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Abstract: The United Nations (UN) stated that all new roads and 75% of travel time on roads
must be 3+ star standard by 2030. The number of stars is determined by the International Road
Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In
this paper, a framework for highly accurate and fully automatic determination of two attributes
is proposed: roadside severity-object and roadside severity-distance. The framework integrates
mobile Lidar point clouds with deep learning-based object detection on road cross-section images.
The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected
by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las
format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was
necessary to detect the road with high accuracy, then roadside severity-distance was determined with
respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside
severity object classes and one of four roadside severity-distance classes. The overall accuracy of the
roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best
average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved
for rockface class (0.72).

Keywords: Lidar; road safety; road assessment; roadside features

1. Introduction

According to World Health Organization (WHO), road traffic injuries are the leading
cause of death of people aged 5 to 29 years [1]. Road network infrastructure is strongly
linked to the consequences of road accidents and the number of fatalities [2]. Therefore, the
United Nations (UN) Member States have agreed on 12 new Voluntary Global Road Safety
Performance Targets to drive action across the world [3]. Two of the targets (Targets 3 and 4)
include ensuring all new roads are built to a 3-star or better standard for all road users
(Target 3), and that 75% of all travel is conducted on the equivalent of 3-star or better roads
for all road users by 2030 (Target 4). UN estimates that 450,000 lives will be saved every
year if these targets are applied in practice [4]. The number of stars is usually determined by
the International Road Assessment Programme Star Rating (iRAP Star Rating). iRAP is the
umbrella strategy for Road Assessment Programmes across the world (Europe—EuroRAP,
Australia—AusRAP, New Zealand—KiwiRAP, China—ChinaRAP, USA—UsRAP, Brazil—
BrazilRAP, South Africa—SARAP, Thailand—ThaiRAP, and India—IndiaRAP). iRAP Star
Ratings is one of the five iRAP protocols, designed to collect road attributes on a particular
road segment [5]. It is applicable for use also in low- and middle-income countries where
data of road crashes is difficult to obtain. Likewise, iRAP Star Ratings is intended to assess
infrastructure-related risk based on crash modification factors considering the likelihood
and severity of individual user accidents with respect to the infrastructure features. The
most dangerous roads, where the probability of a serious traffic accident with a fatal
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outcome is very high, are rated with 1 star, while the safest roads, where the probability
of a fatal accident is zero, are rated with 5 stars [6]. In addition to the plans of the UN
Global Road Safety Performance Targets, the collection of road attributes is important
for European countries to comply with the European Union (EU) Directive 2019/1936
amending the 2008/96 Directive (RISM), which requires more detailed collection of road
attributes to improve the safety of road infrastructure in EU member states [7]. iRAP Star
Rating protocol correspond to approximately 95% of the indicative elements set out in the
Annex III of the amended RISM Directive and thus can be successfully used to produce
network classification in the Network-wide road safety assessment procedures.

In order to achieve the requirements of both iRAP and the EU directives there is a
need for high-quality road data collection and extraction of road features. Various research
efforts have approached this problem in different ways. The approaches to determining
road attributes differ primarily in the selection of the sensors used to collect the data
and in the selection of the techniques used to determine the attributes from the collected
data. Since not all required road attributes can be automatically collected with one type of
sensor, it is necessary to use different sensors to collect different attributes. For example,
sensors mounted on Unmanned Aerial Vehicles (UAVs) are the most-used to collect traffic
flow data [8–11]. In addition, traffic flow data can be collected using instruments such as
pneumatic road tubes and induction loops [12–14]. When it comes to attributes related
to road infrastructure, georeferenced videos [15,16] or standard videos [17–19] are mostly
used for data collection. Stated sensors are used for data collecting, but the standard
process of attribute determination is still done manually by coding attributes from the
collected data [20]. For this reason, iRAP is making efforts to develop new methods for
automated data collection and attribute determination by taking advantage of state-of-the-
art technologies such as machine learning, telematics, and Light Detection and Ranging
(Lidar) [21]. The number of studies aimed at improving data collection and attribute
determination methods using these technologies is increasing [17,18,22,23].

The main objective of this study is to provide a new framework for determining
road infrastructure attributes. The framework consists of a combination of mobile Lidar
sensor for collecting road infrastructure data as a point cloud and deep learning techniques
for object detection for final attribute determination. Both the mobile Lidar sensor and
deep learning-based object detection are advanced technologies proposed by iRAP that
can improve accuracy and reduce the time required to determine road infrastructure
attributes. As mentioned earlier, not all attributes can be determined by a single sensor.
Therefore, this paper focuses on the complete and automatic solution of only two iRAP
attributes: roadside severity-object (RSS–O)—related to roadside object detection—and
roadside severity-distance (RSS–D)—related to the distance of the detected object from the
road edge.

The proposed framework has multiple advantages with regards to related papers and
standard processes of road infrastructure attributes determination. Firstly, using Lidar
sensor enables spatial consideration, which is hard to achieve from video images. The
importance of spatial considerations in terms of road safety is described in [24]. Since the
vast majority of iRAP RSS–O classes are defined by dimensions (length, angles, etc.) as
well as the distance of an individual object from the edge of road for the RSS–D attribute,
this approach improves the determination of road attributes. Secondly, this paper proposes
fully automated flow for the determination of the stated attributes. It is an improvement
over manual attribute coding, mostly in the significant shortening of the duration of the
process, but also in the consistency of attribute determination. Thirdly, the object detection
part of study enables the detection of 13 different classes specified by the iRAP Coding
Manual [5] and the determination of their relative position to the road edge. Considering
the complexity of iRAP RSS–O classes definitions, the classification of detected objects is
achieved with high accuracy.

This paper is structured as follows: after a brief introduction to the research topic,
the mention of the main contributions of this paper, and a brief overview of recent related
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studies, the proposed framework is described in detail. The framework is divided into
two parts: data collection with point cloud processing and the object detection process on
road cross section images. For better understanding of the whole process, the framework is
presented with a corresponding diagram. Both parts of the framework have subsections
that describe each step of the proposed framework in detail. This is followed by a results
section, which presents the results of the object detection process as well as the spatial
accuracy of road and roadside object detection and the final classification of road segments
in terms of RSS–O and RSS–D attributes. The results are presented in the form of tables and
confusion matrices. This is followed by a discussion of the results and the main advantages
and disadvantages of the system in comparison with related works. Finally, based on the
results and discussion, a brief conclusion is given, indicating future research options to
improve the determination of iRAP attributes.

Related Works

There are a growing number of studies investigating ways to improve and automate
the process of determining road infrastructure features. While road attributes represent the
characteristics of the road segment in the database, road infrastructure features represent
physical objects on the road and in the roadside area. The methods differ depending on
the sensor used to collect the road data and how the road attributes are extracted from
the collected data. Regarding the sensors used, videos are the most used [17,18,25,26], but
there are few studies that use Lidar [22,23,27].

Sanjeewani and Verma (2017) [28] proposed a Fully Convolutional Network (FCN) to
automatically find all AusRAP roadside objects: lanes, poles, sign boards, trees, metal barri-
ers, warning signs, rumble strips, guideposts, concrete medians, etc. A Fully Convolutional
Network (FCN) is a neural network that only performs convolution (and subsampling or
upsampling) operations. Simplified, an FCN is a Convolutional Neural Network (CNN)
without fully connected layers [29]. The technique is based on vehicle-based video data
extracted into frames (images). The images were divided into homogeneous regions, which
were used for image segmentation into AusRAP object classes on pixel base. Segmentation
is performed by automated deep learning feature extraction based on a neural network
with a classifier in the last layer of the FCN. This means that one FCN was used to classify
all attributes. As for the evaluation metrics, the paper reports the pixel-wise attribute classi-
fication accuracy after 10,000, 15,000, and 20,000 iterations of the FCN training procedure.
Jan Z. et al. (2019) [25] proposed a CNN for the identification of all roadside objects. The
technique is based on videos extracted into images. The approach is divided into three
parts: image segmentation into nine AusRAP object classes by applying CNN, calculation
of the distance between the road and the detected object, and evaluation of the proposed
approach. As for the evaluation, a confusion matrix of the detected objects was provided,
but there are no evaluation metrics for the calculated distances. In addition, the authors
suggest that the use of Lidar could improve the detection results. Sanjeewani and Verma
(2021) [18] improved their research from 2019, and the proposed model is also based on
video data and FCN, but only one FCN is used for the detection of a single object class.
Finally, an improvement is achieved by fusing all FCNs. The proposed approach is applied
to 13 roadside object classes, such as speed signs, poles, trees, warning signs, etc. The
paper provides an evaluation of the proposed approach with attribute-wise and pixel-wise
accuracy. A comparison of the number of iterations with attribute-wise and pixel-wise
accuracy is also provided. Sanjeewani and Verma (2021) [17] performed an optimization of
the FCN-based approach for AusRAP attribute classification proposed in [18]. The FCN
optimization is applied to four AusRAP road objects: Guidepost, Signal light, Flexipost,
and Rumble strip. The optimization is based on finding the best combination of hyperpa-
rameters of the FCN, such as number of convolutional layers, activation function, pooling
type, image size, number of iterations, and the optimization algorithm used. The paper
also provides attribute-wise and pixel-wise accuracy for a single attribute.
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When it comes to Lidar-based approaches for road data collection and determination
of road attributes, Martin-Jimenez et al. (2018) [22] used mobile Lidar point clouds to
assess road safety and estimate risk potential in Spain. The proposed approach is divided
into four segments: classification of mobile Lidar point clouds based on geometric and
radiometric properties of the point clouds; extraction of horizontal alignment and main
road parameters based on geometric design consistency index; estimation of potential
risk by a new predictive tool based on tree induction algorithm; and verification of the
results in comparison with data from road safety experts considered as ground truth. The
authors suggest that this approach may be suitable for the EuroRAP approach to risk
assessment. Zhong M. et al. (2019) [23] proposed a point cloud classification framework for
roadside safety attributes and distance detection. The framework consists of three stages:
roadside point cloud data labeling; point cloud classification network; and object center
approximation technique for distance calculation. The authors developed a system for
seven roadside object classes: pole, tree, road, guard rail, sign, vehicle, and other. The
object-wise accuracy and the confusion matrix are given for only two object classes—pole
and tree—while the pixel-wise accuracy is given for all detected object classes. For the
same two object classes, the accuracy of determining the distance to the road is also given.

Similar research has been made about road and roadside features extraction from the
fusion of Lidar and images independent of iRAP standards. Ural et al. (2015) [30] proposed
an approach that incorporates data from the air: Color Infrared Orthophotos and Lidar
Point Clouds. They applied Support Vector Machine (SVM) to segment the road surface
from orthophotos. They eliminated the main obstacles such as buildings that have color
similarities with the road surface using Lidar point clouds and ground filtering based on
the Tri-angular Irregular Network (TIN) compaction method. They extracted 90.25% of all
studied roads. Han et al. (2017) [31] proposed a road detection method based on the fusion
of Lidar and image data. First, lidar point clouds were projected onto monocular images.
Then, color features were extracted from color images and used with the corresponding
pixels in monocular images generated from the lidar point cloud. These data were used for
pixel-wise classification of roads using Adaboost classifier. The authors achieved acceptable
performance, but noted a large number of false positive road pixels. As a second limitation,
they found that the number of false positive pixels increases with the increasing distance
from the sensor due to the limited accuracy of the sensor. Zeybek, M. (2021) [32] propose a
method for automatically extracting lane markings from lidar data. The proposed method
includes many different algorithms such as Cloth Simulation Filtering (CSF) to distinguish
ground and non-ground data. Moreover, Random Sample Consensus (RANSAC) method
was used to filter road surface from ground points. Finally, the Canny edge operator was
used to extract the contours of the lanes.

2. Materials and Methods

This study was conducted with mobile Lidar data from the Croatian highway network.
The Croatian highway network has a length of 1306 km, i.e., 2612 km in both directions.
Point clouds for the highway network in both directions form an extensive and heteroge-
neous basis for the process of determining road infrastructure attributes. iRAP provides
a list of 64 attributes [5]. All attributes must be collected for 100 m-long segments of the
observed road for the road to be rated instars from 1 to 5. Croatian highways network
consists of eight main parts. Every direction of every part is considered as single road.
For single road segments are created from its start point every 100 m. Furthermore, every
segment is coded with appropriate codes for all of 64 iRAP attributes. As mentioned earlier,
despite various research efforts on automation, the process of attribute determination for
road infrastructure in practice consists of manually determining attributes for a given road
segment from a georeferenced video.

The proposed framework is divided into two parts: mobile Lidar data collecting with
point cloud processing and object detection process on cross-road images. Moreover, the
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mentioned parts are divided into more detailed parts, which are shown in Figure 1. Both
parts and their corresponding subparts are explained in detail below.
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Figure 1. Proposed framework for the determination of RSS–O and RSS–D attribute.

2.1. Data Collection with Point Cloud Processing

A point cloud is a set of geometric points with coordinates sampled from 3D space [33].
Point clouds are usually generated by computer graphics or acquired by Lidar to represent
3D objects. Lidar is based on a laser that is directed at the target, and the light beam is
reflected from the surface. The sensor records the reflected light to measure the distance.
Combining the laser distances with data from the integrated global navigation satellite
system (GNSS) and the inertial measurement system (IMU) produces a dense, detailed
group of points in space, i.e., a point cloud. Data collection for the study is performed using
a Trimble MX 8 Land Mobile Mapping System (Trimble, Sunnyvale, California, USA). The
technical specifications of the used system are listed in Table 1.
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Table 1. Technical specification of Trimble MX8 Land Mobile Mapping System.

System Module Parameter Value

Laser
scanning

Accuracy 10 mm
Precision 5 mm

Frequency Variable: 50–300 kHz (×2)

Range @50 kHz: 180 m σ ≥ 10%; 500 m σ ≥ 80%
@300 kHz: 75 m σ ≥ 10%; 200 m σ ≥ 80%

Imaging modules
15 MP Forward panorama Yes

15 MP Rear panorama Optional
5 MP Oblique Surface Yes

Positioning POS LV 420

The collected point clouds are stored in las format. Since the Mobile Mapping System
has two Lidar sensors, the point clouds for each of the sensors were collected separately, so
they had to be merged to obtain a higher point density and larger field of view (FOV). The
merging process was performed using the Python PDAL library.

Although the iRAP Manual Guide prescribes the assignment of a single object to a
100 m road segment, this paper performs this process for 10 m road segments to make more
detailed determination of RSS–O and RSS–D attributes. Finally, 10 m road segments can be
upsampled to 100 m road segments by selecting the most hazardous object among 10 road
segments that are 10 m long. The hazardousness of an individual object is also defined in
the iRAP Manual Guide by the type of roadside object and its distance from the roadside.
Roadside hazards are listed in the iRAP Coding Manual [5] (page 50) in order from highest
to lowest risk. The road segments are 10 m long and 40 m wide: 10 m on the left side of
vehicle path and 30 m on the right side of vehicle path. The vehicle path was extracted from
the Lidar GNSS log file. The data from GNSS were collected in International Terrestrial
Reference Frame (ITRF) and then converted to the Croatian Reference Coordinate System
(HTRS96/TM). An example of a created road segment is shown in Figure 2, while an
example of upsampling 10 road segments of 10 m in length to an iRAP-defined 100 m road
segment is shown in Figure 3.

After road segments were created, the collected point clouds were clipped to the
boundaries of the road segments using PDAL python library.
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driving direction, while black arrows represent dimensions of segment.
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Figure 3. Example of upsampling 10 m road segments to one 100 m iRAP defined road segment.

To perform object detection on point clouds, the detection method must be carefully
selected. According to [34], there are three main methods for object detection on point
clouds: projection-based methods (front view and bird’s eye view methods), voxel-based
methods, and point-based methods. In this work, the frontal view method was chosen
for object detection because the RSS–O and RSS-D are best distinguished from the road
cross-section. In order to obtain front view images of road sections, i.e., images of road cross
sections, the point clouds must be transformed from the Croatian Reference Coordinate
System to a local coordinate system. The origin of the local coordinate system is at the
center of the Lidar sensor, the x-axis is orthogonal to the vehicle path and the y-axis is in
the direction of the vehicle path. The transformation process was performed by applying
the equation: 

x′

y′

z′

1

 =


cos Rz − sin Rz 0 Tx cos Rz− Ty sin Rz
sin Rz cos Rz 0 Tx sin Rz + Ty cos Rz

0 0 1 Tz
0 0 0 1




x
y
z
1

 (1)

where vector [x′, y′, z′, 1] represents the coordinates of the single point in the point cloud
after the transformation, Tx represents the translation in the x-axis direction, Ty represents
the translation in the y-axis direction, Tz represents the translation in the z-axis direction,
Rz represents the rotation angle about the z-axis, and the vector [x, y, z, 1] represents
the coordinates of the single point in the point cloud before the transformation. The
transformation process is shown in Figure 4.
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Figure 4. (a) Process of translation in direction of x-axis and y-axis and rotation around z-axis for Rz
angle; (b) process of translation in direction of z-axis.

After the transformation process, the PDAL library was used to export point clouds
into orthophoto images with depth of 10 m, i.e., road cross sections for 10 m of road. The
exported images have a band with values of reflectance. The spatial resolution of the
exported images is 1 cm × 1 cm. In terms of height, a range of 15 m above and 10 m below
the Lidar sensor is covered. According to the height profile, the dimensions of the road
segments and the spatial resolution, the dimensions of the images are 2500 px × 4000 px
(2500 px × 1 cm = 25 m; 4000 px × 1 cm = 40 m). Examples of four exported road cross
section images are shown in Figure 5.
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Figure 5. (a) Example of road cross section on part of road with overpass; (b) example of road cross
section on part of road with irregular rockface; (c) example of road cross section on part of road with
tunnel; (d) example of road cross section on part of road with both safety barriers.
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2.2. Object Detection

For the RSS–O attribute, iRAP defines 17 classes of objects, 13 of which are found on
Croatian highways. The definitions of the individual object classes are given in the iRAP
coding manual [5] (pages 52–54).

Regarding the RSS–D attribute, iRAP defines four classes: 0–1 m, 1–5 m, 5–10 m, and
>10 m from the roadside. To determine the RSS–D attribute, it is necessary to determine the
road bounding box, focusing on the coordinate of the right edge of the road (Xmax). An
example of a road bounding box is shown in Figure 6.
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Road detection is performed by deep learning-based object detection algorithm. The
You Only Look Once (YOLO) algorithm was used. This is a unified model for object detec-
tion which is trained on a loss function that directly corresponds to detection performance,
and the entire model is trained jointly [35]. In recent years, five versions of YOLO have been
released, each time with significant changes in the algorithm structure that improved both
the inference time and the accuracy of the algorithm [36]. In terms of inference time and
detection accuracy, YOLO was used in this work mainly because of the need to automate
the process of classifying iRAP road segments which requires a fast inference time.

As for any object detection algorithm, it is necessary to have a sufficiently large, labeled
dataset that allows adequate object detection. In this study, road labeling was performed
using the labeling application on 5000 images of road cross sections. The labeled road
cross-section images were divided into a train and a test dataset with a 75:25 ratio, i.e.,
3750 train images and 1250 test images. The training process was performed in 1000 epochs
with a batch size of 2 images. The training time was 15 h and 45 min on an NVIDIA GeForce
RTX 2080 Ti GPU (NVIDIA Corporate, Santa Clara, CA, USA). Prediction process results
with the confidence score of each detected road and the coordinates of the road bounding
box (Xmin, Ymin, Xmax, Ymax).

The mean Average Precision (mAP) is calculated to evaluate the object detection
process. It is the cross-class average of the interpolated Average Precisions (AP) [37].
AP represents the area under the recall-precision curve. It is the de facto standard for
evaluating object detection performance [38]. The computation of recall and precision and
their meaning is described in detail in [39]. In this part of the framework, only one class
(road) was detected, so mAP is equal to AP.



Sensors 2022, 22, 5510 10 of 17

To evaluate the spatial accuracy of road detection, Root Mean Square Error (RMSE)
value was used. RMSE is defined by equation:

RMSE =

√√√√ n

∑
i=1

(
Xmaxi − Xmaxi

)2

n

where n is the number of road bounding boxes in the test dataset, Xmaxi is the right
road edge of a single ground truth road and Xmaxi is the right road edge of a single
detected road.

Road cross-section images were used to label 13 iRAP-defined object classes. Super-
vised selection of road cross-section images was applied to label as many different object
classes as possible on as few images as possible. Finally, 7804 images with 12,987 labeled
objects were selected. The images were split into train dataset with 5853 images and a test
dataset with 1951 images. An example of a road cross-section with labeled objects is shown
in Figure 7. The training process was performed on the same graphics processor as the
road detection. The training time was 35 h and 30 min with a batch size of 2 and within
350 epochs.
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Figure 7. Example of road cross section with labeled iRAP defined objects.

In terms of object detection evaluation considering 13 iRAP object classes, AP was
calculated for each object class as well as mAP. Except for AP and mAP, the confusion
matrix is calculated based on the predicted and ground truth objects. Spatially, the RMSE
was calculated for the reference X coordinate of each object class. The reference X coordinate
for each object class represents the X coordinate of the detected bounding box, which is
used to determine the distance between the road edge (Xmax of the road bounding box)
and detected bounding box. For the tree, rigid, and semi-rigid object classes, the reference
X coordinate is the center of the detected bounding box (Xcenter), while the left edge of the
detected bounding box (Xmin) is the reference X coordinate for other object classes. An
example of reference X coordinate for the rigid and upward slope rollover classes is shown
in Figure 8.

After detecting roadside objects and determining the distance to road edge, it is
necessary to code only one object class for the whole 10-m road segment. It is based on the
list of roadside hazards from the iRAP Coding Manual [5] (page 50). The list of roadside
hazards is based on the object class defined by iRAP and its distance from road edge. After
RSS–O is determinated, RSS–D is the distance from the reference X coordinate of RSS–O
to road edge. The final values of RSS–O and RSS–D represent the predicted data in the
evaluation process of this framework. For the ground truth data, the RSS–O attribute
is manually coded for 1951 images in the test dataset. The manual coding is based on
the combination of georeferenced video with road cross-section images. The RSS–D is
measured manually on road cross-section images. To evaluate the final classification of road
segments, the confusion matrix of predicted and ground truth data and other statistical
values such as accuracy, precision, and recall are provided in this paper.
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slope rollover object.

3. Results

The core part of framework is based on YOLO object detection of the road and iRAP
attributes: RSS–O and RSS–D. Therefore, results are divided into object detection evaluation,
spatial accuracy of detected objects, and evaluation of road segments classification.

3.1. Object Detection Evaluation

Road detection is performed with recall of 0.956, precision of 0.960 and AP 0.949. In
terms of RSS–O, 12,987 iRAP defined objects were labeled. Distribution of labeled RSS–O
classes is shown in Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 9. Distribution of labelled RSS–O classes. 

To present performance of YOLO object detection on RSS–O, confusion matrix, recall, 

precision and AP are provided for each object. Stated evaluation metrics are based on a 

test dataset. Confusion matrix is shown in Table 2, while recall, precision and AP are 

shown in Table 3. Moreover, inference time for one image is 10.1 ms. 

Table 2. Confusion matrix for predicted and ground truth objects presented with percentage. 

  Ground Truth 

   

S
af

et
y

 B
ar

ri
er

 M
et

al
 

S
af

et
y

 B
ar

ri
er

 C
o

n
cr

et
e 

R
o

ck
fa

ce
 

U
p

w
ar

d
 S

lo
p

e-
R

o
ll

o
v

er
 

U
p

w
ar

d
 S

lo
n

e-
N

o
 R

o
ll

o
v

er
 

D
ra

in
ag

e 

D
o

w
n

 S
lo

p
e

 

T
re

e 

P
o

le
 

R
ig

id
 

S
em

i 
ri

g
id

 

S
af

et
y

 B
ar

ri
er

 E
n

d
 

R
o

ck
 

B
ac

k
g

ro
u

n
d

 F
a

ls
e 

P
o

si
ti

v
e

 

P
re

d
ic

te
d

 

Safety barrier metal 92.9 0.5          8.3  7.4 

Safety barrier concrete  98.0            0.2 

Rockface   78.5 3.6          10.7 

Upward slope-rollover   10.9 82.7 8.3         14.5 

Upward slope-no rollover     83.3         0.2 

Drainage      94.3 0.2       12.1 

Down slope       81.3       19.9 

Tree        90.2      23.5 

Pole         75.0     2.4 

Rigid     8.3     79.8    1.8 

Semi rigid          1.0 89.3   2.6 

Safety barrier end 2.8          1.8 88.0  4.0 

Rock             75.0 0.6 

Background False Negative 4.3 1.5 10.6 13.7 0.0 5.7 18.5 9.8 25.0 19.2 8.9 3.8 25.0   

Table 3. Recall, precision, and AP for each class as well as mean recall, precision and AP. 

 Recall Precision AP 

Safety barrier metal 0.87 0.92 0.91 

Safety barrier concrete 0.99 0.98 0.98 

Rockface 0.81 0.77 0.72 

Figure 9. Distribution of labelled RSS–O classes.

To present performance of YOLO object detection on RSS–O, confusion matrix, recall,
precision and AP are provided for each object. Stated evaluation metrics are based on a test
dataset. Confusion matrix is shown in Table 2, while recall, precision and AP are shown in
Table 3. Moreover, inference time for one image is 10.1 ms.
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Table 2. Confusion matrix for predicted and ground truth objects presented with percentage.

Ground Truth
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Predicted

Safety barrier metal 92.9 0.5 8.3 7.4
Safety barrier concrete 98.0 0.2

Rockface 78.5 3.6 10.7
Upward slope-rollover 10.9 82.7 8.3 14.5

Upward slope-no rollover 83.3 0.2
Drainage 94.3 0.2 12.1

Down slope 81.3 19.9
Tree 90.2 23.5
Pole 75.0 2.4

Rigid 8.3 79.8 1.8
Semi rigid 1.0 89.3 2.6

Safety barrier end 2.8 1.8 88.0 4.0
Rock 75.0 0.6

Background False Negative 4.3 1.5 10.6 13.7 0.0 5.7 18.5 9.8 25.0 19.2 8.9 3.8 25.0

Table 3. Recall, precision, and AP for each class as well as mean recall, precision and AP.

Recall Precision AP

Safety barrier metal 0.87 0.92 0.91
Safety barrier concrete 0.99 0.98 0.98

Rockface 0.81 0.77 0.72
Upward slope-rollover 0.77 0.81 0.76

Upward slope-no rollover 0.90 0.83 0.83
Drainage 0.87 0.93 0.91

Down slope 0.78 0.89 0.85
Tree 0.81 0.88 0.82
Pole 0.87 0.71 0.73

Rigid 0.88 0.78 0.76
Semi rigid 0.78 0.89 0.87

Safety barrier end 0.79 0.88 0.85
Rock 0.90 0.75 0.74
Mean 0.85 0.85 0.83

3.2. Spatial Accuracy of Detected Objects

Spatial accuracy of detected object is presented by RMSE value calculated on the test
dataset. The right edge of the road is detected with an RMSE of 0.08 m. RMSE values for
every class of detected objects are presented in Table 4.

3.3. Evaluation of Road Segments Classification

Evaluation of final classification of road segments into one RSS–O class and one RSS–D
class is presented separately by accuracy, precision, recall, and confusion matrix.

Final classification of road segments into one RSS–O is conducted with an accuracy
of 85.1%, precision of 0.888, and recall of 0.853. Confusion matrix of road segments
classification into RSS–O classes is shown in Table 5. The “None” class in the predicted part
of the matrix stands for those road cross sections where none of the iRAP-defined classes
are detected.
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Table 4. RMSE value for every RSS–O class.

RMSE (m)

Safety barrier metal 0.05
Safety barrier concrete 0.06

Rockface 0.27
Upward slope-rollover 0.65

Upward slope-no rollover 0.12
Drainage 0.73

Down slope 0.36
Tree 0.65
Pole 0.09

Rigid 0.08
Semi rigid 0.15

Safety barrier end 0.05
Rock 0.05
Mean 0.25

Table 5. Confusion matrix for final road segments classification into one of RSS–O classes presented
with percentage.

Ground Truth
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Predicted

Safety barrier metal 78.6 0.4 0.6 0.5 1.1 1.3 2.8 2.4
Safety barrier concrete 93.0 0.0 0.3 1.3 0.6

Rockface 84.1 5.7 0.2 2.6 1.4 6.1 0.8 20.0
Upward slope-rollover 1.9 8.3 88.1 0.5 0.2 3.9 2.0 0.8

Upward slope-no rollover 90.0
Drainage 2.9 0.9 0.7 0.3 85.2 4.2 1.3 1.4

Down slope 4.9 6.1 0.4 10.1 84.4 8.4 1.4 3.1
Tree 1.9 1.1 1.8 1.1 5.0 77.3 1.4 6.1 2.4
Pole 1.9 0.3 0.6 86.1 0.8

Rigid 0.3 10.0 1.4 81.6
Semi rigid 1.9 0.0 93.1

Safety barrier end 5.8 2.2 0.3 1.1 0.7 0.6 2.0 6.9 89.8
Rock 1.3 77.1
None 2.9 2.4 1.6 2.9 1.9 4.2 2.0 2.9

In terms of road segment classification into one RSS–D class, an accuracy of 85.6%,
precision of 0.825, and recall of 0.810 are achieved. Confusion matrix of road segments
classification into RSS–D classes is shown in Table 6. Looking at both attributes collec-
tively, 81.1% of all road cross sections in the test dataset are classified correctly by both
RSS attributes.
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Table 6. Confusion matrix for final road segments classification into one of RSS–D classes presented
with percentages.

Ground Truth

0–1 m 1–5 m 5–10 m >10 m

Predicted

0–1 m 86.59 3.80 3.76 2.65
1–5 m 9.96 88.43 11.65 15.04

5–10 m 2.03 4.17 78.20 6.19
>10 m 0.81 1.30 4.14 70.80
None 0.61 2.31 2.26 5.31

4. Discussion

This paper proposes a new framework for determining two road attributes defined by
iRAP: RSS–O and RSS–D. Compared to related papers, this work has several improvements
in detecting roadside objects and their distance from road edge. First, this framework
is based on Lidar data, i.e., point clouds that allow spatial observation. Several authors
in related studies [17,18,25,26] have used vehicle-mounted cameras for a similar task
and performed roadside object detection from videos. This approach is not suitable for
determining the RSS–D attribute because high accuracy in distance determination cannot be
achieved. This thesis is supported by the fact that only Jan Z. et al. (2019) [25] attempted to
calculate the distance between roadside objects and the road edge from images, but did not
evaluate the distance determination. Additionally, using point clouds allows different views
to road segments, including the front view, i.e., considering road segments as road cross
sections. Apart from detection from videos, there are few studies [22,23,27] that have used
Lidar data to determine RSS–O and RSS–D. While Martin-Jimenez et al. (2018) [22] do not
focus on distance determination and evaluation of its accuracy, Zhong M. et al. (2019) [23]
have evaluated the accuracy of distance determination. They perform the evaluation of
distance determination only for two classes: poles and trees. The given evaluation is
expressed in terms of average error distance. The average error distance for poles and trees
is 0.1 m and 0.5 m, while our average error distance for the same classes is 0.07 m and
0.38 m, respectively. It is obvious that we have achieved much better accuracy in distance
determination, especially for the tree class. Moreover, spatial observation allows very
easy detection with high accuracy of those iRAP RSS–O classes defined by some spatial
parameters such as angles for classes down slope, upward slope—rollover and upward
slope—no rollover or width and height for the classes drainage and rock. For example, the
down slope class is defined by iRAP as a roadside slope if the slope is less than −15◦. The
absence of these types of classes in papers [17,18,25,26] suggests that it is not possible to
identify these classes from videos. While works based on Lidar data [22,23] did not solve
this problem, we proved that classes defined by spatial parameters can be detected from
point clouds with high accuracy. Second, except for spatial observation, our framework is
fully automated, which is achieved by a high level of inference time. In related works, we
do not find any information on inference time. Therefore, our framework is not comparable
to similar works in terms of inference time. Moreover, automating the process enables
consistent determination of RSS–O and RSS–D classes which is a significant improvement
over manual coding of road segments currently used in practice but prone to errors due
to [20,23]. Third, the proposed framework includes the recognition of all RSS–O classes
existing in Croatia. These are 13 classes, including those defined by spatial parameters.
Related works [17,23,25,26] focus on the detection of only a few iRAP-defined classes such
as poles, trees, roads, metal guideposts, warning signs, speed signs, etc. The mentioned
classes are very easy to detect from images due to the large number of publicly available
datasets containing these classes.

In the detection evaluation, we achieved high scores for precision, recall, and AP,
i.e., mAP, especially when we consider a large imbalance in the dataset. The class with
the highest AP is safety barrier concrete, followed by safety barrier metal (>0.92). The
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rockface, pole and rock classes have the worst AP (<0.75). Classes with clearly defined
boundaries and shapes, such as safety barriers, are detected with high accuracy, while
classes whose boundaries and shapes are not clearly defined, such as rockface and rock,
are very difficult to detect. An exception is the pole class, which is not precisely defined
in iRAP. In the iRAP Manual Guide [5], it is defined as any pole with a diameter greater
than 10 cm. This includes everything from light poles to large guideposts. The mentioned
objects are not even similar in shape and size, making detection very difficult. The problem
can be solved by dividing objects from the pole class to sub-classes (for example: poles,
large signposts, small signposts, traffic signs, etc.) and placing them back into the pole class
after the detection process. We assume that processing will increase the AP of the pole class
defined by iRAP. Despite these obstacles, the final classification of road segments by RSS–O
classes is 85.1%.

In terms of spatial evaluation calculated using the RMSE, the safety barrier metal, the
safety barrier end and rock classes have the highest accuracy, while the tree and upward
slope-rollover classes have low spatial accuracy. It is clear that classes with larger size have
larger error, i.e., larger RMSE value, while classes with small size have small RMSE value.
The RMSE value is directly related to the RSS–D attribute, which is correctly classified for
85.55% of the road segments.

Apart from all the improvements presented with this framework, there are some
drawbacks. First, the price of the Lidar system is still much higher than that of cameras for
video-based coding of road segments. There are some low-cost Lidar systems, but their
accuracy does not match needs for solving this type of tasks. Considering that [40–42] some
cars already use Lidar for autonomous driving [43–45], there is an intention that it will
become cheaper and more affordable. In addition to the price and affordability of Lidar,
another potential problem is the size of the dataset. iRAP RSS–O classes are very specific
and there are not enough large datasets to help achieve higher accuracy. A large dataset
would largely solve the problem of data imbalance, which in turn would solve the problem
of many background false negative objects, i.e., unrecognized objects. Unrecognized objects
can have a big negative impact on the final accuracy of the whole process, but also on road
safety. This work is based on manually annotated objects, but the presence of a larger,
balanced dataset would simplify and improve performances of the whole process.

5. Conclusions

In this paper, a framework for determining object and distance attributes for iRAP-
defined roadsides is proposed. The framework is based on the integration of Lidar point
clouds and deep learning-based object detection. It can be divided into two parts: mobile
Lidar data collecting with point clouds processing and object detection process on road
cross-section images. Compared to standard iRAP coding methods and recent works, this
framework allows the spatial consideration of road segments, which is equally important
for both RSS–O and RSS–D attributes. In addition, the framework is fully automated with
a high level of inference time. It provides consistency in determining both attributes, which
is a great improvement over the manual coding of road segments that is common practice
today. It also allows road segments to be classified into 1 of the 13 RSS–O classes defined
by iRAP, as well as into 1 of the 4 RSS–D classes. Although most of the RSS–O classes are
classified with a high AP, some classes have a lower AP value due to class imbalance in the
dataset and fuzzy definitions of the classes by iRAP. Nevertheless, the final classification of
road segments is achieved by the RSS–O attribute with an accuracy of 85.09%, while the
classification accuracy related to the RSS–D attribute is 85.55%.

There is still much room for progress in the field of automated road infrastructure
safety assessments. To improve the classification of the RSS–O attribute, a larger annotated
dataset needs to be created to reduce the imbalance between classes and consequently
achieve a high level of AP for all classes. Moreover, the augmentation process with an
existing dataset can be explored to find out if it will result in the improvement of AP
by single class. Furthermore, in addition to these two attributes, iRAP defines another
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62 attributes that are necessary for road assessment. There is much room for exploring
possible solutions for automating the process of determining other attributes by using
different sensors and processing techniques.
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