
Citation: Cheng, T.; Jiang, F.; Li, Q.;

Zeng, J.; Zhang, B. Quantitative

Analysis Using Consecutive Time

Window for Unobtrusive Atrial

Fibrillation Detection Based on

Ballistocardiogram Signal. Sensors

2022, 22, 5516. https://doi.org/

10.3390/s22155516

Academic Editor: Ki H. Chon

Received: 19 June 2022

Accepted: 19 July 2022

Published: 24 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Quantitative Analysis Using Consecutive Time Window for
Unobtrusive Atrial Fibrillation Detection Based on
Ballistocardiogram Signal
Tianqing Cheng 1, Fangfang Jiang 1,* , Qing Li 1, Jitao Zeng 1 and Biyong Zhang 2,3

1 College of Medicine and Biological Information Engineering, Northeastern University,
Shenyang 110819, China; 2171227@stu.neu.edu.cn (T.C.); 20195984@stu.neu.edu.cn (Q.L.);
20196008@stu.neu.edu.cn (J.Z.)

2 College of Medicine and Biological Information Engineering, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands; biyong.zhang@slaaplekker.cn

3 BOBO Technology, Hangzhou 310000, China
* Correspondence: jiangff@bmie.neu.edu.cn

Abstract: Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF
detection is crucial. Here, we propose a novel feature extraction method to improve AF detection
performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface
transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to
each BCG segment and recurrence quantification analysis (RQA) features are extracted from each
time window. Then, the number of CTWs is discussed and the combined features from multiple time
windows are ranked, which finally constitute the CTW–RQA features. As validation, the CTW–RQA
features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical
time and time-frequency features and up-to-date energy features. The accuracy of the proposed
feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To
evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square
test. CTW–RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion
features. It follows that the proposed CTW–RQA features effectively supplement the existing BCG
features for AF detection.

Keywords: recurrence plot; recurrence quantification analysis; continuous time windows; atrial
fibrillation detection; ballistocardiogram signal

1. Introduction

Atrial fibrillation (AF) is a common type of arrhythmia, of which the incidence is
increasing year by year [1,2]. There are currently 335 million individuals suffering from
AF worldwide, with an overall prevalence rate of 2.9% [3,4]. It is particularly important
to study the daily real-time and continuous monitoring and diagnosis of AF. At present,
AF is widely detected using electrocardiograms (ECGs), the current gold standard for
diagnosis [5–8]. However, ECG-based AF detection has been restricted by the need to attach
electrodes on the body surface. Although wearable devices such as smartwatches provide a
convenient way of collecting ECG data for daily monitoring, the principle of ECG detection
is based on electrophysiology, which is unable to characterize the dynamic changes of the
heart activity [9]. Therefore, unobtrusive methods based on cardiac dynamics have been
brought into focus, including ballistocardiogram (BCG), seismocardiogram (SCG), and
photoplethysmogram (PPG) methods [10–12].

Considering that the waveform components of PPG are less complex than those of
SCG and BCG, SCG sensors need to be attached to the chest, so the AF detection method
based on BCG is widely studied, which reflects the status of the larger cardiovascular
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system [13,14]. BCG is a noninvasive technique for recording the weak vibration signal
on the surface of the body transmitted by the cardio-dynamic force [15]. Over the past
decade, the development of BCG-based AF diagnosis through machine learning (ML)
and deep learning (DL) has been increasingly investigated [16]. Bruser et al. extracted
17 time and time-frequency features of BCG signals from 10 patients, which were split into
856 nonoverlapping epochs with a length of 30 s each, and applied seven ML algorithms
to classify AF, sinus rhythm (SR), and body movement [17]. Yu et al. recorded 12 AF
patients’ data, and each BCG recording was split into nonoverlapping 30-s epochs, from
which 12 power spectrum features were extracted. In addition, three ML classifiers were
applied to distinguish AF and non-atrial-fibrillation (NAF) [18]. Wen et al. collected
BCG signals from 37 subjects, which were split into 2915 1-min segments without overlap.
Further, 16 energy features were extracted to classify AF and SR by means of five ML
algorithms [19]. To substitute the feature extraction, the DL method has been applied to
detect AF recently. In our previous study, the Bi-directional Long Short-Term Memory
(Bi-LSTM) and phase space reconstruction (PSR) algorithm were employed to represent the
1-D morphology feature and 2-D rhythm feature of BCG signals, respectively, which were
integrated by means of a CNN network to improve the robustness of AF detection [20]. In
summary, the BCG-based AF detection method generally includes three main procedures:
signal acquisition and preprocessing, feature extraction and selection, and classification
and performance evaluation. Thereinto, the feature extraction is crucial, including the time
feature, frequency feature, time-frequency feature, and non-linear feature.

The recurrence plot (RP) as a non-linear feature was first formally proposed by Eck-
mann et al. in 1987 [21], which maps a multi-dimensional nonlinear dynamic system by a
two-dimensional graph. Recurrence quantification analysis (RQA) is an effective nonlinear
tool, which is used to represent the non-stationary characteristics of signals and extract the
nonlinear characteristic parameters of waveforms [22]. Currently, RP and RQA have been
successfully applied in ECG-based arrhythmia detection. Sun et al. effectively predicted
spontaneous termination of AF based on the structure and quantification of RP via ECG
signals [23]. Mathunjwa et al. utilized ECG-based RP diagrams and convolutional neural
networks (CNNs) to classify arrhythmias [24]. Chen et al. investigated cardiovascular
activity changes under exposure to low-frequency noise for various noise intensities by
using RP analysis of heart rate variability (HRV) estimation [25].

Considering that BCG has the same rhythm as ECG, we reconstruct the RP of the BCG
signal and propose novel RQA features using continuous time windows (CTWs) to improve
the accuracy of AF classification effectively in this study. In addition, we collect 4000 BCG
segments from 59 subjects, which is more than in previous studies. As a comparison,
the classical time and time-frequency features [17] and up-to-date energy features [19] are
extracted using the BCG dataset of this study. From the contrast results, the AF classification
accuracy of the proposed continuous time window RQA (CTW–RQA) features is superior
to the accuracy of the other two existing features. Moreover, the CTW–RQA features are
combined with the two types of existing features to constitute the fusion features, which
achieve the optimal classification accuracy of 95.63%. To evaluate the importance of the
proposed feature, the fusion features are ranked, and the CTW–RQA features account for
60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that
the proposed CTW–RQA features effectively supplement the existing BCG features for
AF detection.

The remainder of the paper is organized as follows. The Methods section elaborates the
proposed approach including the signal acquisition and preprocessing, RP reconstruction,
and CTW–RQA feature extraction and feature fusion. The experimental results are shown
in the Results. In the Discussion, the experimental results are analyzed comprehensively.
Finally, we summarize the drawbacks and future work in the Conclusions.

2. Methods

The framework of the proposed method is shown in Figure 1.
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Figure 1. The process of the proposed method in this paper, where 2.1, 2.2, 2.3, and 2.4 represent the
corresponding sections in the Methods.

2.1. Signal Acquisition and Preprocessing

BCG is a non-intrusive measurement of the vibration generated from the human
heartbeat and arterial aortic blood circulation, which has the same rhythm as an ECG. In
this study, BCG signals were recorded by means of the acquisition system that consisted
of polyvinylidene fluoride (PVDF) and data acquisition hardware. The PVDF sensor
(W × H: 30 cm × 60 cm, piezoelectric constant > 2 × 10−11 C/N) was placed on the top
of a regular bed mattress and located underneath the subjects’ thorax with a sampling
rate of 125 Hz (see 2.1 of Figure 1). During the recording process, the raw BCG waveform
was amplified, and a Butterworth band-pass filter [17,26] was designed with a passband
frequency of 0.7 Hz to 10 Hz to remove the high-frequency noise and low-frequency
respiratory components and the motion artifacts, which was aimed at achieving a pure
BCG signal. The ECG signal was collected by a CT-08S Holter Recorder at a sampling rate
of 200 Hz. In order to address the problem of different sampling rates with BCG signals,
the ECG signal was down-sampled to 125 Hz based on synchronized time stamps.

In total, 59 volunteers with paroxysmal AF, aged between 27 to 93 years, participated
in this study; there were 34 males and 25 females. The BCG signal of each subject was
recorded from 8 pm to 8 am in a lying position. Medical experts manually labeled the
BCG signal as AF periods and NAF periods, taking synchronized ECG signals as the gold
standard. AF periods and NAF periods were split to 24-s BCG segments, and 2000 AF
segments and 2000 NAF segments were achieved as the BCG dataset. For AF classification,
80% of the BCG data were applied to train the classifiers, and the remaining 20% were
recognized as independent testing data. In order to ensure the fairness of the experiments,
all segments were collected from 59 subjects as evenly as possible. Additionally, the training
and testing datasets were derived from different subjects to avoid overfitting.

2.2. RP Reconstruction

Recurrence is a fundamental property of dynamic systems, which can be exploited to
characterize the system’s behavior in phase space [27]. A powerful tool for their visualization
and analysis, called RP, was introduced in the late 1980s by Eckmann, which reveals all the
times when the phase space trajectory of the dynamic system visits roughly the same area
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in the phase space [21]. Cardiac activity is a dynamic system, so RP is used for nonlinear
analysis of the BCG rhythm in this study. Figure 2 shows the BCG reconstruction process.
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Figure 2. RP reconstruction schematic diagram: after the BCG signal is transformed into phase space
trajectory, RP is obtained through RP reconstruction, where (a) is the waveform of the 24-s BCG
segment, (b) is the phase space trajectory of BCG, and (c) is the RP of BCG.

The basis of RP reconstruction is to reconstruct the phase space. Takens theorem
states that a phase space can be reconstructed by the system component after selecting the
appropriate delay time τ and embedding dimension m for the time series, which contains
all of the information of the original time series [28].

Set the BCG time series {u1, u2, . . . , un}, and then the m−dimensional BCG recon-
structed vector xi is defined as Equation (1).

xi =
[
ui, ui+τ , . . . , ui+(m−1)τ

]
(i = 1, 2, . . . , n− (m− 1)τ) (1)

where m is the embedding dimension and τ is the delay time, i = 1, 2, . . . ; n−(m−1) τ. In
this study, the mutual information method is used to determine the parameter τ, and the
pseudo-neighborhood method is used to determine the parameter m, which have been
discussed in literature [20].

As shown in Figure 2, the distance between the points i and j in the reconstructed
phase space can be calculated with Equation (2).

Sij =‖ xi − xj ‖ (i = 1, . . . , n− (m− 1)τ, j = 1, . . . , n− (m− 1)τ, xi ∈ Rm) (2)

The RP is a collection of time pairs at the same position in the phase space trajectory
in the two-dimensional time domain as shown in Equations (3) and (4).

Rm·εi
i,j = Θ

(
εi − Sij

)
= Θ

(
zij
)
(i, j = 1 . . . N) (3)

Θ
(
zij
)
=

{
0 i f zij > 0
1 otherwise

(4)

where the Rm·εi
i,j is the recursion value, and zij represents the difference between threshold

εi and Sij.
Equation (4) shows that for the distance between the m-dimensional trajectory of time

j and the m-dimensional trajectory of time i, a black point is placed at the coordinates (i, j),
otherwise, a white point is placed. A key parameter in the analysis is the threshold εi,
which is chosen as 10% of the maximum phase space diameter based on the theory of
the RP [27,29–31]. The thresholded recurrence plots (TRPs) of AF and NAF are drawn in
Figure 3a,b. In another case, without setting the threshold, the value of point (i, j) in the
image matrix is calculated as the Euclidean distance between point i and point j in the
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phase space. The unthresholded recurrence plots (UTRPs) of AF and NAF are shown in
Figure 3c,d.

Sensors 2022, 22, 5516 5 of 20 
 

 

Equation (4) shows that for the distance between the m-dimensional trajectory of time 

j and the m-dimensional trajectory of time i, a black point is placed at the coordinates (i, j), 

otherwise, a white point is placed. A key parameter in the analysis is the threshold 𝜀𝑖, 

which is chosen as 10% of the maximum phase space diameter based on the theory of the 

RP [27,29–31]. The thresholded recurrence plots (TRPs) of AF and NAF are drawn in Fig-

ure 3a,b. In another case, without setting the threshold, the value of point (i, j) in the image 

matrix is calculated as the Euclidean distance between point i and point j in the phase 

space. The unthresholded recurrence plots (UTRPs) of AF and NAF are shown in Figure 

3c,d. 

 

Figure 3. TRP and UTRP of AF and NAF. (a) is the TRP of AF, and (b) is the TRP of NAF; (c) is the 

UTRP of AF, and (d) is the UTRP of NAF. 

2.3. CTW–RQA Feature Extraction 

RQA defines new measures of complexity by using geometrical structures of RP. Ac-

cording to the characteristic of phase space trajectories, recursive graphs contain typical 

small-scale structures such as single points, diagonals, vertical lines, and horizontal lines, 

which constitute the large-scale texture structures. RQA quantifies the small-scale and the 

large-scale texture structures [31]. In this paper, n consecutive time windows are designed 

to divide each BCG segment, which refine the region of interest for the original signal. 

Afterwards, k RQA features are extracted in each time window to constitude the CTW–

RQA feature. The feature extraction process is shown in Figure 4. 

In Figure 4, Wi are the time windows to be analyzed (I = 1, 2, …, n). Wij refers to the 

jth RQA feature extracted from the ith time window (j = 1, 2, …, k), k is the number of RQA 

features. Mi represents the feature vector composed of k RQA features in the ith time win-

dow, and the CTW–RQA feature of each BCG segment is defined in Equation (5). 

CTW–RQA = [M1,M2,…,Mn]  (5) 

In this study, k is selected as 13, and the 13 RQA features are shown in Table 1, which 

are denoted as RQA1, RQA2, …, RQA13. 

In Table 1, RR is the percentage of recurrence points in an RP; DET is the percentage 

of recurrence points that form vertical lines, where the P(l) is the histogram of the lengths 

l of the diagonal lines; LAM is the percentage of recurrence points that form vertical lines, 

where P(v) is the histogram of the lengths v of the vertical lines; RATIO is the ratio between 

DET and RR; L is the expression of the average length of the diagonal lines; TT is the 
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2.3. CTW–RQA Feature Extraction

RQA defines new measures of complexity by using geometrical structures of RP.
According to the characteristic of phase space trajectories, recursive graphs contain typical
small-scale structures such as single points, diagonals, vertical lines, and horizontal lines,
which constitute the large-scale texture structures. RQA quantifies the small-scale and the
large-scale texture structures [31]. In this paper, n consecutive time windows are designed
to divide each BCG segment, which refine the region of interest for the original signal.
Afterwards, k RQA features are extracted in each time window to constitude the CTW–RQA
feature. The feature extraction process is shown in Figure 4.

In Figure 4, Wi are the time windows to be analyzed (i = 1, 2, . . . , n). Wij refers to the
jth RQA feature extracted from the ith time window (j = 1, 2, . . . , k), k is the number of
RQA features. Mi represents the feature vector composed of k RQA features in the ith time
window, and the CTW–RQA feature of each BCG segment is defined in Equation (5).

CTW-RQA = [M1,M2, . . . ,Mn] (5)

In this study, k is selected as 13, and the 13 RQA features are shown in Table 1, which
are denoted as RQA1, RQA2, . . . , RQA13.

In Table 1, RR is the percentage of recurrence points in an RP; DET is the percentage of
recurrence points that form vertical lines, where the P(l) is the histogram of the lengths l
of the diagonal lines; LAM is the percentage of recurrence points that form vertical lines,
where P(v) is the histogram of the lengths v of the vertical lines; RATIO is the ratio between
DET and RR; L is the expression of the average length of the diagonal lines; TT is the
percentage of the average length of the vertical lines; Lmax is the expression of the length
of the longest diagonal line; Vmax is the expression of the length of the longest vertical
line; DIV is the reciprocal of Lmax; ENTR is the percentage of the Shannon entropy of the
probability distribution of the diagonal line lengths P(l); TREND is the percentage decrease
of the RP towards its edges; CLUST is the percentage of the ratio of the number of closed



Sensors 2022, 22, 5516 6 of 19

triplets to the number of all triplets; WVmax is the percentage of the length of the white
vertical line.
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Table 1. The definition of 13 RQA features.

Symbols Measure Definition

RQA 1 Recurrence rate (RR) RR = 1
N2 sumN

i,j=1Ri,j

RQA 2 Determinism (DET) DET =
∑N

l−lmin
lP(l)

∑N
l=1 lP(l)

RQA 3 Laminarity (LAM) LAM =
∑N

v−vmin
vP(v)

∑N
v=1 vP(v)

RQA 4 Ratio (RATIO) RATIO = N2 ∑N
l−lmin

lP(l)

(∑N
l−1 lP(l))

2

RQA 5 Averaged diagonal line length (L) L =
∑N

l−lmin
lP(l)

∑N
l−lmin

P(l)

RQA 6 Trapping time (TT) TT =
∑N

v−vmin
vP(v)

∑N
v=vmin

P(v)

RQA 7 Longest diagonal line (Lmax) Lmax = max({li; i = 1, . . . , Nl})
RQA 8 Longest vertical line (Vmax) Vmax = max({vi; i = 1, . . . , Nv})
RQA 9 Divergence (DIV) DIV = 1

Lmax

RQA 10 Entropy (ENTR) ENTR = −
N
∑

l−lmin

p(l) ln p(l)

RQA 11 Trend (TREND ) TREND = ∑N
i=1(i−Ñ/2)(RRi−〈RRi〉)

∑N
i=1 (i−Ñ/2)

2

RQA 12 Clustering coefficient (CLUST) CLUST = CTN
TN

RQA 13 Longest white vertical line (WVmax) WVmax = max({wvi; i = 1, . . . , Nv})

2.4. Feature Fusion

In order to validate the characterization performance of the proposed features, 17 time
and time-frequency features and 16 energy features are extracted in this section. And the
three types of features are ranked, and finally the fusion features and the ranked features
are derived to improve the accuracy of AF detection.

2.4.1. Time and Time-Frequency Features and Energy Feature Extraction

In the literature [17], 6 time features and 11 time-frequency features were extracted
from BCG signals, which were fed into 7 popular ML classifiers to detect AF. The definitions
of the 17 time and time-frequency features are shown in Table 2, which are denoted as TTF1,
TTF2, . . . , TTF17.

In Table 2, pp10(l) is defined as the peak-to-peak amplitude of ten segments that is
split from 24-s BCG segments. S[f, t] represents the result of the energy spectral density
calculation of data by defining a 5-s window, S(f) represents the result of the time mean of
S[f, t], fpeak represents the distance between peaks of S[f, t], and wpeak [k] represents the
distance from the kth peak to the average peak height.

In the literature [19], BCG signals were transformed into BCG energy signals in order to
highlight the features of AF and NAF, and four new data sequences representing different
characteristics of the BCG energy signals were generated. The mean value, variance,
skewness, and kurtosis of the four data sequences were calculated, and 16 energy features
were extracted for each BCG segment. Five ML algorithms were used to distinguish AF
and NAF. The definitions of the 16 energy features are shown in Table 3, which are denoted
as E1, E2, . . . , E16.

In Table 3, P(i) values are sample points that correspond to peaks, where i indicates
the ith peak in the segment; T(i) comprises the coordinates of troughs; DA(i) denotes the
relative difference of the peak amplitude; RT(i) stores the relative value of the trough
amplitude; and BP(i) was defined to denote the number of burrs between P(i) and P(i + 1).
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Table 2. The definition of 17 time and time-frequency features.

Symbols Measure Definition

TTF1 Standard Deviation std(x[n]) =
√

N
N−1 m2(x[n])

TTF2 Skewness skewness (x[n]) = m3(x[n])
m2(x[n])3/2

TTF3 Kurtosis kurtosis(x[n]) = m4(x[n])
m2(x[n])2

TTF4 Range pp(x[n]) = max(x[n])−min(x[n])
TTF5 Ratio of pp10(l) to the Mean max(pp10(l)/mean(pp10(l)))
TTF6 Standard Deviation of pp10(l) std(pp10(l))

TTF7 The Standard Deviation of S[ f ] std
(
S[ f ]

)
TTF8 Skewness of S[ f ] skewness

(
S[ f ]

)
TTF9 Kurtosis of S[ f ] kurtosis

(
S[ f ]

)
TTF10 Standard Deviation of fpeak std

(
∆ fpeak [k]

)
TTF11 Skewness of fpeak skewness

(
∆ fpeak [k]

)
TTF12 Kurtosis of fpeak kurtosis

(
∆ fpeak [k]

)
TTF13 Standard Deviation of S[ f , k] std(stdt(S[ f , k]))

TTF14 Average of wpeak mean
(
wpeak [k]

)
TTF15 Standard Deviation of wpeak std

(
wpeak [k]

)
TTF16 Harmonic Drama Frequency

max f d

[ F
f b ]

∑
k=1

log10

(
Sm4(k fb)

S[(k+ 1
2 ) fb]

)
TTF17 Kurtosis of Continuous Time Energy Spectral Density T−1

∑
t=1

kurtosis (xcorr(S[ f , t], S[ f , t + 1]))

Table 3. The definitions of the 16 energy features.

Symbols Definition

E1 Mean (PI(i))
E2 Variance (PI(i))
E3 Skewness (PI(i))
E4 Kurtosis (PI(i))
E5 Mean (DA(i))
E6 Variance (DA(i))
E7 Skewness (DA(i))
E8 Kurtosis (DA(i))
E9 Mean (RT(i))
E10 Variance (RT(i))
E11 Skewness (RT(i))
E12 Kurtosis (RT(i))
E13 Mean (BP(i))
E14 Variance (BP(i))
E15 Skewness (BP(i))
E16 Kurtosis (BP(i))

2.4.2. Feature Ranking and Selection

In order to evaluate the features proposed, four types of features are ranked using the
Fisher Score, chi-square test, minimum redundancy–maximum relevance (MRMR) and
SHapley Additive exPlanations (SHAP) algorithms.

The Fisher Score is defined as the ratio of inter-class variance to intra-class variance [32],
which is calculated as Equations (6)–(8). It can be deduced that when the inter-class variance
is larger and the intra-class variance is smaller, the Fisher Score is larger. Therefore, higher
ranked features are more discriminatory theoretically.

S(k)
B =

C

∑
i=1

ni
n

(
m(k)

i −m(k)
)2

(6)
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S(k)
w =

1
n

C

∑
i=1

∑
x∈wi

(
x(k) −m(k)

i

)2
(7)

Jfisher (k) =
S(k)

B

S(k)
w

(8)

where x(k) represents the value of sample x for the kth feature, m(k)
i represents the mean of

the values of class i samples for the kth feature, and m(k) represents the mean of the values
of all categories of samples for the kth feature. S(k)

B is defined as the inter-class variance of

the kth feature in the data set; S(k)
w is defined the intra-class variance of the kth feature in

the data set; and Jfisher (k) defines the Fisher Score of the kth feature in the data set.
The chi-square test is a common hypothesis testing method based on the χ2 distribution

of the test statistic. Its null hypothesis H0 is that the observed frequency does not differ
from the expected frequency. The basic idea of this test is as follows: assume that H0 is
established; then, calculate the χ2 value based on this premise, which represents the degree
of deviation between the observed value and the theoretical value. According to the χ2

distribution and degrees of freedom, the probability p of obtaining the current statistic
and more extreme cases can be determined under the condition that the H0 hypothesis
holds. The chi-square test checks whether each feature is independent of the label. A small
p-value for the test statistic indicates that the corresponding feature is dependent on the
label, proving that the feature is important [33]. To amplify the difference between features,
importance scores are proposed, as shown in Equation (9).

Importance scores = −lg(p) (9)

The MRMR algorithm finds an optimal set of features that are maximally different from
each other and that can effectively represent the label variable [34]. The algorithm calculates
the mutual information between features and the mutual information between features
and labels to quantify redundancy and correlation. The features are ranked according to
the criteria of minimizing the redundancy of the feature set and maximizing the correlation
between the feature set and the label variable.

The SHAP algorithm can interpret each feature’s importance to predictions [35]. The
SHAP value has been used to guide feature selection [36], which explains the deviation
of the prediction for the query sample from the average prediction. In this algorithm, the
model needs to be retrained on all feature subsets S ⊆ F, where F represents all features.
It assigns an importance value to each feature that represents the effect on the model
prediction when including that feature. To compute this effect, a model fS∪ {i} is trained
with that feature present, and another model fS is trained with the feature withheld. Then,
a comparison is conducted between the two prediction models with respect to the current
input fS∪ {i}

(
xS∪ {i}

)
− fS(xS) to calculate the SHAP values, where xS represents the

input features in the value set S [35]. In this study, each BCG segment is used as xS, and
the average of the absolute values of the resulting SHAP values is used to draw a SHAP
summary plot and is applied to feature ranking.

2.4.3. Fusion Feature Extraction

Based on the ranking results of the CTW–RQA feature, the first 13 features are selected,
which is consistent with the dimensionality of RQA features without CTW. Afterwards, 17
time and time-frequency features, 16 energy features, and 13 ranked CTW–RQA features
are combined as 46 fusion features, which provide abundant characterization informa-
tion. However, there must be irrelevant or redundant information in the fused features.
Therefore, 46 fusion features are ranked holistically, and the first 13, 16, and 17 features are
selected, which are denoted as the Top 13, Top 16, and Top 17 ranked features. The selected
dimensions are consistent with the time and time-frequency features, energy features, and
ranked CTW–RQA features. The purpose is to compare the classification performance of
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ranked features with each type of independent feature in the same dimension. Figure 5
demonstrates the extraction process of the proposed fusion features and ranked features.
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3. Results
3.1. AF Detection Based on the RP Diagram

TRP and UTRP are reconstructed from 4000 BCG segments, which are fed into the
designed CNN directly. The network mainly consists of eight convolution layers, four
pooling layers, four dropout layers, one flatten layer, and one full connection layer and
outputs the result of dichotomy, which is successfully performed for AF detection from the
BCG signal [20]. The accuracy (ACC), sensitivity (SEN), precision (PRE), and specificity
(SPE) are calculated to estimate the AF classification performance, which is shown in
Table 4.

Table 4. AF detection performance based on RP by means of the CNN.

Method ACC PRE SEN SPE

TRP 56.13 73.50 38.75 59.38
UTRP 73.25 78.75 67.75 76.12

From Table 4, the classification performance of UTRP is superior to TRP. However, the
classification accuracy of UTRP and TRP is less than 80%, which cannot keep up with the
demand of AF screening in routine life.

3.2. AF Detection Based on CTW–RQA Features

Based on Table 1, 13 RQA features are extracted from each 24-s BCG segment, and five
ML classifiers are used for training and testing, including K-Nearest Neighbors (KNN),
Naive Bayes (NB), Ensemble Learning (ENS), Random Forest (RF), and a Decision Tree
(DT) [19,37,38]. The AF detection performance is shown in Table A1 of the Appendix A.
As a comparison, CTW–RQA features based on three different time window lengths are
extracted, and n is set to 6, 3, and 2. The same ML classifiers are used to detect AF, and
the performance is shown in Tables A2–A4 of the Appendix A. From Tables A1–A4, RF is
the optimal classifier, so Table 5 illustrates the AF detection performance based on RQA
features and CTW–RQA features by means of RF.

As shown in Table 5, the accuracy of the RQA features and CTW–RQA features is
higher than that of the CNN based on UTRP in Table 4. When n is selected as 3, the
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CTW–RQA features obtain the highest classification accuracy of 89.38%, which is superior
to the RQA features without CTW.

Table 5. AF detection performance based on RQA features and CTW–RQA features by means of RF.

Features ACC PRE SEN SPE

RQA 83.50 85.64 80.50 86.50
4 s CTW–RQA (n = 6) 81.75 83.74 80.95 82.63
8 s CTW–RQA (n = 3) 89.38 90.52 88.54 90.26
12 s CTW–RQA (n = 2) 86.13 86.46 84.91 87.29

3.3. AF Detection Based on Time and Time-Frequency Features and Energy Features

Based on Table 2, 17 time and time-frequency features (6 time domains and 11 time-
frequency domains) are extracted from the 4000 BCG segments in this study. In addition,
the 4000 BCG segments are transformed into BCG energy signals to extract 16 energy
features based on Table 3. The same five ML algorithms are employed to classify AF and
NAF. The classification performance is shown in Tables A5 and A6 of the Appendix A.

From Tables A5 and A6, RF achieves the optimal classification performance. Therefore,
RF is applied to evaluate two types of features with CTW. As a comparison, n is also
selected as 6, 3, and 2. The AF detection performance is shown in Tables 6 and 7.

Table 6. AF detection performance based on time and time-frequency features with and without
CTW by means of RF.

Features ACC PRE SEN SPE

Without CWT 87.63 85.89 89.20 86.13
4 s CTW (n = 6) 79.73 69.21 53.73 77.37
8 s CTW (n = 3) 84.63 85.22 50.39 91.73

12 s CTW (n = 2) 85.38 83.33 84.83 83.94

Table 7. AF detection performance based on energy features with and without CTW by means of RF.

Features ACC PRE SEN SPE

Without CWT 78.50 77.89 78.68 78.33
4 s CTW (n = 6) 68.15 65.52 36.19 78.95
8 s CTW (n = 3) 74.63 69.15 75.24 62.89

12 s CTW (n = 2) 76.78 78.54 74.05 77.63

From Tables 6 and 7, the time and time-frequency features and energy features without
CTW exhibit a superior classification performance and are suitable for feature fusion.

3.4. AF Detection Based on Fusion Features

From Table 5, n is selected as 3. According to Method Section 2.4.2, the Fisher Score,
chi-square test, MRMR, and SHAP algorithms are used for feature ranking. The calculated
results of 13 RQA features based on four feature ranking algorithms are shown in Table 8.
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Table 8. The calculated results of 13 RQA features based on four feature ranking algorithms.

Fisher Score MRMR (×10−3) Chi-Square Test (−lg(p)) Mean (|SHAP Value|) (×10−2)

RQA 1 26.7275 15.6968 86.1661 9.16
RQA 2 0.0069 36.1666 76.7835 5.83
RQA 3 0.0614 26.1460 109.6421 9.26
RQA 4 0.0067 7.4060 79.8617 4.03
RQA 5 0.0025 7.5923 126.0331 0.75
RQA 6 0.0117 9.2184 69.9101 7.84
RQA 7 0.0437 5.9155 108.9972 1.38
RQA 8 0.0515 14.0229 63.5000 2.99
RQA 9 0.0445 8.5346 83.1469 1.31

RQA 10 0.0136 14.6556 114.1749 1.69
RQA 11 0.0463 24.4646 102.5003 2.02
RQA 12 0.0282 6.8314 95.5515 3.84
RQA 13 0.0282 16.0161 118.5287 2.12

According to Figure 5, the 39 CTW–RQA features are reduced to 13 CTW–RQA features
based on Table 8. Then, 46 fusion features, composed of 13 CTW–RQA features, 17 time
and time-frequency features, and 16 energy features, are fed into five ML classifiers to
detect AF. The results are shown in Table 9.

Table 9. AF detection performance based on the fusion features.

Method ACC PRE SEN SPE

KNN 58.13 84.07 23.06 95.36
NB 81.63 85.52 77.42 86.08

ENS 91.75 95.29 88.35 95.36
RF 95.63 95.84 95.63 95.62
DT 84.50 85.82 83.74 85.31

As shown in Table 9, RF achieves the optimal classification accuracy, which is 95.63%.

3.5. AF Detection Based on Ranked Features

From Table 9, the classification performance of the fusion features has been obviously
improved. However, excessive feature dimensionality may affect the classification efficiency,
so 46 fusion features are ranked by the same four feature ranking algorithms. Figure 6
shows the ranking results of the fusion features by the chi-square test method, and Figure A1
in the Appendix A shows the ranking results of the fusion features by the SHAP method.
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According to Method Section 2.4.3, the Top 13, Top 16, and Top 17 ranked features are
selected based on the ranking results of fusion features, which are fed into the optimal RF
classifier. The AF detection accuracy based on the ranked features is shown in Table 10.

Table 10. AF detection accuracy based on the ranked features.

Method Top 13 Top 16 Top 17

Fisher’s coefficient 91.25% 89.63% 90.88%
MRMR 92.88% 93.13% 93.63%

Chi-square test 95.25% 95.25% 95.38%
SHAP value 93.75% 94.13% 94.63%

From Table 10, the ranked features selected by the chi-square test have the high-
est classification accuracy. The Top 17 ranked features have a comparable classification
performance with the 46 fusion features, which validates the effect of feature selection.

4. Discussion

In this study, CTW–RQA features are proposed to improve the accuracy of AF detection
based on BCG signals. The main contributions of our work are the following: (1) RP is first
applied to detect AF by means of BCG signals. TRP and UTRP are fed into the designed
CNN to classify AF and NAF. (2) The CTW–RQA features are proposed for the first time to
quantify the AF rhythm characteristic, which are compared with the 17 classical time and
time-frequency features and 16 up-to-date energy features using five ML classifiers. The
AF classification accuracy of the proposed feature is superior to the other existing features
using the BCG dataset of this study. (3) The CTW–RQA features are combined with the
two types of existing features to constitute the fusion features. Then, the fusion features
are sorted and selected to constitute the ranked features. The 46 fusion features achieve the
optimal classification accuracy of 95.63%, and the 17 ranked features result in a decrease of
only 0.25%. It follows that the feature ranking and selection are necessary, and the proposed
CTW–RQA features effectively supplement the existing BCG features for AF detection.
Furthermore, the reasons underlying the experimental results are analyzed in detail.

4.1. Effects of RP and RQA

From Table 4, the AF detection performance based on TRP and UTRP is compared
by means of a CNN, and the results show that UTRP has superior classification accuracy,
which is 73.25%. This may be because UTRP contains substantially more information from
the signal that generated it than TRP [39]. However, the classification accuracy of both
TRP and UTRP could not satisfy the requirement of AF screening. This result may be
explained as follows: RP is a sparse image, and non-contiguous areas contain key features,
which are difficult to extract by the convolution kernel of the CNN [40]. Therefore, RQA
is utilized to emphasize textural features of the RP graph more concretely. From Table 5,
13 RQA features are extracted to input into 5 ML classifiers, and the RF classifier has the
optimal performance with an accuracy of 83.50%, which is superior to TRP and UTRP. It
follows that RQA features characterize the abnormal rhythm information of BCG signals
effectively, which improves the accuracy of AF diagnosis. Therefore, RQA features with
the ML classifier are taken as the basis for subsequent feature modifications.

4.2. Effect of the Proposed CTW–RQA Features

In Table 5, the AF classification accuracy of the CTW–RQA features with three types of
time windows (n = 6, 3, 2) is compared to the accuracy of the RQA features. The CTW–RQA
features with 12-s (n = 2) and 8-s (n = 3) time windows exhibit a higher AF detection
accuracy than the RQA features without CTW. However, the CTW–RQA features with a
4-s (n = 6) time window exhibit worse performance. It follows that longer time windows
are insensitive to small rhythm changes; conversely, shorter time windows may miss
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occasional rhythm abnormalities. Therefore, the CTW–RQA feature with 8-s time windows
(n = 3) achieves the best classification performance.

Similarly, from Tables 6 and 7, the time and time-frequency features and energy
features without CTW show superior classification performance. This is since the time
features are extracted to quantify the amplitude, location information of wave peaks,
and inter-peaks in the BCG waveform, so time window addition may miss the effective
information. Additionally, limited by the uncertainty principle [41], it is understood that
a shorter CTW used to capture the signal segment leads to a poor resolution to represent
the signal in the frequency domain, which in turn negatively affects the performance of
AF detection. For the energy features, the BCG segments need to be transformed into
BCG energy signals, which describe the change in energy distribution. Therefore, longer
segmentation lengths are suitable to emphasize the distribution of energy. In summary,
CTW is not added to the time and time-frequency features and energy features during
feature fusion.

Compared to the time and time-frequency features and energy features without CTW,
the proposed CTW–RQA features exhibit the optimal AF classification performance based
on Tables 5–7. This is likely because the two existing features are more dependent on the
variability of the waveform, whereas the data used in this study are derived from a larger
number of subjects. Therefore, the proposed CTW–RQA features are more suitable for daily
AF screening.

4.3. Effect of Fusion Features and Ranked Features

From Table 9, fusion features exhibit an optimal classification accuracy of 95.63%,
which is improved significantly. This is because more dimensions and more types of
features provide more information in general. Nevertheless, there is redundant information
in the fusion features [42]. Therefore, feature ranking is applied to reduce the dimensions
of features and to improve the efficiency of the model.

From Table 10, the features selected by the chi-square test achieve the highest accuracy.
This is because this method intuitively quantifies the degree of deviation between features
and labels [33] and accurately finds the features strongly correlated with the labels, which is
suitable for feature selection in large data sets. Based on the results of the chi-square test, the
Top 13, Top 16, and Top 17 ranked features with AF detection accuracy are 95.25%, 95.25%,
and 95.38%, respectively, which are comparable to the 46 fusion features. Additionally,
with the same feature dimension, the classification accuracy of ranked features is higher
than 13 CTW–RQA features, 16 energy features, and 17 time and time-frequency features.
The Top 17 ranked features reduce the feature dimensions to improve the efficiency of the
algorithm, while the classification result is only 0.25% lower than the 46 fusion features. It
reflects the superiority of the ranked features, and the feature selection is necessary and
effective.

According to the ranking results based on the chi-square test in Figure 6, there are
6 CTW–RQA features from the first 10 features, and CTW–RQA features account for 65% of
the first 17 ranked features, verifying the characterization ability of the CTW–RQA features.
Moreover, the proposed features supplement the existing BCG features and effectively
improve the performance of AF detection.

4.4. Comparison with Existing Methods

For AF detection based on BCG signals, Bruser et al. extracted the time and time-
frequency features from 10 subjects, and the best classifier achieved an accuracy of 96% from
856 BCG segments [17]. Yu et al. extracted the time-frequency features from 12 subjects,
and the optimized classifier achieved an accuracy of 94.4% from 7816 BCG segments [18].
Wen et al. extracted the energy features from 37 subjects, and the best classifier achieved
an accuracy of 94.5% from 2915 BCG segments [19]. In this study, 4000 BCG segments
from 59 subjects were collected, which is more diverse. The more diverse range of subjects
enabled the proposed method to be more generalizable, which is more relevant to the
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application environment of AF screening. Additionally, the AF detection accuracy of
proposed features is superior to the accuracy of existing features based on the BCG dataset
in this study. The optimal classifier achieves an accuracy of 95.63%, which could satisfy
the demand of AF diagnosing in routine life. In summary, the proposed features present
an advantage in the field of AF detection based on more diverse BCG datasets, which
effectively supplement the existing BCG features.

Compared to existing wearable AF detection devices, the superiority of BCG-based
AF detection is as follows. Current technologies employed in wearables and evaluated for
AF detection are most often based on single-lead ECG or PPG. For ECG-based AF detection,
wearable devices include smartwatches/bands [43,44], smartphones [45–47], skin patch
recorders [45], hand-held devices [46,47], and smart clothing [48]. These monitoring
devices are convenient, but they are based on cardiac electrophysiology and lack the
analysis of cardio-dynamic changes. For PPG-based AF detection, wearable devices include
smartwatches/bands [49–51], smartphones [52,53], and cameras [54]. These monitoring
devices can provide cardio-dynamic information, but the accuracy is currently affected by
motion artefacts, measurement location, skin conditions, ectopic beats, peripheral vascular
disease, poor skin contact, and limited battery life [44,55]. In contrast, BCG-based AF
detection devices are usually cushions or mattresses [16], which keep individuals unaware
of the test and reflect the status of the larger cardiovascular system [13,14].

However, the limitation of BCG-based AF detection is the presence of motion artefacts,
thus stationary conditions are always desired. In state-of-the-art research, the BCG dataset
is generally collected during sleep, where high signal-to-noise ratio periods cover most
of the acquired data. Compared with the techniques using wearable devices, BCG-based
AF detection does not introduce an addition burden. For example, some devices demand
individuals to place their fingers on the electrodes of a smartphone [46,47]. Moreover, the
AF prevalence increases with age, especially for those aged > 65 years, whereas only 4.6%
of smartwatch users in the United States are aged > 65 years [56]. Therefore, BCG-based
AF detection devices are more suitable for the elderly or bedridden patients.

5. Conclusions

In this study, we reconstruct BCG signals with the RP method and propose CTW–RQA
features to optimize the AF classification performance. The experimental results prove that
the proposed features are feasible for AF detection using BCG signals. In the future, we will
expand the data volume of BCG signals, including multiple postures and more subjects,
to verify the universality of the algorithm. Additionally, the data length for each subject
will be increased for personalized analysis for specific subjects. For feature selection, more
feature ranking methods, such as the SHAP dependence plot, could be applied to evaluate
the importance of the BCG features. The CTW–RQA features and feature selection method
in this paper could be extended for the diagnosis of other arrhythmia diseases by means of
BCG signals, and the influence of respiratory movement could be considered.
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Appendix A

Table A1. AF detection performance based on RQA features.

Method ACC PRE SEN SPE

KNN 56.38 59.41 40.25 72.50
NB 62.88 66.78 51.25 74.50

ENS 77.88 80.38 73.75 82.00
RF 83.50 85.64 80.50 86.50
DT 79.63 79.70 79.50 79.75

Table A2. AF detection performance based on CTW–RQA features (n = 6).

Method ACC PRE SEN SPE

KNN 56.50 65.52 36.19 78.95
NB 69.38 69.15 75.24 62.89

ENS 75.75 78.54 74.05 77.63
RF 81.75 83.74 80.95 82.63
DT 72.25 72.92 75.00 69.21

Table A3. AF detection performance based on CTW–RQA features (n = 3).

Method ACC PRE SEN SPE

KNN 59.25 65.56 43.17 76.15
NB 56.63 54.21 99.02 12.05

ENS 81.25 80.95 82.93 79.49
RF 89.38 90.52 88.54 90.26
DT 78.88 78.76 80.49 77.18

Table A4. AF detection performance based on CTW–RQA features (n = 2).

Method ACC PRE SEN SPE

KNN 63.13 67.52 47.31 78.24
NB 61.13 55.85 97.70 26.16

ENS 82.13 81.47 82.10 82.15
RF 86.13 86.46 84.91 87.29
DT 79.75 78.70 80.31 79.22

Table A5. AF detection performance based on time and time-frequency features.

Method ACC PRE SEN SPE

KNN 65.88 69.21 53.73 77.37
NB 71.63 85.22 50.39 91.73

ENS 84.38 83.33 84.83 83.94
RF 87.63 85.89 89.20 86.13
DT 79.38 76.79 82.52 76.40
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Table A6. AF detection performance based on energy features.

Method ACC PRE SEN SPE

KNN 58.38 59.00 50.76 65.76
NB 72.13 68.31 80.96 63.55

ENS 75.50 74.03 77.41 73.65
RF 78.50 77.89 78.68 78.33
DT 73.63 72.82 74.11 73.15
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