-crossing
point of sinc function is calculated at u = 1/(4α) when cos(2παu) = 0 for 2παu = π/2.
Then, α = 1/(2τM) can be estimated from the mathematical relation τM = 2u between the
mask template and waveform pattern with respect to the mainlobe. The rest of the zero-
crossing points in the sidelobe region of sinc function are located in positions that are based
by sin{2π(2α)u} = 0. In this study, we adopted α = 1/[2τM × (1 + δ)], where δ = 0.1,
considering the practical design specifications and constraints. Using the rectangular
function, (8) can be rewritten as

w(u) = Π
(

u− uM
τM

)
cos(2παu) +

[
1−Π

(
u− uM

τM

)]
sin{2π(2α)u}. (9)

The desired AF can be written as the multiple of m(u) and w(u):

p(u) = m(u)× w(u)

=


bMΠ

(
u− uM

τM

)
︸ ︷︷ ︸

mainlobe o f m(u): mm(u)

+
L−1

∑
n = 0
n 6= M

bnΠ
(

u− un

τn

)

︸ ︷︷ ︸
sidelobe o f m(u): ms(u)



×

Π
(

u− uM
τM

)
cos(2παu)︸ ︷︷ ︸

mainlobe o f w(u): wm(u)

+

[
1−Π

(
u− uM

τM

)]
sin{2π(2α)u}︸ ︷︷ ︸

sidelobe o f w(u): ws(u)



=

bMΠ
(

u− uM
τM

)
cos(2παu)︸ ︷︷ ︸

mainlobe o f p(u): pm(u)

+
L−1

∑
n = 0
n 6= M

bnΠ
(

u− un

τn

)[
1−Π

(
u− uM

τM

)]
sin{2π(2α)u}

︸ ︷︷ ︸
sidelobe o f p(u): ps(u)


,

(10)

where pm(u) = mm(u)× wm(u) and ps(u) = ms(u)× ws(u). pm(u) of the last equality
in (10) is derived by Π2[(u− uM)/τM] = Π[(u− uM)/τM]. The beam pattern p(u) is
composed of two main parts: the mainlobe part pm(u) and the sidelobe part ps(u).
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The frequency response Pm( f ) can be generated with a Fourier transform (FT) of pm(u)
with respect to variable u, as follows:

Pm( f ) = FTu[pm(u)]
= bMτMsin c( f τM)e−j2π f uM ⊗ f

[
δ( f−α)+δ( f+α)

2

]
,

(11)

where ⊗ f denotes the convolution operation over the frequency f sin c(·) and δ(·) are the
sinc and the Dirac delta functions, respectively. Based on the notion that a set of rectangular
function in an inner product space is an orthogonal set, ps(u) can be rewritten as:

ps(u) =
L−1
∑

n=0
bnΠ

(
u−un

τn

)[
1−Π

(
u−uM

τM

)]
sin{2π(2α)u} − bMΠ

(
u−uM

τM

)[
1−Π

(
u−uM

τM

)]
sin{2π(2α)u}

=
L−1
∑

n=0
bnΠ

(
u−un

τn

)[
1−Π

(
u−uM

τM

)]
sin{2π(2α)u}

=
L−1
∑

n=0
bnΠ

(
u−un

τn

)
sin{2π(2α)u} − bMΠ

(
u−uM

τM

)
sin{2π(2α)u}.

(12)

∑L−1
n=0 Π[(u− un)/τn]×Π[(u− uM)/τM] = Π[(u− uM)/τM] is applied in last equal-

ity as the orthogonal property in (12). Then, the frequency response of ps(u) can be obtained
by the FT of ps(t) along the time direction, as follows:

Ps( f ) = FTt[ps(u)]

=
L−1
∑

n=0
bnτnsin c( f τn)e−j2π f un ⊗ f

[
ej π

2
δ( f+2α)−δ( f−2α)

2

]
+bMτMsin c( f τM)e−j2π f uM ⊗ f

[
ej π

2
δ( f−2α)−δ( f+2α)

2

]
.

(13)

Note that information about |c| and ∠c can be easily obtained by carrying out a FT
over p(t) along the time direction as follows:

P( f ) = FTt[p(u)]
= FTu[{mm(u) + ms(u)} × {wm(u) + ws(u)}]
= FTu[pm(u)]⊗ f FTu[ps(u)]
= Pm( f )⊗ f Ps( f ).

(14)

An inequality |Pm( f )| ≥ |Ps( f )| holds true because the dominant sinc function
(bMτM � bnτn) related to the mainlobe pattern corresponding to the M-th rectangular
function (bM � bn), is always guaranteed. Thus, |c| = |P( f )| and ∠c = ∠P( f ) can be
respectively approximated by

|P( f )| ' |Pm( f )| (15)

∠P( f ) ' ∠Pm( f ). (16)

From (11) and (13), we can observe that the spectrum |P( f )| is roughly close to a single
dominant sinc, which is induced by the superposition of two sinc functions separated by
2α in (11). Likewise, ∠P( f ) is similar to the wrapped phase measurements, which consists
of a combination of two linear functions.

Finally, the desired AF can be directly approximated calculating (1) using the excitation
sources determined in (14). The overall flowchart of the proposed framework for the
efficient approach to APS is presented in Figure 1.
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Figure 1. Overall flowchart of the proposed approach for APS.

4. Experimental Results

In this section, some examples are presented to verify the effectiveness of the proposed
APS approach in terms of performance improvement and computational efficiency. All
computations were run by MATLAB in Windows 10 on an AMD Ryzen 9 5900X 12-Core
Processor at 3.70 GHz.

4.1. Simulation Results of APS Using Proposed Approach

In this subsection, we verify the performance of the proposed technique for APS with
a linear array. The DFT function is used to evaluate the far-field pattern, which implicitly
assumes that the phased array elements are spaced at half wavelength. Thus, the case
of a linear array with K = 200, λ/2-spaced isotropic antennas is considered. As shown
in Figure 2a, the mask template mdB is designed such that it suffices the prescribed SLL
requirements for the desired APS beforehand, by using a linear combination of the rectan-
gular function. Thus, m can be obtained by executing a linear scaling of mdB (Figure 2b).
The waveform pattern w can be constructed with the information associated with the
beamwidth τM and the calculation of zero-crossing point of initial beam pattern having a
uniform distribution (Figure 2c). A set of element excitations P( f ) (both amplitude and
phase) is calculated through the DFT, which is performed on the projection w onto m. As
expected, it is clearly observed in Figure 2d that most energies of P( f ) are concentrated
at the center of the array distribution, because two main sinc functions of (11) are closely
aligned. Finally, Figure 2e shows that numerical vectors m and w, which are designed
using the proposed method, are converted to the desired AF against c. The directivity of
the APS attained by the proposed method has the value of 30.94 dB. Furthermore, for a
more realistic evaluation [28] of the proposed method, antenna pattern recovery with beam
steering simulation is performed for 5% randomly dispersed element failure to analyze
the pattern generation performance of the proposed method. The defective elements are
randomly chosen over the linear array, and their excitations are set to zero in order to
simulate the defective elements. In the presence of defective elements, the desired beam
steering, which is about changing the direction of the mainlobe of a radiation pattern, is
obtained by the proposed method, as shown in Figure 2f. While the APS with a directivity
of 30.72 dB successfully steered toward 20 degrees, the excess SLLs outside the upper
bounds are observed to increase, as shown in Figure 2f. The proposed method does not
rely on a cost function to solve the constrained optimization problem or the adjustment
of parameter to implement adequate control of SLLs and is thus very straightforward to
use. This indicated that the proposed beamforming method based on the efficiency of the
FFT, capable of providing correctly designed and desired APS, allows extremely fast and
accurate excitation source estimation by significantly reducing the computational load.
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Figure 2. (a) Designed mask template in dB scale; (b) Designed mask template in linear scale; (c) Designed
waveform pattern; (d) A set of element excitations calculated using (c,b) with respect to both amplitude
(blue) and phase (orange); (e) The desired AF synthesized by a set of element ex-citations of (d); (f) The
desired AF synthesis steered towards 20 degrees in the presence of defec-tive elements.
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4.2. Comparison of Performance Analysis for APS Techniques

Some examples are presented to compare the performance of the proposed APS
approach to that of well-established state of the art methods, such as the successive FFT
(SFFT) [18], FISTA [23], and PSO [9] algorithms based on each of the three different types
of optimization approaches. All optimizers generate trial solutions as a set of numbers
between 0 and 1, which are then linearly mapped to the amplitude and phase at each
element. The representative examples are presented to illustrate how each algorithm
achieves such different results in dealing with the same APS task in terms of synthesis
accuracy and computational efficiency. The resultant patterns optimized by each APS
algorithms are well-formed to fit the mask template and are almost analogous within the
full angle range in Figure 3a. The directivity of the APS attained by the FISTA has the
smallest value of 32.69 dB among the four algorithms. On the contrary, the directivity
measured by the proposed method (32.78 dB) is better than the SFFT (32.76 dB) and PSO
(32.73 dB). Figure 3b shows that a substantial flatness is achieved in the mainlobe area in
the proposed method and the radiation in the transition area is sufficiently suppressed,
which is in contrast to the other methods. The AF of the proposed method decreases in
its transition region much more rapidly than those of other methods. Furthermore, the
angular span between the first pattern nulls adjacent to the mainlobe within its transition
area provided by the proposed method, which is 0.059 rad, and is the smallest among
all radiation patterns. The AF of the proposed method decreases in its transition region
more rapidly than those of other methods. Furthermore, the angular span between the first
pattern nulls adjacent to the mainlobe within its transition area, provided by the proposed
method, which is 0.059, and is the smallest among all radiation patterns.
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Figure 3. Desired AFs synthesized with K = 300 array elements for desired beamwidth τM = 0.06
(rad), and the comparison between the proposed method and optimization techniques; (a) Full angle
range; (b) Sector beam patterns.

To verify the effectiveness of the proposed approach in terms of the ability to gen-
erate the desired APS to be form-fit into a mask template, we calculated the half-power
beamwidth (HPBW) error as the absolute value of the difference between the HPBW of the
APS and the desired HPBW, as varying the desired beamwidth. Observations of Figure 4a
showed that the HPBW error of the resultant APS attained by the proposed method was
below 0.002 rad over all the metrics, which was approximately 67%, 70%, and 71% lower
compared to that of SFFT, PSO, and FISTA, respectively.
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Figure 4. (a) HPBW error calculated as the absolute value of the difference between synthesized and
desired HPBWs; (b) Percentage of power radiated by each APS technique in the mainlobe region;
(c) Average computation times (on a semilogarithmic scale) required to synthesize desired AF with
beamwidth τM = 0.07 (rad) versus the number of array elements for each APS technique.

Meanwhile, we also analyzed the percentage of power radiated by the APS in the main-
lobe region described in Figure 3b. The numerical results were measured by the radiated
power of the desired AF synthesis obtained using each algorithm. The radiated power of
the four algorithms gradually increases in proportion to the value of desired beamwidth, as
shown in Figure 4b. However, the proposed APS leads to the best performance among all
radiation patterns over the range of all desired beamwidth. Thus, it can be concluded that
the proposed method considerably outperforms the other methods in terms of the ability to
concentrate the radiated power in the mainlobe region, regardless of the desired beamwidth.

Further analysis of the AF synthesis was considered to investigate the performance
of the proposed method for a large number of array excitation elements. The numerical
results were analyzed by using the computational complexity required by each algorithm
in order to provide the AF synthesis with a desired beamwidth τM = 0.07 rad. All methods
were performed under different K in the range from 100 to 500 with a 50 step, in which
50 Monte-Carlo simulations were conducted at each K (the number of array elements). The
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average computation time for each of the four APS methods were displayed in Figure 4c.
It was observed that the proposed method conducted the search for an optimal solution
with faster estimation than four different APS methods. The computation time of the three
algorithms gradually increased with the number of array elements. However, it was worth
noting that the computation time of the proposed method was considerably reduced and
was relatively unaffected by the number of array elements. The proposed APS approach is
especially appropriate for a large number of array excitation elements. Therefore, we can
conclude that the proposed method can considerably improve the computational efficiency,
while retaining the synthesis quality of the desired far-field pattern, compared to SFFT,
FISTA and PSO.

5. Discussion

An attractive attribute of the proposed method is that the proposed beamforming
method based on the efficient and robust approach allows extremely fast excitation source
estimation by significantly reducing the computational load. An updated set of element
excitations can yield the desired AF, which fully matches the SLL requirements related to
the prescribed mask template. The mathematical framework for the proposed method is
derived in detail. The proposed scheme is composed of three steps: (1) design of an arbitrary
mask template and waveform pattern, (2) DFT process of the projection the waveform
pattern onto the mask template, and (3) the calculation of the desired AF using the updated
set of element excitations. The proposed APS approach directly provides a mathematical
formulation of the exact set of element excitations, which yield the desired APS without any
iterative optimization process. Since the core calculations in the proposed approach rely on
the FFT operations [29–34], the proposed method is computationally more efficient than
the traditional optimization process, essentially coming down to trial and error [35–39].
Generally, it is assumed that the elements of linear array are uniformly spaced at distance d.
Thus, the proposed APS has been developed to achieve satisfactory performance from fully
and uniformly sampled data. The effective use of proposed APS can address an important
issue [40–43] in the framework of radar missions [44–46] because the proposed method
has the ability to create almost arbitrary APS characteristics based on adequate control
of SLL. Furthermore, the proposed method is especially appropriate for the synthesis of
large-sized linear arrays such as pencil beam [47,48] because the complicated design of
mask template requires a large number of arrays, namely the wide bandwidth. Therefore,
we can conclude that the proposed method can considerably improve the computational
efficiency, while retaining the synthesis quality of the desired far-field pattern, compared to
conventional APS methods. On the other hand, the proposed APS approach suffers from
certain limitations, such as null placement [49] in APS and difficulty in the optimization
of directivity [50], because the proposed method focuses on managing the task to exhibit
arbitrary APS characteristics, which are based on an adequate control of SLL, by varying the
amplitude and phase excitations for each element. Thus, the future work will be devoted
to extending the proposed APS to null placement and optimization of directivity task.

6. Conclusions

In this study, the efficient APS approach of linear arrays with a periodic arrangement
of the elements is devised. The proposed approach entails following steps: (1) the design
of the prescribed mask template m and waveform pattern w, (2) the DFT process of the
projection w onto m in the sampling positions, and (3) the calculation of the desired AF
from the estimated set of array elements c. In the simulation results, the proposed scheme
demonstrates an excellent performance of accurate APS to meet the prescribed sidelobe
requirements and outperforms significantly better in terms of efficiency, robustness, and
ease of use in the algorithm when compared to the conventional methods. The proposed
approach is particularly appropriate for the synthesis of large-sized linear arrays since all
the excitation coefficients can be estimated simultaneously through FFT operation.
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