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Abstract: In this paper, we present a nutrient solution control system, designing a nutrient so-
lution electrical conductivity (EC) sensing system composed of multiple long-range radio (LoRa)
slave nodes, narrow-band Internet of Things (NB-IoT) master nodes, and a host computer, building
a nutrient solution EC control model and using the particle swarm optimization (PSO) algorithm
to optimize the initial weights of a back-propagation neural network (BPNN). In addition, the op-
timized best weights are put into the BPNN to adjust the proportional–integral–derivative (PID)
control parameters Kp, Ki, and Kd so that the system performance index can be optimized. Under
the same initial conditions, we input EC = 2 mS/cm and use the particle swarm optimization BP
neural network PID (PSO-BPNN-PID) to control the EC target value of the nutrient solution. The
optimized scale factors were Kp = 81, Ki = 0.095, and Kd = 0.044; the steady state time was about
43 s, the overshoot was about 0.14%, and the EC value was stable at 1.9997 mS/cm–2.0027 mS/cm.
Compared with the BP neural network PID (BPNN-PID) and the traditional PID control approach,
the results show that PSO-BPNN-PID had a faster response speed and higher accuracy. Furthermore,
we input 1 mS/cm, 1.5 mS/cm, 2 mS/cm, and 2.5 mS/cm, respectively, and simulated and veri-
fied the PSO-BPNN-PID system model. The results showed that the fluctuation range of EC was
0.003 mS/cm~0.119 mS/cm, the steady-state time was 40 s~60 s, and the overshoot was 0.3%~0.14%,
which can meet the requirements of the rapid and accurate integration of water and fertilizer in
agricultural production.

Keywords: PSO-BPNN-PID; nutrient solution EC regulation; wireless sensor network acquisition
device; simulation and experiments

1. Introduction

Precision irrigation and precise fertilization in the agricultural production process can
not only improve the yield and quality of agricultural products but can also effectively
solve the environmental problems caused by excessive fertilization, which is in line with
the concept of ecological green development. Generally, the suitable nutrient solution EC
range for crops is usually between 0.8 mS/cm and 2.5 mS/cm, and the EC error range is
±0.8 mS/cm. However, the regulation process of EC in nutrient solutions has the charac-
teristics of nonlinearity, time delays, and time variations. The traditional PID controller,
suitable for a simple linear system, will have a large error in the EC regulation of a nutrient
solution. Therefore, a large number of studies on EC regulation of nutrient solutions have
been carried out in several countries, mainly focusing on combinations of fuzzy control
and PID, heuristic algorithms and PID, etc., as follows.

(1) Combination of fuzzy control and PID: Wang Xiaolong designed a fuzzy PID controller
to control the precise ratio of water and fertilizer [1]. Zhang Yubin et al. applied fuzzy
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PID control technology based on the EC value and pH value and developed a precise
water and fertilizer irrigation control system [2]. Wang Haihua et al. adopted a PI and
fuzzy subsection control strategy to better solve the lag and instability problems of
water and fertilizer EC regulation [3]. Li Li et al. analyzed the situation of an actual
closed cultivation system. To meet their requirements, the structure of the nutrient
solution to control the secondary mixed fertilizer was designed, and a mathematical
model of the dynamic process of the nutrient solution was established. At the same
time, a PI control algorithm was also designed, and their testing verified that the
steady-state time dimension of the system was 100 s, the overshoot was 3%, and the
control performance was excellent [4].

(2) Combination of heuristic algorithm and PID: the BP neural network has a strong
nonlinear mapping ability and self-adaptive ability, and its self-learning ability can be
used to output the optimal PID controller parameter combination corresponding to
a certain optimal control and thus achieve the desired control effect. However, the
initial value of the weight of the traditional BP neural network is randomly selected
according to experience. This method leads to slow convergence of the network,
which makes it easy to fall into the local optimal solution, and the final result has
a large degree of instability [4]. Because the particle swarm algorithm has memory,
it can transfer the memory of the best position of the particle in the history of the
group to other particles and has the advantages of having fewer parameters to be
adjusted and a simple structure, so the particle swarm algorithm was selected to
weight the BP neural network. Optimization was performed in the design of PSO-
BPNN-PID to improve the control effect. In recent years, scholars have carried out
a series of studies in this area. Jiang Liu et al. designed a PID controller based on the
BP neural network algorithm and analyzed the vehicle dynamics. The simulation
results showed that the dynamic performance of the vehicle was effectively improved
under different input conditions [5]. In order to reduce the influence of temperature
on the micro-gyroscope, Xia Dunzhu et al. proposed a temperature compensation
control method. First, a BP (back-propagation) neural network and polynomial fitting
were used to build the temperature model of the micro-gyroscope. Considering the
requirements of simplicity and real-time performance, piecewise polynomial fitting
was adopted in the temperature compensation system. Then, an integral-separated
PID temperature control system was adopted, with a proportional–integral–derivative
control algorithm to stabilize the internal temperature of the micro-gyroscope and
achieve its optimum performance. The experimental results showed that the com-
bined temperature compensation and control method of the micro-gyroscope could
be realized effectively in a prototype of the micro-micro-gyroscope [6]. Alex
Alexandridis et al. proposed a new approach to controlling the general properties
of nonlinear systems, using an inverse radial basis function neural network model
that was able to combine disparate data from a variety of sources. The results revised
the ability of the proposed control scheme to process and manipulate a variety of
data. Through the data fusion method, it was shown that the method responded
in a faster and less oscillatory manner [7]. Jun Wang et al. proposed a closed-loop
motion control system based on a BP neural network (BPNN) PID controller, which
used a Xilinx field programmable gate array (FPGA) solution. The results showed
that the proposed system could realize self-tuning PID control parameters and had
the characteristics of reliable performance, high real-time performance, and strong
anti-interference ability. Compared with MCU, the convergence speed was far more
than three orders of magnitude, proving its superiority [8]. Yuan Jianping [7] used
the GA-PSO-BP-PID algorithm to control the greenhouse environment, and the simu-
lation results obtained using MATLAB showed that the stability and robustness of
the control system were better than conventional BP-PID [9]. Li Hang et al. used
an improved genetic algorithm to optimize the BP neural network to achieve better
control over the gas concentration [10]. The abovementioned BP neural network
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research has achieved good results in the field of environmental control but not in the
field of nutrition. Therefore, based on the above research, this paper develops an EC
control system for a nutrient solution consisting of a sensing layer, a network layer, and
an application layer. The sensing layer consists of multiple LoRa sub-nodes and
one LoRa master node, where the master node is connected to the water and fertilizer
integration system. By combining LoRa and NB-IoT to form a wireless sensor net-
work, comprehensive sensing, reliable transmission, and the intelligent application
of water and fertilizer control information are realized. The nutrient solution EC
regulation model of the water–fertilizer integration system is further constructed, and
the PSO-BPNN-PID controller is designed by combining PSO optimization with the
BP-PID coupling control method, and the initial weights of BPNN are continuously
optimized by the PSO algorithm to achieve the optimal weights, and the optimal
weights are input into BP neural network to automatically adjust the PID control
parameters Kp, Ki, and Kd to find the optimal control parameters. After a MATLAB
simulation with a good control effect, further, through the self-organized network
communication performance test and nutrient solution EC control system test, it is
proved that the nutrient solution EC control system has excellent performance and
can meet the needs of actual production.

2. Working Principle of the Integrated Water and Fertilizer Device

For nutrient solution regulation, researchers mostly adopt water and fertilizer integra-
tion methods. Based on the analysis of nutrient solution regulation devices in China and
abroad, in this study, we have designed a multi-channel water and fertilizer integration
device, as shown in Figure 1. The device is mainly composed of seven parts: 1© an indus-
trial aluminum profile frame, 2© the main network system, 3© the fertilizer suction system,
4© the mixed fertilizer system, 5© the detection system, 6© the control system, and 7© the

fertilization system. This system realizes the automatic and intelligent adjustment and
control of irrigation and fertilization according to input conditions or sensor data, such as
soil moisture, evaporation, rainfall, and light intensity. Automatic timing and quantitative
irrigation and fertilization of crops in irrigated areas.
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Figure 1. The working principle of the integrated water and fertilizer system. 1. Fertilizer pump; 2. 
Buffer mixing tank; 3. Venturi jet; 4. Control box (including controller, operation screen and data 
acquisition module, etc.) system; 5. EC sensor; 6. PH sensor; 7. Float valve; 8. Pressure gauge; 9. 
Upper branch pipe filter; 10. Pressure-sensitive switch; 11. Check valve; 12. Water source main pipe-
line water pump (optional); 13. Main pipe filter; 14. Pressure reducing valve; 15. Fertilizer storage 
tank; 16. Fertilizer injection valve; 17. Butterfly filter; 18. Flow meter; 19. Water source. 

Figure 1. The working principle of the integrated water and fertilizer system. 1. Fertilizer pump;
2. Buffer mixing tank; 3. Venturi jet; 4. Control box (including controller, operation screen and data
acquisition module, etc.) system; 5. EC sensor; 6. PH sensor; 7. Float valve; 8. Pressure gauge;
9. Upper branch pipe filter; 10. Pressure-sensitive switch; 11. Check valve; 12. Water source main
pipeline water pump (optional); 13. Main pipe filter; 14. Pressure reducing valve; 15. Fertilizer
storage tank; 16. Fertilizer injection valve; 17. Butterfly filter; 18. Flow meter; 19. Water source.

2.1. Working Principle

The preparation process for the nutrient solution is as follows: (1) The water source
19 is continuously injected into the buffer mixing tank 2 at the flow rate Qw through the
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pressurized pipeline, whereas the fertilizer pump 1 extracts the nutrient solution from
the bottom of the buffer mixing tank 2, and a part of the nutrient solution passes through
the connection. After the pipeline passes through the Venturi jet 3, QF is injected into
the buffer mixing tank 2 again. Another part of the nutrient solution Qout enters the
irrigation area through the pipe network for fertilization. (2) Under the action of the venturi
effect, the fertilizer mother liquor QNS is continuously sucked into the Venturi jet. After
passing through the Venturi jet 3, the QF is finally injected into the buffer mixing tank 2.
The fertilizer mother liquor QNS and water Qw are mixed for the first time in the Venturi
jet 3 and are mixed for the second time in the buffer mixing tank 2 to form a two-time
mixing mode. The uniformity and preparation efficiency of the fertilizer mother liquor,
QNS, and water, Qw, are greatly improved. The working principle of the integrated water
and fertilizer system is shown in Figure 1 [11,12].

2.2. Controller Selection

For the human–machine interface of the controller, we adopted the Kunlun Tong-state
TCP1031NI. The core controller is an intelligent IoT touch screen with Cortex-A7 multi-core
CPU, main frequency 1GHz, equipped with a 10.1-inch TFT LCD screen, pre-installed
McgsPro configuration software (running version), Serial interface: RS232/RS485, Ethernet
port: 1 × 10/100 M adaptive. The fertilizer spreader controller mainly includes the main
interface, manual operation mode, automatic operation mode, etc.

3. Design of EC Regulation System of Nutrient Solution

The system can be divided into three parts, consisting of the sensing, network, and
application layers. The network structure of the EC regulation system of nutrient solution
is shown in Figure 2.

3.1. Sensing Layer

The sensing layer consists of multiple LoRa slave nodes and one NB-IoT master
node. Each slave node has the ability to collect 4–20 mA, 0–5 V, and 485 standard signals of
pressure and water level transmitters; to collect flow data from flow meters and pulse meters
for cumulative flow calculation; to collect on-site signals such as ambient temperature and
humidity and transmit them through LoRa to the master node.

Each slave node is powered by a 12 V high-performance lithium battery and is
powered by a standard power adapter. It has a built-in 5 V voltage regulator chip and
a 3.3 V voltage conversion circuit, which can collect the output signals of various instru-
ments and transmitters and uses LoRa for long distances. It transmits data, controls the
operation of a 12 V solenoid valve (switch value), a DC3.6V motor (analog value), collects
motor operation status, and transmits data remotely through an NB-IoT signal, which is
suitable for monitoring sites without power supply conditions and in harsh environments.
Since the node needs to work for a long time in the field, a photovoltaic solar charging
device was designed, which has the functions of undervoltage protection, overdischarge
protection, overload protection, floating charging settings, overload short circuit protection,
overvoltage protection, direct charging voltage, and other functions. Figure 3 shows the
structure of the slave master node.

The master node is mainly based on the STM32 controller and is connected to the
network through modbus and UDP (User Data Protocol) communication to ensure the
reliability of the data and instructions. Through the multi-node coverage and high timeli-
ness of the system, the centralized analysis of data in the irrigation area, as well as remote
control and scheduling in the gate cluster, are realized, and it is suitable for the precise
control of water delivery and distribution in small and medium-sized channels for farm-
land irrigation. At the same time, the master node is connected to the water and fertilizer
integration system.
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3.1.1. Design and Implementation of LoRa Wireless Communication

For LoRa, we adopted the E22-400T22S wireless serial port module and multiple LoRa
slave nodes in a wireless network with a single NB-IoT master node controller LoRa. The
LoRa spread spectrum wireless serial communication module, with an operating frequency
of 433 MHz, and a power of 1000 mW, was used here. This module is an industrial-grade
wireless serial port module with high stability. We adopted Semtech’s latest generation
of LoRa spread spectrum design and development, and LoRa spread spectrum modula-
tion. The measured transmission distance can reach up to 8000 m. The module has more
transmission methods and supports data broadcasting, data monitoring, fixed-point trans-
mission, master-slave mode, automatic relay, fixed-point wake-up, automatic response, and
other transmission methods. More comprehensive functions include support for ultra-low
power consumption, wireless configuration, group package configurability, a package
separator, output address, and other functions. Due to these diversified functions and
high stability, the system can be widely used in various environments to easily realize
low-frequency wireless data transmission.

3.1.2. NB-IoT Master Node Communication with NB-IoT Child Nodes

(1) LoRa transmission configuration

LoRa is divided into a master and slave structure. The master can send data to the
specified slave, and all of the slaves can receive the data sent by the master, as shown in
Table 1. At this time, the steps undertaken by the module to set the master–slave mode are
as follows: (1) MD0 = 0, MD1 = 0; MD0 = 0, MD1 = 1. (2) It is necessary to configure the
0x07 special function register to 0x0004, master-slave mode. (3) The sending module and
the address of the receiving module can be set differently. (4) The channels of the sending
module and the receiving module are set to be the same. Any module sends data, and the
specified module can receive it. When multiple receiving modules have the same address
channel, they can all receive data. The command to set the module fixed-point transmission
is as follows. (5) MD0 = 0, MD1 = 0; MD0 = 0, MD1 = 1. (6) The special function register
0x07 needs to be configured to 0x0002, fixed-point transmission mode. (7) The address of
the sending module and the receiving module can be set to be different. (8) The channels of
the sending module and the receiving module can be set to be different.
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Table 1. Master node–child node protocol nesting.

Sender Receiver

Target group address 0xXXXX local group address 0x5678
Module channel 0xXXXX module channel 0x18

Send data

Receive address high
+ receive address low

+ receive channel +
data (data)

Output Data User data (data)

0x56 0x78 0x18
0x11 0x22 0x33 0x11 0x22 0x33

Serial transmission format of user data bytes: 1 start bit; 8 data bits; 1 stop bit, no parity check.

(2) LoRa communication protocol

The child node (front-end data acquisition controller) communicates with the master
node LoRa, the master node (channel 18, group number address {0xFF 0xFF}), and the
child node (channel 18, group number address {0xXX 0xXX}) in the same channel. The
child node sends frame data in the following format: 0xFF 0xFF 0x41 0x42 0x31 0x31 0x31
0x30 0xE8 0x0b 0x0a 0x00 0x. Table 1 provides information on master node–child node
protocol nesting.

The master node obtains data by sending a request to the slave node. When the master
node sends a request to the slave node, it needs to add the wake-up code FF FF FF FF FF FF
FF FF FF FF (10 0xFF), and the wake-up code is sent first, with an interval of 0.2~0.5. After
this, the request frame is sent again. The protocol frame format can be described as follows.

The frame is the basic unit for transmitting the information. Each frame is composed
of seven fields, including the frame starter, address field, control field, data length field,
data field, frame information check field, and frame terminator. The format is shown
in Table 2.

Table 2. Data frame format.

Serial Number 1 2 3 4 5 6 7

Number of bytes 1 2 2 2 n 2 1
Code STA (E8) AD C LEN DATA CRC END (E6)

The frame start character (STA) identifies the beginning of a frame of information,
1 byte, and its value is fixed at E8H = 11101000B. The address field (AD) is the address
that identifies the current receiving (sending) device, two bytes, and 0xFFFF is the broad-
cast address, which is the address of the LoRa transmission channel. (C) is the control
field control code indicating the required operation, two bytes, and the format is shown
in Table 3.

Table 3. Definition of control codes.

D15 D14 D13 D12 D11 D10 D9 D8

If D15~D8 = 0, it is the communication between the collector and the background;
if D15~D8 = 1, it is the communication between the collector and Bluetooth.

D7 D6 D5 D4 D3 D2 D1 D0
Transmission

direction
Exception

flag Function code

D7 indicates the transmission direction. D7 = 0 indicates the command frame sent
by the master node (repeater). D7 = 1 indicates the response frame sent by the front-end
collector. D6 represents the abnormal flag. D6 = 0 indicates the correct response. D6 = 1
indicates the response to the abnormal information.
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(3) System software design

1© Keil program compilation tool

The µVision Keil 5 system provides a complete development solution, including
a powerful emulation debugger that includes a macro assembly, a C compiler, library
management, and a linker. They are all put together in an integrated development environ-
ment (MDK5). It can perform online debugging, as well as low-level assembly language
and advanced computer language C language programming, so this development was
completed using the Keil integrated development environment.

2© System task design

The system was divided into one main task and six sub-tasks. The main task mainly
consists of communication with the upper computer, and through continuous verification,
the system receives the instructions of the upper computer and completes the relevant tasks.
The subtasks mainly consist of the collection and storage of data on the nutrient solution
EC, crop EC limit settings, EC data transmission, switch fertilization valve, fertilization
decision, watchdog timer, etc. The overall function of the lower computer is completed
through the rotation between tasks. The system task diagram is shown in Figure 4.
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3.2. Network Layer

The background obtains data by sending a request to the sensing layer (master node).
(1) The master node subscribes to the “Topic” background device topic (master node
1 subscribes to the background device topic: /D001), and the master node 1 publishes the
“Publish” device topic (master node 1 publishes the device topic:/publish/topic/D001).
(2) The background subscribes to the topic of the Topic master node 1 device (master node
1 publishes device topic: /publish/topic/D001), and the background publishes the Publish
background device topic (backend publishes device topic: /D001).

3.3. Application Layer

The application layer data monitoring and the interface display and supports data
communication with the multi-center. For the application layer database, we adopted
MySQL, which has different system functions for different roles and adopted the E-R
description structure model to design and describe E-R, such as user information, role,
menu-role, information collection parameters, and equipment control, among which E-R
information such as user, role, and menu is used. The corresponding part of the relationship
model shown in the Figure is as follows: (1) User (ID, name, password, role ID, whether to
enable, creation time, last login time, extended field 1, extended field 2, extended field 3).
(2) Menu bar (menu ID, menu name, menu path, parameter setting, whether to enable,
creator ID, creation time, last modification time, extended field 1, extended field 2, extended
field 3). (3) Role (role ID, role name, whether to enable, valid time, expiration time, remarks,
creator ID, creation time, last modification time, last modification code, extended field 1,
extended field 2, extended field 3). (4) Menu-role relationship table (relationship ID, role ID,
menu ID, valid time, expiration time, remarks, creator ID, creation time, last modification
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time, extended field 1, extended field 2, extended field 3). (5) Collection information
parameters (collection information ID, device ID, sampling time, sensor number, parameter
value). (6) Control information (control information ID, device ID, sensor number, control
parameters, sending time). (7) Device-to-belonging irrigation area relationship table (device
ID, Irrigation District ID).

4. Nutrient Solution System Control Model

Since the Venturi jet mixes the fertilizer while absorbing fertilizer, it can be considered
that the virtual mixing volume (VF) is added into the buffer mixing barrel 2. The mixing
process is a combination of piston flow (plug flow), and ideal stirred mixing, and the whole
system is a second-order time-delay system. Qw = 1 L/s, QF = 0.05 L/s, QNS = 0.01 L/s.
The volume of the fertilizer mixing drum is 10 L (the effective working volume is 9 L),
and the transfer function of the system is expressed as in Equation (1), where VT = 5 L
and VF = 4 L.

EC(S)
QNS(S)

= Gp(S)e−τs = K2
(TFS+1)(TpS+1) e−τ′s = 0.95

320S2+84S+1 e5s

K2 = 1
(QF+QW )

= 0.95

TF = VF
QF

= 80
Tp = γ1 · Tr = 4

5 ·
VT
QW

= 0.8 · 5 = 4
τ = (1− γ1) · Tr = 1

(1)

where EC(S) is the output value of the desired nutrient solution conductivity (mS/cm);
QNS(S) is the output value of the fertilizer mother liquor flow (L/s); K2 is the second-order
system gain (L/s) resulting from the addition of the venturi jet; TF is the time constant of
the nutrient solution preparation process in the Venturi jet (s); VF is the increased premixing
volume (L) resulting from the addition of the Venturi jet; γ1 is the mixing coefficient (in
this paper γ1 = 0.8, whereas γ1 = 0 for the advection mode and γ1 = 1 for the ideal stirring
mode); Tr is the delay time of the system (s); VT is the effective mixing volume of the
mixing barrel (L); QF is the liquid flow into the Venturi jet (L/s); QW is the water flow into
the mixing barrel (L/s); τ is the lag of the fertilizer mother liquor mixing in the buffer
mixing barrel and measurement lag time, including the flow time of the liquid in the pipe
and the mixing time (s); τ’ is the new lag time (s); and QNS ≤ QF < Qw, QNS is the flow of
the fertilizer mother liquor injected into the fertilizer barrel (L/s) [13–15].

5. PSO-BPNN-PID Control Model
5.1. PSO-BPNN-PID Structure

The PSO-BPNN-PID controller consists of two parts, namely, the PSO-BPNN and the
conventional PID controller. According to the error e between the input r and the output
y and the three parameters Kp, Ki, and Kd, the conventional PID controller obtains the
controller output u through the control algorithm and then obtains the system output
Yout from the transfer function of the control object, thereby realizing PID. The controller
directly controls the closed-loop control of the controlled object. As long as the system is
running, the BP neural network can adjust and optimize the weighting coefficient through
its own self-tuning ability and automatically adjusts the PID control parameters to obtain
the optimal control parameters and cause the system performance indicators to reach the
ideal state [16,17]. The structure of the PSO-BP-PID controller is shown in Figure 5. The
nutrient solution EC-controlled BPNN structure is shown in Figure 6.

5.2. PSO-BPNN-PID Algorithm

The initial weights of BPNN are continuously optimized by means of the PSO algo-
rithm to obtain the best weights, and the best weights are input into the BP neural network
for self-learning adjustment [18].
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Step 1: Established BP neural network.

(1) Determine the BP neural network structure and select the learning rate xite and
inertia factor alfa. The network adopts a three-layer network architecture with one input
layer, one hidden layer, and one output layer. The number of nodes in the input layer of
the BP neural network is determined by trial and error. The input vector x = [x1, x2, x3, x4],
where x1 = ek − e1; x2 = ek; x3 = ek−2 · e1 + e2; x4 = 1. The number of hidden layer nodes is
h = 5, and the output layer O = 3, corresponding to the outputs kp, ki, and kd. Therefore,
the neural network structure constructed in this paper was 4-5-3 [19,20].
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Since the activation function sigmoid of the hidden layer neuron maps the output
to [0,1], but the three parameters of the PID controller actually need to be adjusted in
a larger range, the array M = [m1, m2, m3] is set as the output gain of the network. The
experiments proved that the performance indexes of the system differed when M was
taken at different values [21,22]. The experimental results are shown in the table below,
and considering each performance index of the system comprehensively, the output gain
M = [87, 0.1, 0.96] [23,24].

(2) Initialize the matrix of the input and output weights of the BP neural network.
Since the initial weight of the neural network plays a great role in the control effect, the
initial value of the weight of each algorithm is different. Among these, the initial weight of
the BP-PID controller is a random number in the interval [−1,1]. The initial weight wij of
the PSO-BP-PID controller is determined by trial and error as 4× 5, and wki is 3× 5 [25,26].
The initial weight of the controller is shown in Table 4.

Step 2: PSO optimization.

(3) Initialize N subgroups. Initialize the particle swarm by specifying that the pop-
ulation size N of PSO is 20, the maximum number of iterations Mmax is 50, the inertia
coefficient w uses the linear weight decay method (2), the particle dimension D is 3, the
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learning factor c1 = c2 = 0.5, the particle position x takes on a range of [−5,5], and the
particle velocity v takes on a range of [−5,5] [27].

w = wmax − (t− 1) · (w
max − wmin)

(Mmax − 1)
(2)

Table 4. Initial weights of the PSO-BP-PID controller.

wij wki

−0.3234 0.3269 −0.3827 −0.0136 0.0208 0.3921 0.0192 −0.4522 −0.0991
0.4135 −0.2866 −0.3405 −0.4651 −0.4179 0.0088 −0.1617 −0.4256 −0.3543
0.2692 0.2864 −0.4887 0.1367 −0.3415 0.1173 0.1547 0.4085 0.3075
−0.1759 0.1077 −0.1479 0.2126
0.3873 −0.0634 0.3556 0.1271

In Equation (2), t is the number of iterations, wmax is 0.9, and wmin is 0.4.
(4) Construct the fitness function. The square sum of error (tol_fitness) is chosen as the

fitness function. According to the design flow, the system transfer function for the test is
selected as shown in Equation (3).

tol_ f itness = tol_ f itness + abs(error(k)2) (3)

where error(k) is the systematic error.
(5) Suppose that there are N particles in D-dimensional space, xi = (xi1, xi2, · · · xid)

represents the speed of particle i, pbestid = (pi1, pi1 · · · , pid) represents the best placement
experienced by the individual particle i. Then, pbestd = (g1, g2 · · · , gd) represents the best
position experienced by the population. In every iteration, the d dimensionality velocity of
particle i is updated according to Formula (4):

vk+1
id = ωvk

id + c1γ1(pbestid − xk
id) + c2γ2(gbestd − xk

id) (4)

The d dimensionality position of the particle i is updated according to Formula (5):

xk+1
id = xk

id + vk+1
id (5)

where Vk
id represents the d dimensionality component of the flight velocity vector of particle

i in the k iteration, and xk
id represents the d dimensionality component of the position vector

of particle i in the k iteration. c1 and c2 indicate that the learning factor is a non-negative
constant, with a value range of [1.2, 2]. c1 is used to adjust the step size of particles flying to
the optimal position and c2 is used to adjust the step size of particles flying to the optimal
position of the whole group. γ1 and γ2 represent random numbers in the interval of [0,1],
and ω is the inertial weight, which describes the influence of particle inertia on velocity;
its value can be used to adjust the global and local optimization ability of particle swarm
optimization. −vmax ≤ vk+!

id ≤ vmax, vmax is a predetermined normal number limiting
the speed range. According to the specific problem, the iteration termination condition is
generally selected as the maximum iteration number, or the optimal position searched so far
by the particle swarm, and it meets the predetermined minimum adaptive threshold [28].

(6) The particle fitness value is calculated by means of Formula (3), and a judgement
is made as to whether the termination condition is satisfied (the maximum number of
iterations is reached). If so, the parameter optimization ends, and the algorithm exits;
otherwise, it jumps to (5).

(7) Compare the historical optimal position of the population with the current optimal
particle position. If the current search individual is better, update and replace the historical
optimal position of the population, update the historical optimal particle position x and
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velocity v, and use Formula (6) to obtain the initial values of the input and output weights
after PSO optimization, which are expressed as wiinit and woinit.

wiinit(t, :)= x (1, (t− 1) ·m :t · m)
woinit(r, :) = x (1, (m · q + 1) + (r− 1) · q) : ((m · q + 1) + r · q− 1))

(6)

Step 3: BP neural network training.

(8) The input of the neural network is obtained by sampling. For the activation
function from the input layer to the hidden layer, we adopt a sigmoid function, and for
the activation function from the hidden layer to the output layer, we adopt a non-negative
sigmoid function; see Formula (9) for the calculation process. Via forward propagation,
one can calculate the error [29].

The input of the j-th neuron in the input layer is xj and the output is

O(1)
j = xj, j = 1, 2, 3, 4 (7)

The input of the i-th neuron in the hidden layer is

net(2)i (k) =
4

∑
j=1

w(2)
ij O(1)

j , i = 1, 2, 3, 4 (8)

where w(2)
ij is the connection weight between the i-th neuron in the hidden layer and the

j-th neuron in the input layer.
The output of the j-th neuron in the hidden layer is

O(2)
i = f (net(2)i (k)) (9)

where f (·) is the activation function; here, the sigmoid activation function is used:

f (x) =
ex − e−x

ex + e−x (10)

The input of the l-th neuron in the output layer is

net(3)l (k) =
5

∑
j=1

w(3)
l j O(2)

j , i = 1, 2, 3 (11)

where w(3)
li is the connection weight between the l-th neuron in the output layer and the

i-th neuron in the hidden layer.
The output of the l-th neuron in the output layer is

O(3)
l = g(net(3)l (k)) (12)

where O(3)
1 = Kp, O(3)

2 = Ki, O(3)
3 = Kd. Because Kp, Ki, and Kd are always positive,

a non-negative sigmoid activation function is used:

g(x) =
ex

ex + e−x (13)

(9) Error back-propagation starts from the output layer to calculate the output error of
each layer of neurons layer by layer and then updates the weights according to the error
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gradient descent method. If the conditions are met, the learning process ends, and Kp, Ki,
and Kd are obtained. Otherwise, the system returns to Step 7.

E(k) =
1
2
(r(k)− y(k))2 (14)

Step 4: PID control.

The outputs u(k) and yout(k) are calculated using Formulas (15) and (16). Figure 4
presents a flowchart of the PSO-BPNN-PID algorithm [30,31]. Figure 7 presents a flow
chart of the PSO-BPNN-PID algorithm.

u(k) =kp · x1 + ki · x2 + kd · x3
yout(k) =− d2 · y1− d3 · y2 + n2 · u(k) (15)
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6. Simulation and Experimentation

MATLAB simulation analysis was carried out using BPNN-PID, PSO-BPNN-PID, and
conventional PID. Setting r(k) = 2, the controller outputs the initial value u(k) = 0, and
the transfer function is as in Formula (1), taking a sampling time ts = 0.01 s, learning rate
xite = 0.5, inertia factor alfa = 0.05 for the simulation experiment. Based on the comparison
of different control results shown in Figure 8 and the control error curve of the PSO-BP-PID
controller shown in Figure 9, it can be seen that the steady-state time of BPNN-PID control
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was about 50 s, the overshoot was about 0.15%, and the system’s EC value was stable at
1.9967 mS /cm~2.0030 mS/cm. For PSO-BPNN-PID, the control steady state time was
about 43 s, the overshoot was about 0.14%, and the system’s EC value was stable at
1.9997 mS/cm–2.0027 mS/cm. For the traditional PID, the steady-state time was about
130 s, the overshoot was about 21.8%, the system’s EC value was stable at 1.790 mS/cm~
2.436 mS/cm, and the oscillation was large. The comparative simulation results showed
that the PSO-BPNN-PID method presented in this paper reduced the steady-state time by
16.2% and 67% and reduced the overshoot by 99.3% and 7.1% compared with BPNN-PID
and the traditional PID. It demonstrated a faster response speed and higher accuracy.
Although the amplitude deviations of the fluctuation of the BP-PID algorithm and the
PSO-BP-PID algorithm were not greatly different, it was basically in a coincident state,
but in the initial stage of the control process, after the particles were optimized and af-
ter the system error function was obtained, the curve was obvious. The convergence
speed was accelerated so that the time required for the system to reach stability was
significantly reduced.
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6.1. Analysis of Results

Figure 10 displays the PSO-BPNN-PID fitness curve, and Figure 11 shows the Kp,
Ki, and Kd values optimized by means of PSO. It can be seen from Figure 10 that when
the number of iterations is about three, the system running time is about 43 s; the fitness
value is about 3.9817; the error is less than 10−3; the control parameters Kp, Ki, and Kd and
the performance indicators of the controller gradually tend to be stable; and the optimal
control parameters of the controller are quickly found through the powerful local search
ability of the particle swarm algorithm. In the optimization process of particle swarm
optimization, the performance index tol_fitness is continuously reduced to reach a stable
value, and the control parameters of the controller are constantly approaching an optimal
solution. For the unstable nutrient solution EC control system, the control parameters
are iteratively optimized by the neural network of particle swarm optimization, and the
parameters Kp, Ki, and Kd can be reasonably configured, and thus effective control is
achieved. The conventional BP-PID control algorithm is used to control the EC value of the
nutrient solution. Since the self-learning of BPNN depends on the selection of the initial
weight, the control effect is not satisfactory. The PSO-BP-PID control algorithm uses PSO to
control the BP neural network. The thresholds and weights are optimized, each individual
calculates the individual fitness value tol_fitness through the fitness function and a series
of update operations, and the BPNN algorithm continuously updates the weights of the
network according to the rate of these optimal individuals. The controller outputs the
optimal control parameters. It can be seen from Figure 11 that Kp = 81, Ki = 0.095, and
Kd = 0.044 after POS optimization.
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With further input EC values of 1 mS/cm, 1.5 mS/cm, 2 mS/cm, and 2.5 mS/cm,
respectively, the simulation model was verified. It can be seen from Table 2 that the range of
fluctuation of EC values was 0.003 mS/cm~0.119 mS/cm, the steady-state time was 40 s~60 s,
and the overshoot was 0.3%~0.14%, which can meet the needs of agricultural production
by quickly and accurately realizing the optimal combination of water and fertilizer. The
requirements for integration, the control parameters, and the performance indicators of
different EC values are shown in Table 5.

Table 5. Control parameters and performance indicators for different EC values.

Control
Method

Target EC
(mS.cm−1)

Steady State
EC (mS.cm−1)

EC Volatility
(mS.cm−1)

Steady State
Time (s) Overshoot (%)

PSO-BPNN-
PID

1 0.9904–1.0003 0.0126 40 0.3
1.5 1.4990–1.5001 0.0011 45 0.06

2 1.9997–2.0027 0.0003 43 0.14
2.5 2.4901–2.5020 0.119 60 0.08

6.2. System Testing
6.2.1. Wireless Sensor Network Acquisition System Test

After actual verification, the system showed good communication effects, accurate tem-
perature and humidity data, and the ability to complete the setting of irrigation parameters
and control the actions of the related executive elements easily and quickly. Furthermore,
the switching function of manual/automatic mode enables managers to participate in the
control system, complementing the man–machine interface and giving full play to the
intelligent irrigation function. The system meets the requirements of actual production and
has good application and promotion value.

In this study, the startup time, data transmission time, system packet loss rate, and
other performance measures of the water conservancy and water-saving irrigation decision-
making system were tested separately, and the tests were performed at short distances
(within 1 and 10 m) and long distances (1000–1500 m).

The test results are shown in Tables 6 and 7. In Table 6, the results of the short-distance
test are presented. The test data show that the reporting time was set to be uploaded
every 1 s, one data report consisted of 13 instances of data, and the number of tests was 10.
The system packet loss rate test results, data delay results, and the distance between the
terminal node and the gateway during the test are shown in the table. Due to limited space,
in this paper, we chose the longest test distance of 1200 m. For each group, we conducted
10 tests. One thousand packets were sent and received continuously.

Table 6. Close-range test results (within 1 and 100 m).

Frequency Startup
Time/s

Time for
Each Issued
Command/s

Data
Reporting

Time/s

Data
Receiving
Interval/s

Delay/s

1 3.87 1.123 12.156 15.967 3.81
2 3.58 1.124 13.982 15.982 1.50
3 3.78 1.124 12.699 16.699 3.76
4 3.56 1.124 12.835 14.835 1.62
5 3.71 1.124 12.363 15.363 3.02
6 3.87 1.123 12.872 15.872 2.95
7 3.58 1.123 12.635 15.635 3.05
8 3.78 1.122 11.985 14.985 2.47
9 3.56 1.124 12.213 16.213 4.28

10 3.71 1.124 11.987 15.987 3.38
Average value 3.7 1.1235 12.5727 15.7538 2.984

It can be seen from the test results that the start-up time of the water-saving irrigation
decision-making system was relatively fast, around 3.7 s, and the delay in issuing com-
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mands was relatively short, around 1.1235 s. The system was stable and could maintain
good operating performance at a long distance, and could be effectively used in the EC
regulation of nutrient solutions.

Table 7. Long-range test results (1000–1500 m).

Frequency Startup
Time/s

Time for
Each Issued
Command/s

Data
Reporting

Time/s

Data
Receiving
Interval/s

Delay/s

1 3.87 1.123 12.156 20.544 8.39
2 3.58 1.124 13.982 22.563 8.58
3 3.78 1.124 12.699 21.512 8.81
4 3.56 1.124 12.835 20.367 7.53
5 3.71 1.124 12.363 23.762 11.40
6 3.87 1.123 12.872 22.634 9.76
7 3.58 1.123 12.635 20.318 7.68
8 3.78 1.122 11.985 21.024 9.04
9 3.56 1.124 12.213 21.356 9.14

10 3.71 1.124 11.987 20.946 8.96
Average value 3.7 1.1235 12.5727 21.5026 8.929

6.2.2. Nutrient Solution Regulation Test

A nutrient solution regulation test platform was built to carry out fertilizer absorption
and EC regulation test experiments, as shown in Figure 12. Through the positioning of
the rotameter, the fertilizer absorption situation of each channel could be visually checked.
At the beginning of the test, the first step was to open check valve 11, manual switch
valve 14, and irrigation valve 18. The second step was to turn on the main power supply
and main water pump 21 and adjust pressure-reducing valve 22 to ensure that the main
pressure was maintained at 0.25 MPa. The next step was to turn on fertilizer suction pump
9 and observe the operation of the system. Step 4: After the system was run normally and
stably, we directly read the actual amount of fertilizer absorbed by each channel through
the rotameter and repeated the test five times to measure the average amount of fertilizer
absorbed [30–32].

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21 
 

 

6 3.87 1.123 12.872 15.872 2.95 
7 3.58 1.123 12.635 15.635 3.05 
8 3.78 1.122 11.985 14.985 2.47 
9 3.56 1.124 12.213 16.213 4.28 

10 3.71 1.124 11.987 15.987 3.38 
Average value 3.7 1.1235 12.5727 15.7538 2.984 

Table 7. Long-range test results (1000–1500 m). 

Frequency Startup 
Time/s 

Time for Each 
Issued Com-

mand/s 

Data Reporting 
Time/s 

Data Receiving In-
terval/s 

Delay/s 

1 3.87 1.123 12.156 20.544 8.39 
2 3.58 1.124 13.982 22.563 8.58 
3 3.78 1.124 12.699 21.512 8.81 
4 3.56 1.124 12.835 20.367 7.53 
5 3.71 1.124 12.363 23.762 11.40 
6 3.87 1.123 12.872 22.634 9.76 
7 3.58 1.123 12.635 20.318 7.68 
8 3.78 1.122 11.985 21.024 9.04 
9 3.56 1.124 12.213 21.356 9.14 
10 3.71 1.124 11.987 20.946 8.96 

Average value 3.7 1.1235 12.5727 21.5026 8.929 

6.2.2. Nutrient Solution Regulation Test 
A nutrient solution regulation test platform was built to carry out fertilizer absorp-

tion and EC regulation test experiments, as shown in Figure 12. Through the positioning 
of the rotameter, the fertilizer absorption situation of each channel could be visually 
checked. At the beginning of the test, the first step was to open check valve 11, manual 
switch valve 14, and irrigation valve 18. The second step was to turn on the main power 
supply and main water pump 21 and adjust pressure-reducing valve 22 to ensure that the 
main pressure was maintained at 0.25 MPa. The next step was to turn on fertilizer suction 
pump 9 and observe the operation of the system. Step 4: After the system was run nor-
mally and stably, we directly read the actual amount of fertilizer absorbed by each channel 
through the rotameter and repeated the test five times to measure the average amount of 
fertilizer absorbed [30–32]. 

  
(a) Venturi fertilizer suction system (b) Nutrient solution EC regulation test 

Figure 12. Fertilizer test platform. 

  

Figure 12. Fertilizer test platform.

6.3. Test Results and Analysis

Table 8 presents a comparison of the four-channel average fertilizer absorption test
data and EC regulation data measured during the test. Under the action of the fertilizer
pump, the absorption and pressure output of four different types of single-element fertilizer
mother liquor were realized, and the average fertilizer absorption amount was 693.25 L/h,
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which indicated that the expected test effect was achieved. Comparing and analyzing the
testing and simulation data in Table 8, it can be seen that the amount of fertilizer absorbed
by two fertilizer absorption channels was slightly lower than that of the other fertilizer
absorption channels, but the average relative error was only 4%. The amount of fertilizer
absorbed by each channel was relatively balanced, and for the overall fertilizer absorption,
the effect was better. The control accuracy of the EC value was +0.07, which meets the
needs of actual production.

Table 8. Test results of EC regulation system for nutrient solutions.

Fertilizer Intake EC Value

Fertilizer
Channel

Measured
data of

Fertilizer
Intake(L/h)

Test Number Target Value
(mS/cm)

Measured
Value

(mS/cm)
Error

1 700.00 1 0.5 0.43 −0.07
2 660.00 2 1 0.92 −0.08
3 675.00 3 1.5 1.65 +0.15
4 738.00 4 2 1.82 −0.18

average value 693.25 5 2.5 2.57 +0.07

7. Conclusions

(1) In this study, we built a precise EC control system platform for nutrient solutions
and developed an EC information perception system composed of multiple LoRa
slave nodes, NB-IoT master nodes, and a host computer. The system startup time was
about 3.56~3.87 s; the command time was approximately 1.1235 s. The command time
was thus in the range of 1.122~1.124 s, and the data delay was about 1.50~11.4 s. The
system startup time, command issuing time, data reporting time, and data receiving
time intervals were all relatively fast, the delay in issuing commands was small, and
the data could be reported according to the time required by the user. The system can
maintain good running performance.

(2) Based on the PSO optimization method, a BP-PID nutrient solution EC control model
with a structure of 4-5-3 was constructed. Under the same initial conditions, when
the input EC = 2 mS/cm, the PSO-BPNN-PID method was used to control the EC
value of the nutrient solution. The optimized PID scaling factors were Kp = 81,
Ki = 0.095, and Kd = 0.044; the control steady state time was about 43 s; the overshoot
was about 0.14%; and the system’s EC value was stable at 1.9997 mS/cm–2.0027
mS/cm. Compared with BPNN-PID and the traditional PID, we achieved steady-state
time savings of 16.2% and 67%; the overshoot was reduced by 99.3% and 7.1%; the
system control performance was excellent.

(3) When inputting values of 1 mS/cm, 1.5 mS/cm, 2 mS/cm, and 2.5 mS/cm, we used
a Smith PSO-BPNN-PID system to verify the system simulation model, respectively.
The results showed that the fluctuation range of EC was 0.003 mS/cm cm~0.119
mS/cm, the steady-state time was 40 s~60 s, and the overshoot was 0.3%~0.14%. The
average amount of fertilizer absorbed by the four channels measured in the test was
693.25 L/h, and the control accuracy of the EC value was +0.07, which meets the
needs of actual production.
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