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Abstract: Accurate and timely monitoring is imperative to the resilience of forests for economic
growth and climate regulation. In the UK, forest management depends on citizen science to perform
tedious and time-consuming data collection tasks. In this study, an unmanned aerial vehicle (UAV)
equipped with a light sensor and positioning capabilities is deployed to perform aerial surveying
and to observe a series of forest health indicators (FHIs) which are inaccessible from the ground.
However, many FHIs such as burrows and deadwood can only be observed from under the tree
canopy. Hence, we take the initiative of employing a quadruped robot with an integrated camera as
well as an external sensing platform (ESP) equipped with light and infrared cameras, computing,
communication and power modules to observe these FHIs from the ground. The forest-monitoring
time can be extended by reducing computation and conserving energy. Therefore, we analysed
different versions of the YOLO object-detection algorithm in terms of accuracy, deployment and
usability by the EXP to accomplish an extensive low-latency detection. In addition, we constructed a
series of new datasets to train the YOLOv5x and YOLOv5s for recognising FHIs. Our results reveal
that YOLOv5s is lightweight and easy to train for FHI detection while performing close to real-time,
cost-effective and autonomous forest monitoring.

Keywords: forest health indicators; object detection; YOLOv5; WebRTC; 5G; real-time monitoring

1. Introduction

Forests are an integral part of our environment and hold an essential capacity for the
survival of human beings, animals and life in general. Forests and woodlands represent
approximately 13% of the total land area in the UK. They provide habitats for myriad
animals, insects, etc., and help maintain the balance in the atmosphere. These forest
woodland resources are highly valued for a wide range of services, including timber
production, water, air-quality improvement, biodiversity and several aesthetic and health
benefits for humanity [1]. The monetary value of these UK forests was estimated to be as
much as £130 billion [2] as in 2017 and continues to grow. The forests also have a crucial
role in combating climate change threats by contributing to urban cooling, mitigation
of floods and carbon sequestration. Due to this, it has become necessary to maintain
and restore trees and forests through different activities such as seed dispersal, planting
trees and preventing trees from falling. In 2019, the program of creating 13,700 Ha of
more woodland was initiated in the UK [3], which will be accentuated in the years ahead.
Another initiative undertaken in this regard is by the UK’s Woodland Trust, which proposed
to plant 50 million native trees over a period of 25 years. Apart from the creation of new
forests and conducting surveys, it is necessary to take relevant actions for the conservation
work to save the declining species and habitats [4]. Therefore, actions must be taken to
protect, conserve and enhance wildlife and fish habitats, and protect other ecosystems,
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forms of life and natural scenic beauties for tourist and scientific uses. The researchers
in [5] reviewed the challenges of major damages to pine and oak trees.

The current practice of managing forests relies on manual data collection, where the
forest personnel access the near and remote sites and gather the relevant information. This
process of accessing and collecting sufficient data to study the causes of threats to the trees
and vegetation to take any corrective measures for the protection of the trees, is tedious
and time-consuming. It often involves several visits and in some cases, even can pose
risks to the life of forest users. Due to manual collection and handling of data, there is a
considerable chance of obtaining erroneous or misinformed data. By coordinating with
the forest personnel and other forest users, regular and routine visual tree inspections are
carried out, but they tend to be tree-by-tree and depend largely on the enquiries that come
in. Their approach of managing forests is usually reactive. Much of their time and financial
resources are taken up by survey and maintenance activities to maintain the health of
the trees, reduce the risk of trees causing injury to people or damaging the property and
respond to public complaints about the tree disservice [6].

Instead of solely relying on manual data collection, in recent years, data collection in
UK forests has also involved remote sensing techniques [7]. The data collected by sensors
need to be properly assessed [8], but the current methods do not provide an alternative
way of validating the data. Data collection concludes with storing the obtained contents
in a structured format suitable for further processing. Sensors, Internet of Things (IoT)
devices, or cameras can gather data in remote areas of the forest and transmit data to
the appropriate storage medium that can be accessed by a server close to the ground
station [9]. By providing wireless connectivity between these devices and the server, the
manager can monitor these data in a much reduced time frame with less frequent visits to
remote areas [10]. This technology has been implemented in several UK forests to monitor
tree growth and environmental changes. Such sensor-based systems acquire real-time or
close to real-time measurements combined with traditional field studies and long-term
records of patterns and processes. This can help the management monitor and respond
quickly to environmental changes. Sensor systems such as multispectral cameras, image
intensifiers and thermal cameras, whose usage has been previously limited due to the costs
or technology considerations, are now becoming widely available and affordable. However,
in a lot of these forests, which are declared to be ancient, protected sites, there are several
restrictions on safety procedures and operations while deploying sensors or IoT devices
with intrusive sensing technologies. Therefore, for future visions of forest monitoring,
non-intrusive sensing technologies need to be explored.

In recent years, remote sensing and data processing technologies via UAVs and arti-
ficial intelligence (AI) have been incorporated for non-intrusive agroforestry monitoring
due to miniaturisation of components and cost-effective sensors. UAVs are enabling new
applications for airborne sensing of fires and human or animal activities in forests. Due
to their freedom of mobility, UAVs can be used to search for people who lose their way in
forests the same way as such systems are used for fast searching for survivors in different
dangerous situations such as avalanches [11]. When fitted with suitable sensors, UAVs can
be used for rescue missions [12]. For example, thermal cameras [13] fitted to UAVs have
helped detect missing persons in the forest, especially during emergencies like fire breakout.
The use of low-light visible or new infrared (NIR) cameras can assist in detecting fires in
low-light or night conditions [14]. Recent advances in robotics have created opportunities
to make things simpler and safer to access information from forests. There are instances
where the forest industry uses robots equipped with advanced sensors, computational
power, and artificial intelligence to carry out mundane tasks of the forestry personnel, as
explained in [15]. In hazardous situations, robotic applications are becoming more popular
for decreasing any possible danger to humans [16]. The above state-of-the-art development
shows the promises of sensing and robotic technologies in forest monitoring. If developed
properly, they can be leveraged for detection and monitoring purposes to help forest man-
agers overcome different challenges and accomplish the work more effectively. In addition
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to remote sensing technologies, the integration of advanced wireless systems and AI into
the forest monitoring system can improve its effectiveness in terms of a faster and more
reliable detection of target objects. With the increase of IoT devices and faster communica-
tion, the volumes of data generated are increasing, and AI is continuing to integrate for
sound and timely decision-making. Continuously evolving computing solutions have been
proposed in forest research for data gathering and processing. For forest health assessment
and biodiversity conservation, forest management observes multiple key FHIs, including
tree species, deadwood, wildlife signs and fire risk. As mentioned earlier, these tasks are
performed manually by the forest managers, rangers and volunteers. To accelerate these
tasks, computer vision and machine-learning technologies have been leveraged via UAVs
in many forestry applications. However, there are many FHIs that can only be observed
from the ground, such as wildlife signs, deadwood around the trunk and tree girth and
height measurements. There is a limited body of research around using unmanned ground
vehicles to detect the above-mentioned FHIs. One of the few studies used a four-wheeled
platform equipped with Light Detection and Ranging LiDAR, stereo camera and IMU and
a GPS was used to construct a 3D map to evaluate diameter at breast height (DBH) and
relative distance between the trees [17]. However, many health indicators such as burrows
and deadwood are not reported in this article.

Contributions of this paper can be summarised as follows:

• We, for the first time, deploy a quadruped robot in a forest landscape and report
several vital observations around the robot’s movement dynamics and ability to
navigate and survey various forest sites.

• We define new methods to integrate evolving technologies such as AI, cloud comput-
ing, streaming protocols and wireless communication systems to realise end-to-end
low-latency detection.

• We propose a method to maximise the uptime of the monitoring system through load
balancing distribution and adaptive offloading mechanisms.

• We provide analysis of several state-of-the-art object-detection systems in their ability
to accurately detect the health of the forest indicators (e.g., tree species, burrows,
deadwood, persons and fire) in real time.

The remaining sections of the articles are organised as follows: Section 2 provides an
overview of the literature on robotics, AI and ML in forestry. The design of the robotic
system, multi-modal sensing, data acquisition and key performance metrics are described
in Section 3. The results, challenges and lessons learned are discussed in Section 4, and
Section 5 concludes the paper.

2. Literature Review
2.1. Robotics in Forestry

With the vast development and improvements of technology, unmanned systems are
becoming widely popular in the implementations of various use cases. The 21st century
has seen a rapid spread of aerial vehicles that do not require control from a human. In some
situations, the pilot is nearby; however, in most cases, the pilot is a significant distance
away. Bigger drones that weigh over 150 kg are now being used in military applications,
while smaller drones below 150 kg have become more popular due to their efficiency
in quick manoeuvrability and easy deployment [18]. While their demands are vastly
increasing, their manufacturing costs have been reduced by a large margin, resulting in
various architectures being developed to meet user needs. With a particular focus on
environmental monitoring within rural areas, Vertical Take-off and Landing (VTOL) UAVs
are currently considered an ideal vehicle to carry out such analysis in this research [19].
On the one hand, this is particularly useful for analyzing certain forest health indicators
(tree canopies and plantations in dense regions) that could be unreachable by humans
and ground robots. On the other hand, the agile feature of the VTOL UAVs provides an
advantage of quicker orientations to assess certain health factors. However, this can also
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introduce other drawbacks such as flight policy restrictions, high battery consumption,
limited ground view and the forest dynamics creates a challenge for pilots to fly.

With the vast development of AI, sensor technology, computing and vehicle control
innovations over the recent years, unmanned ground vehicles (UGVs) have become increas-
ingly popular in both civilian and military applications. This is generally described through
two features: (1) the UGV can autonomously drive itself to carry out the missions set by
the operator; (2) dependant on the application specifics, the UGV can replace humans in
the tasks set [18]. While UGVs are vastly developed and designed in different sizes and
structures, there is a lack of forest deployment towards surveying and assessments. For
instance, the authors in [20] have developed a wirelessly controlled mini rover that can
execute a set of predefined actions automatically. The four-wheeled vehicle has successfully
operated with integrated AI sensors to carry out object detection. However, a challenge is
introduced in relation to navigating within the natural forest environment. The authors
in [21] have also explored forest cleaning through the deployment of a tank-treaded UGV.
The AI-powered RGB cameras and LiDAR sensors have successfully classified vegetation
compared to waste, giving rise to a challenge related to the environmental condition of
changing terrains. One of the robots that was found most suitable to adapt to the chang-
ing terrain is the quadruped robot. The authors of [22] advocate for quadruped robots
to work in hazardous and inaccessible environments compared to conventional UGVs.
Other researchers have looked at the robot’s walking motions using adaptive control algo-
rithms to improve operational lives by enabling smart adaption in varied environmental
settings [23,24]. The authors in [25] looked into robotics advancements for forestry applica-
tions with a specific emphasis on challenging landscapes. We selected a quadruped robot
for forest monitoring since they do not require constant ground contact and can adapt to
the changing terrain [9].

2.2. AI and Machine Learning in Forestry

Machine learning (ML) is a subset of AI, where a common usage leverages a dataset
that is decomposed into training and testing elements for classification and object iden-
tification. Introduced in [26], one of the most popular ML algorithms is deep learning
(DL), which performs feature extraction from raw data consisting of low-level features
to automatically build high-level features. DL algorithms, such as convolution neural
networks (CNN) [27] have gained popularity in data analytical research studies, where
the learning and classification of large volumes of data are performed effectively. Inspired
by the biological neural network, CNN is beneficial for computer vision problems, image
classification and object detection. The computation model in CNN is composed of several
convolved layers to learn data representation with multiple levels of abstraction [28]. The
CNN requires a huge number of annotated samples to estimate millions of parameters,
which prevents DL models from being applied to research studies with limited training
data. Many CNN-based models have been used in the field of image classification, such
as AlexNet [28], ResNet [29] and GoogleNet [30]. For object detection, the CNN-based
can be categorised as two-staged and single-staged. Some of the popular two-staged
object-detection algorithms are Region-Based CNN (R-CNN) [31], Fast R-CNN [32], Faster
R-CNN [33] and Region-Based Fully CNN (R-FCN) [34]. Single-staged object-detection
algorithms include Single Shot Detector (SSD) [35] and You Only Look Once (YOLO) [36]
series, i.e., YOLOv1, YOLOv2, YOLOv3, YOLOv4 and YOLOv5. Unlike the two-stage
detection models, the YOLOv1 detection model has a simple CNN network structure
without the extraction process of region proposal. It uses the entire graph as input of
the network that outputs the location and category of the bounding box [37]. YOLOv2
uses Darknet-19 for fully convolutional feature extraction and anchor box mechanism,
k-means clustering and multi-scale training, which improves recall and accuracy. However,
detecting targets with high overlap or small size is still challenging. YOLOv3 adopts a
deeper feature extraction network of Darknet-53, multiple scales for prediction, upsampling
fusion method and finally, merging three scales, which largely improves the effect of small
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objects and detection speed [36]. However, the detection accuracy is still not improved,
especially when the intersection over union (IoU) > 0.5. SSD combines the concept of
regression in the YOLO algorithm and anchor box in Faster R-CNN [35]. YOLOv4 uses
CSPDarknet53 as the backbone network and adds weighted residual connection, cross
stage partial connection, cross mini batch normalization, self-adversarial training, mish
activation, mosaic data augmentation, dropblock and complete intersection over union
(CIoU) to the original YOLO framework [37]. In the YOLO series, YOLOv5 is the latest and
improved version in terms of speed, size and accuracy.

Computer vision and machine learning have been integrated into many forestry
applications. For instance, plant species recognition has been a target of many research
studies based on their shoot organ system, such as flowers [38], leaves [39,40], fruit, skin
and seeds [41]. Leaves are the most common object of the previous studies because of
their distinct shape and structure [42,43] and availability throughout the growing season.
Many smartphone-based applications have been developed to facilitate plant recognition,
such as ApLeaf [44], leafsnap [45,46], PictureThis [47] and Pl@ntNet [48]. However, these
applications depend on the available network connection (limited in remote forests and
rural areas) to evaluate the images using trained models on the servers [49]. To overcome
this issue, a lightweight model of MobileNetV3 was embedded in an Android mobile
application for offline tree species classification [50]. The authors of [51–53] focused on tree
height and girth measurement using computer vision and image processing techniques.

UAVs have been used increasingly in worldwide forestry applications for image collec-
tion and processing. The authors in [54] reviewed drones’ applications in European forests.
They concluded that around 36% of the studies focused on estimating the dendrometric
parameters, 21% aimed at forest health monitoring [55] and disease mapping [56,57], 14%
targeted tree species classification [58], followed by post-fire recovery monitoring and fire
measuring (14%) [59,60], quantification of spatial gaps (7%) [61] and the estimation of
post-harvest soil displacement (7%) [62]. The sensors used in these UAV-based applications
were visible red, green and blue (VIS-RGB), multi-spectral in the visible and near-infrared
(VNIR), middle-infrared and thermal infrared (TIR) spectral range, VNIR hyperspectral
imaging and LiDAR. For image processing, most applications use the structure from mo-
tion (SfM). Many existing works have mapped vegetative status and derived normalised
difference vegetation index (NDVI) indexes by recording the spectral range’s reflectance to
estimate spatial gaps, post-harvest soil displacement estimation and post-fire monitoring.
Most of the UAV-based forestry applications have used Random Forest and support vector
machine for tree species surveying and classification [63]. The authors of [64] have used a
UAV to obtain the imagery of Mauritia flexuosa (palm tree) and applied DL to segment the
images automatically.

3. Materials and Methods
3.1. Study Area

Figure 1 illustrates the location of where the trial was conducted in the United King-
dom. The ancient woodland is considered to be a royal forest in Nottinghamshire, England,
due to its historic features while bordered on the west by the River Erewash and the Forest
of East Derbyshire. Its 375 hectares of national nature reserve has been home to hundreds of
species including birds, insects, mammals, fungi, trees and plants. Amongst other features,
the jewel of this forest is the collection of ancient oaks across the Sherwood landscape area,
making it one of the biggest and best locations to detect these species in Europe. Sherwood
is thus protected under European law as a Site of Special Scientific Interest (SSSI) and
a Special Area of Conservation (SAC), since it is one of the best remaining examples of
oak-birch woodland in the UK [65].



Sensors 2022, 22, 5497 6 of 25

Figure 1. The location of Sherwood highlighted in the UK.

3.2. Robotic System
3.2.1. Aliengo

As this paper discusses the implementation of a UGV to gather accurate information
about the selected environment, these vehicles will be deployed to specifically focus on the
understory level of the forest, which is not visible to UAVs from above the tree line. Hence,
the Unitree Aliengo robot was selected for this study as the ground robot forest ranger
(RFR). Its quadruped formation enables it to achieve multiple motions such as squatting,
turning, leaning and moving in various directions, ultimately navigating through rough and
unstructured terrains while maintaining stability [66]. The Unitree Aliengo has numerous
motions that can be achieved due to its incorporated 12 servo motors, which are placed
within positions relevant to the robot fuselage. Hence, 3 degrees of freedom (3-DOF) can be
achieved from each leg which totals up to 12-DOF that the robot is able to accomplish. In
Figure 2, a 3D model of the Aliengo robot is shown, which consists of numerous coordinate
frames. Each coordinate frame indicates that a rotational angle is achievable about a
particular axis. It is worth mentioning that the rotational capabilities for all the hip joints
are around the x-axis, while the calf and thigh joints are around the y-axis. Four sensors are
integrated into the robot foot to detect the contact force between the foot and the ground.
With this information, the operator can ensure that the robot maintains a balanced posture
in various terrains and operational modes.

In addition to the motion capabilities, the robot is equipped with multiple features
that make it suitable for the use case of forest monitoring. The structural developments
of the Aliengo are designed using carbon fibre material which delivers high strength with
reduced weights. The perception sensors include depth cameras and laser sensors to map
the environment in front of the robot. A unique advantage of the Aliengo robot is that it
supports external sensors and computers to be integrated with the developed system. The
Robotic Operating System (ROS) is used as the main control platform, and utilises artificial
intelligence to develop a smart system that can carry out the required monitoring tasks.
Additional features of the Aliengo include the following:

• Reasonable battery life: ranging between 120 and 270 min depending on endurance;
• Carry payloads of up to 12 kg;
• Locomotion speeds of up to 6 Km/h;
• TX2 Jetson for fast computational processes;
• Mini-Pc for User logic control;
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• Embedded power management system;
• External manual remote controller;
• Choice for integrating further tracking, positioning, imaging and communication devices.

Figure 2. Body joints on the quadruped robots to achieve locomotion.

3.2.2. Air6 System

To collect relevant data from the forest without causing any harm to the habitat,
remote-sensing technologies of UAVs are leveraged for mapping and surveying to assist
the forest personnel. The UAVs equipped with camera sensors can capture forest-related
data, which can be sent to the ground station through 5G and other wireless networks.
Based on these data, faster and more effective decisions can be achieved before taking any
necessary actions.

The camera sensors mounted on a UAV act as user equipment (UE) in a mobile
network. They can provide a cost-efficient, accurate and flexible solution for surveillance,
inspection and delivery [67]. In this case, the UAV must co-exist with ground users and
exploit existing infrastructure (such as cellular networks) to transfer collected information
to the operator on the ground with certain reliability, throughput and delay, depending
on the application requirements [68]. It is expected that 5G and future cellular networks
with improved features such as higher capacity, higher reliability and lower latency will be
better equipped to deal with the challenges related to networks with UAV [67,69].

For the forest use cases, the UAV chosen for the field trials is referred to as Air6, and is
manufactured by Airborne Robotics, as shown in Figure 3. While it carries the VTOL flying
capabilities, its hex form enables it to carry larger payloads with higher flight accuracy
as compared to the conventional quadrotors [70]. Moreover, numerous programmable
sensors which are integrated into the UAV’s control system can provide valuable flight
information such as location, altitude, attitude, trajectory tracking and autopilot. The Air6
characteristics are highlighted in Table 1.

Table 1. Air6 Characteristics.

Components Features Remarks

Motor Power 6 × 750 W Brushless
Weight 4 kg Without Payload

Maximum take-off weight 6.5 kg -
Flight-Controller PixHawk Redundant Controller
LiPo Battery Pack 2 × LiPo 3700 mAh 6S 1 Flight Pack = 2 pcs Battery

RC Remote Control 204 GHz Range approx. ca. 1.500 m (no obstacle)
FPV Video-uplink Analog 5.8 GHz Digital 5.8 GHz

Gimbal (Camera Mount) 2–3 axis-brushless Remotely operated via remote control
Maximum Wid Speed 10 m/s -
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Figure 3. Airborne robotics modelled Air6 UAV copter .

3.2.3. Multi-Modal Sensing

The applications of sensors have grown beyond the conventional disciplines of basic
sensing due to the vast developments and advancements in micromachinery and easy-to-
use microcontroller platforms. Low-cost sensors and easy-to-use devices for monitoring and
data collection have significantly grown due to the increasing need for speedy, economic
and trustworthy technologies in today’s society. While this research is solely focused on
wirelessly sensing of the health of the forest using state-of-the-art technology, multiple
health factors which are considered in this study will be assessed through various smart
sensors incorporated with AI. Forest rangers generally carry out monitoring and inspections
to gather simple data within certain areas in the forest. This will not only consume council
resources but will also limit the area that is assessed, resulting in high labour-intensive work,
increased costs and time consumption. Therefore, the RFR can be leveraged to support
carrying out necessary data collection, which will help maintain the forest ecosystem.

The goal of launching the quadruped RFR in the forest is to enable semi-autonomous
roaming and navigation along specific routes while gathering data from various objects,
tree species and dead logs using computer vision devices. The RFR will be equipped with
high-resolution RGB cameras, laser sensors and wireless connectivity. These are combined
to create an intelligent ground vehicle that can support the forest rangers accordingly.

3.2.4. Robot Perception Sensors

As mentioned previously, numerous dynamic motions can be achieved from the
robot via the control logic. Advancing this further into autonomy requires completing
several steps, which consist of understanding the system architecture in detail and how the
operating system interfaces with the actuators to achieve the required objectives.

Figure 4 illustrates the entire control architecture and how the system components are
integrated to ultimately control the robot’s motions. For the Aliengo RFR, RS485 can be used
as a communication method between the controller and the robot, enabling bi-directional
data transfer on the same bus. This method creates a hard real-time computing constraint to
guarantee a response within a specified time. As for the two operating systems integrated
in the robot, the user logic controller is implemented into the soft real-time computer,
which includes high-level control for direct autonomy or low-level control for advanced
locomotion controls.

While the controller board acts as the robot’s brain, both of the integrated operating
systems work simultaneously together to achieve self-control. It is worth mentioning that
low latency is one of the most important aspects when working with autonomy for such
robots. Furthermore, precision is of high importance due to the way the robots are struc-
tured. As a result, numerous benefits arise from rapid communications, including controller
commands and multimedia transmissions, which align with the scope of this research.
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Figure 4. Full system architecture of the Aliengo robot.

The Mini-Pc (Ubuntu 16.04) is the operating system used to achieve direct control
of the robot’s motions, while the Nvidia TX2 (Ubuntu 18.04) is used as the multi-modal
sensing platform which includes visionary sensing and navigation to mitigate the drawback
of slow performance. To improve the environmental monitoring as the robot navigates the
forest, an external machine such as Raspberry Pi is used to increase the scope of sensitivity
and surveying. For instance, third-party sensing devices can communicate with the robot
externally, enabling the robot to improve its autonomy in the deployed field while also
collecting additional imperative data.

3.2.5. External Sensing Platform (ESP)

External components can be integrated with the main system to enhance the function-
ality and operational capabilities of the robot. The platform of the ground RFR has a high
payload capacity of 12 Kg, providing it with the ability to carry sensor, computing and
communications hardware [71].

Despite the robot being integrated with multiple visionary sensors, the development
process has been faced with numerous challenges in relation to autonomy. The machine-
learning algorithm was initially applied in the Mini-Pc that was connected to the depth
camera; however, a major drawback was introduced in relation to the increased computa-
tional efforts, eventually reducing the performance and introducing constant autonomy
delays. Moreover, integrated sensors only face forward, which is not particularly suitable
for analysing the surrounding environment. Therefore, an ESP carried by the robot is
proposed to sense part of the surrounding areas via a GoPro 9 camera, fitted by a gimbal.

Figure 5 illustrates the quadruped robot accommodating the ESP, which consists
of the relevant devices and a portable battery. The aim is to collect the information on
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FHI from trees and process this through ML techniques as the robot moves around the
forest. Hence, the set-up incorporates a single-board computer (SBC), RaspberryPi (RPi),
which is connected to the GoPro9 camera via the MediaMod interfacing unit. A 73 Wh
portable battery is used to deliver long-lasting power to the SBC as it collects the relevant
information from the forest.

Figure 5. External visionary sensor carried by the Aliengo to monitor the forestry environment.

As for the operational functionalities, the servers running on the cloud computers
include a media server and an ML server [72]. The ML server is hosted on the edge
computer to perform local computations for object detection using a light version of
TensorFlow [73], an open source library to develop and train ML models. The object
detection can take place both at the edge computer and at the cloud, switching between
them adaptively based on two conditions in a distributed manner. The first condition checks
if the network is adequate for data streaming; in the case of high bandwidth, the detection
will take place on the cloud. On the other hand, if the network becomes unreliable, the
detection will take place on the edge computer. The second condition checks if the battery
level on the SBC drops below 20%, resulting in the detection taking place on the cloud
to save the battery. This offloading mechanism allows us to freely balance the processing
load between the cloud and the local computing power, enhancing monitoring time and
minimising the number of missed image frames.

Figure 6 elaborates on the proposed architecture where the media server frontend
comprises JavaScript, HTML and CSS, while the backend hosts Node.js with Express. The
primary function of the media server is to enable WebRTC communication and create
a user-friendly interface. The machine-learning algorithm uses a Flask server to obtain
images from the media server, followed by YOLOv5 to detect objects in the image. The
outputs are then sent back to the media server via HTTP Post and displayed to the viewer
in the form of contours around each object detected. On the other hand, the user views the
camera on the Raspberry Pi remotely through a Web page hosted on a Media server while
it is connected through a built-in Wi-Fi card. The media server also hosts interactive pages
which can display real-time object-detection streams. Appropriate commands can also be
sent to the machine-learning server through the media server when required. For example,
end-users can set the threshold and enable or disable object detection.
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Figure 6. System architecture for the external sensor box carried by the Aliengo.

3.2.6. UAV Sensors

While the UAV is flying, multiple sensors are also carried for remote surveying,
including a 4 K a6000 24.3 MP CMOS and an FLIR Vue Pro thermal camera. The RGB
camera mounted on the UAV can operate in the visible light wavelengths ranging from 400
nm to 700 nm to provide a high-resolution image [74]. The thermal sensor is leveraged for
forest health data collection and processing to detect variations in the physical parameters
that correspond to a change in temperature [75]. The images captured from the thermal
camera generally provide a user-friendly indication based on infrared radiations emitted
from objects. These are known to detect radiation in the long-infrared range of the spectrum,
roughly between 9000 and 14,000 nanometers. Hence, the operational purpose of this
camera is surveying and detecting living beings such as lost persons and animals, or
assessing any criminal activities.

3.3. Data Acquisition

In this paper, a single-stage object-detection algorithm based on a regression-based
algorithm such as YOLOv5, is compared and analysed for each forest use case, i.e., detection
of tree species, burrows, deadwood, person and fire through the UAV and UGV. For each
use case, a custom dataset is created using mostly RGB cameras. The original size of
the images is 4000 × 3000; however, training the YOLOv5 algorithm on the original
image increases the computational efforts, which occupies a lot of memory, affecting the
responsivity of the algorithm. Therefore, all the images were resized to 640 × 640 pixels
and labelled with object classes according to the dataset. These custom datasets are used
to train the YOLOv5 model, which is pre-trained on an immense repository containing
330 K images, out of which over 200 K are labelled pictures of 80 different object classes
and 1.5 million instances [76]. Among these, more than 800 K instances are person images
taken during daylight hours. Therefore, the pre-trained model is used for person detection
from the robot. The hardware to train the model included a Lenovo laptop equipped with
an 8265U CPU at 1.80 GHz of Intel Core i5 and 8 GB of RAM running on a Windows 10
64-bit system. All the datasets were divided into a ratio of 80:20 to obtain a training set and
a validation set, respectively. The hyperparameters for the object-detection model were set
as follows: the initial learning rate was 0.01 with decay 0.0005 and momentum was 0.937;
the IoU training threshold was set to 0.20.

As for the tree species identification, the dataset consisted of about 300 images la-
belled with three classes: oak, wood and grass and augmented with variations of horizon-
tal/vertical flip and brightness. The model was trained in 200 epochs which took 37 min
approximately. For deadwood, burrows and pine, the dataset included more than 3 K
images resized to 416× 416, augmented with variations of horizontal/vertical flip, rotation,
grayscale, saturation and brightness labelled with instances of 6 K for all the classes. The
model took 73 min to train in 149 epochs for deadwood and burrows. For fire detection,
a publicly available dataset FireNet [77] containing 412 images was obtained. The model
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was trained on these images with two classes: fire and non-fire. The training took approx-
imately two hours for 1000 epochs. For person detection from drones, the pre-trained
model could not be used due to the vertical angle. Therefore, the model was re-trained on
a publicly available VisDrone [78] dataset consisting of 288 video clips with 261,908 frames
and 10,209 static images. These images are captured by different drone-mounted cameras
and cover objects such as pedestrians, vehicles and bicycles. The model took six hours
to train in 257 epochs. For person detection in thermal images, the model was trained on
100 images taken from thermal camera. The model took 20 min to become trained in 200
epochs.

3.4. Key Performance Metrics

The key performance metrics are identified in this section, highlighting the experi-
ments conducted in the lab followed by field trials to assess the impact weight for all the
forest use cases.

Detection Accuracy: In an object-detection model, two crucial objectives are consid-
ered, which are classification and localisation. Classification refers to identifying the object
and its class, while localisation inspects the coordinates of the bounding boxes around the
object. For measuring the performance of an object-detection model, both of these methods
need to be evaluated. We describe the evaluation parameters below.

Intersection over Union (IoU): The concept of Intersection over Union (IoU) [79] is
an essential measure of object detection. It is the intersection over the union of the two
bounding boxes; the bounding box for the ground truth (A) and the predicted bounding box
(B). An IoU of 1 implies that the predicted and the ground-truth bounding boxes perfectly
overlap. If the IoU is between 0.5 and 1, the object detection can be classified as true positive.
The calculation of IoU is given in Equation (1):

IoU =
Area o f Intersection

Area o f Union
or IoU =

A ∩ B
A ∪ B

(1)

Precision, Recall and Mean Average Precision (mAP): Precision [80] measures how
accurate the predictions are, i.e., the percentage of correct predictions. It is the ratio of the
number of true positives (TPs), i.e., the number of correctly identified target objects to the
total number of positive predictions as shown in Equation (2). False positive (FP) is the
number of misidentified backgrounds as the target object.

Precision =
TP

TP + FP
(2)

Recall [80] is the ratio (Equation (3)) of the number of true positives to the total number
of actual (relevant) objects. False negative (FN) represents the number of unidentified
object targets.

Recall =
TP

TP + FN
(3)

The mAP [80] compares the ground-truth bounding box to the detected box and returns
a score. The higher the score, the more accurate the model is in its detections. The mAP can
be calculated by Equation (4).

mAP =
1

|classes| ∑
cεclasses

|TPc|
|FPc|+ |TPc|

(4)

4. Results and Discussion
4.1. Locomotion

Controlling the robot autonomously requires the user to have an in-depth understand-
ing of the robot operating system (ROS). It will always act as the master node of overlooking
the robot’s control, including multi-modal sensing. Although this approach is well used
in robotics, low latency is significantly important in this research due to the locomotion
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behaviour and the changing terrain in the forest. Hence, the user datagram protocol (UDP)
is considered in this study which has a communication protocol to establish loss-tolerating
connections between the integrated devices on the robot. This technique is leveraged to
develop an adaptive system that is responsive to this particular use case. Additionally,
external sensors such as LiDARs can be incorporated into the ROS algorithm such that the
surrounding environment can be fully viewed. As a result, the robot can autonomously
move around safely, provided that the perception sensors, as well as the user logic control
system, are fully operational.

To demonstrate these commands in a graphical form, Figure 7 illustrates the data
collected in terms of the robot’s positional displacement and the body-height adjustments.
Figure 7a illustrates the positional displacement when a forward velocity is applied. It
can be seen that at 3 s, a 0.1 m/s velocity was initiated in the positive direction in which
the robot continued to successfully move forward for 7 s before halting. Although the
forward position was continuously increasing, the displacement between 6 and 8 s was
decreased due to the change in terrain, which resulted in a marginal error generated from
the applied speed.

Figure 7b considers the same concept as Figure 7a but with the velocity applied in
the opposite direction. It can be seen that the final position reached was approximately
45% lower than the forward speed. This is due to the structural nature of the Aliengo,
which enables it to achieve higher forward speeds in comparison to the reverse speeds.
Lastly, Figure 7c illustrates the body height measured from the fuselage. The robot was
commanded to change height in order to dynamically manoeuvre in the forest. At every 3 s
interval, the fuselage position is decreased where it can be observed that the lowest position
achieved by the robot is approximately 0.344 m, while the ordinary standing height is
0.41 m. Hence, it can be concluded that the robot can walk under tree limbs below 0.344 m
and can also walk over twigs and logs of up to 0.21 m, according to the experimental tests.

Figure 7. Measuring the positional displacement and the body height to dynamically manoeuvre in
the forest.

To ensure that the health of the forest is monitored accordingly, the data to be collected
must be coupled with its location. This is to help the forest authorities become aware of any
negative indicators which will initiate solutions to the problem. Additionally, autonomy
is a vital aspect when carrying out monitoring as this will reduce the time and effort of



Sensors 2022, 22, 5497 14 of 25

the forest rangers. Hence, collecting such data while having an awareness of the robot’s
location will sufficiently complete the assessment criteria for digital monitoring.

According to Figure 8, the robot is equipped with multiple external devices to carry
out the required tasks of enabling data transmission with its locations. As the battery life of
the robot is limited, a low-cost, lightweight single-board computer is used as an interface
device between the data collected from the camera and the GPS location. An Antenna
is also used to improve the location accuracy of the robot, which will provide support
in quickly detecting the unhealthy factors specified by the forest rangers. With a 5G site
prepared by the Nottinghamshire County Council, the 5G dongle was used to interface the
connectivity from the 5G base to the SBC, which resulted in a download speed of over 200
Mbps in a rural area.

Figure 8. Quadruped robot equipped with a GPS module connected to 5G.

Regarding technical development, the Sparkfun GPS-RTK2 selected for this research
has shown a horizontal positional accuracy of 0.01 m with real-time kinematic precisions
and an updated navigation rate of 20 Hz. This device has been directly connected to the
SBC, which was set up to collect the longitudinal and latitudinal locations of the GPS. In
other words, the real-time geolocation data is consistently collected at every 500 ms interval,
followed by directly displaying the data to Google Maps.

As can be seen in Figure 9, the geolocation of the robot is presented on Google Maps
using the Sparkfun GPS-RTK2 module. The data collected from Sherwood Forest illustrates
the full trajectory of the robot, during which the location changes as the robot surveys the
forest. It is worth mentioning that the trajectory data collected from the GPS highlights a
constant change in direction. This is due to the dense plantations, trees and large objects
within the forest that resulted in the robot safely manoeuvring as the mission is carried out.
Additionally, the footprints collected from the robot are achieved from the 5G connectivity
covered within the site of the trial. Hence, the collected location had a high accuracy below
0.09 m in comparison to the actual location of the robot. Although the quadruped robot
is popular for its adaptability over various terrains, it is worth mentioning that the RFR
was operating on a flat surface that had some inclinations between 0 and 5 degrees. The
operations conducted during the trial were focused on concrete and grass surfaces below
20 cm. Certain areas consisted of gravel, twigs, thin branches and stones which did not
affect the robot’s operational performance.
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Figure 9. Google Maps demonstrating the tracked trajectory of the quadruped robot in real-time.

4.2. 4G/Wi-Fi Connectivity for Data Transfer

The detection time, i.e., the time between image data transferred to the cloud and
back to the media server via both Wi-Fi (802.11 ac) and 4G is also measured. Figure 10
illustrates the processed frames which took less than 0.5 s when streamed back to the client
after detecting objects on the Wi-Fi network. Whereas 50% of the data took up to 0.5 s
using the 4G network, while the remaining data took up to 1 s. This shows that wireless
network connections can play a pivotal role when transferring data to remote cloud servers
for object detection. Technologies that offer higher speed and low latency, such as 5G, could
provide faster detection times [72].

Figure 10. Cloud detection time on 4G and Wi-Fi [72].

Following the load balancing and offloading strategy presented in Section 3.2.5, the
time taken to switch object detection from the edge computer to the cloud and vice versa is
based on two conditions and is also recorded. Figure 11 shows that approximately 70% of
the tests took 2 s to switch from the edge to the cloud computer and vice versa. However,
during the trials and experiments, it was determined that the switching from the cloud to
the local server occurred at a faster pace than anticipated. The latency in changing from the
cloud to a local server is likely due to the severely limited computing resources available
on the Raspberry Pi [81], which can be improved using a more powerful SBC such as the
Nvidia Jetson [72].
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Figure 11. Switching time between edge and cloud computing on 4G network [72].

4.3. Object Detection in Forest

YOLOv5 is the latest and improved version of YOLO architecture and the first in
the series, with the backbone network comprised of PyTorch in place of Darknet. The
YOLOv5 series consists of four different versions, i.e., YOLOv5s, YOLOv5m, YOLOv5l
and YOLOv5x. These versions differ in the amount of feature extraction modules and
convolution kernel location in the network. In turn, the size of the model and the number
of parameters also differ in all versions. The input in YOLOv5 uses adaptive anchor frame
calculation that adaptively gives the optimal anchor frame in different training sets. The
Backbone contains a focus structure to realise the slicing operation, while the Neck uses
a new FPN structure to enhance the propagation of low-level features [82]. As a result,
YOLOv5 achieves a reduction in computation complexity at least by a factor of four [83].

According to the authors in [84], the YOLOv4 outperforms YOLOv5x; however, the
YOLOv5s outperforms YOLOv4 Tiny in terms of average precision (AP). Another compari-
son is performed by [85] which shows that YOLOv5l outperforms YOLOv4 and YOLOv3
in terms of accuracy of detection. Hence, in this study, we have used YOLOv5s which is
a lightweight algorithm with 7.2 million parameters and 270 layers and is easier to use
and train. It infers quickly with the fastest detection of 140 frames per second [86] and
performs better than the previous versions. The size of the weight file of YOLOv5s is 90%
less than YOLOv4, indicating its suitability for deployment in the embedded devices to
implement real-time detection [87,88], performing less computation to save battery power.
Therefore, for time-critical applications such as the detection of fire or a person lost in the
forest, YOLOv5s has the potential to be most effective for object-detection operations. The
architecture of the YOLOv5 and detection of oak, grass, fire and deadwood are shown in
Figure 12.

Figure 12. The architecture of YOLOv5.
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We trained YOLOv5x and YOLOv5s models on our datasets to compare the results
and size of the weight file shown in Table 2. It can be noticed that the size of the weight file
with YOLOv5s is only 14.5 MB, whereas with YOLOv5x it was 173 MB. According to [89],
the size of the model with YOLOv4 was 244 MB and with YOLOv4-Scaled it was 401 MB,
which is quite huge for computation on an SBC like Raspberry Pi. The tree species detection
from the ground is difficult because of varied leaf orientation, colour and distance from the
robot. Therefore, for the tree species identification, i.e., pine and oak, the detection accuracy
was 53% and 10% with YOLOv5x and 55% and 13%, respectively, with YOLOv5s. For
deadwood and burrows, the detection was with an accuracy of up to 64% with YOLOv5x
and up to 67% with YOLOv5s. As for the fire, both models could detect the fire instances
with an accuracy of up to 75%. For person detection from the drone, the models could
detect pedestrians with up to 43% accuracy. The person could be detected in thermal
images with an accuracy of 30%. After the models were trained on each dataset, unseen
pictures and videos were fed for the model inference with a confidence threshold of 0.25.
The accuracy can be improved by training the algorithm on more pictures and epochs. The
person detection in thermal image from the drone is shown in Figure 13. The results of FHI
detection are shown in graphs in Figure 14.

Figure 13. The person detection from drone in thermal and RGB images.

Figure 14. The result graphs of YOLOvs on FHI detection.
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Table 2. Results of comparing YOLOv5x and YOLOv5s models for FHI, Fire and Person detection.

Algorithm YOLOv5x YOLOv5s

Size 173 MB 14.5 MB

Classes Precision Recall mAP@50 Precision Recall mAP@50

Burrow 70 66 64 79 64 67
Deadwood 68 60 62 67 56 58

Pine 63 52 53 63 62 55
Grass 88 30 40 64 30 35
Oak 39 0.09 10 28 17 13

Wood 39 30 23 36 38 27
Fire 85 65 75 81 74 71

Pedestrian 65 35 40 58 41 43
Person (Thermal) 30 20 28 25 20 30

4.4. Challenges
4.4.1. 5G Network Operational Limitations

One of the main challenges faced in setting up the 5G connectivity within the forest
is the unavailability of spectra for providing mobile services, which is due to the lack
of ownership of spectrum radio sharing. The network was developed from the ground
up to support a wide variety of services, devices and deployments; 5G will encompass a
diverse spectrum. It is built on established technologies to ensure backward and forward
compatibility [90]. The 5G base station (BS) in Sherwood Forest provided 5G coverage
extending up to a sector of a sphere with a radius of approximately 200 m. To avoid
interference due to signal penetration from trees, it was necessary to have a strong, short-
distance line of sight (LOS) transmission link between the BS and the UAV/UGV. With
the current specifications of the antenna height at around 10 m and the surrounding trees
of comparable height to that of the antenna, it was technically challenging to form an
LOS transmission link between the BS and the UAV which flew above the tree canopies.
Hence, an alternative approach was proposed for the UAV monitoring, which consisted of
capturing angular images of the trees at a lower altitude. The density of plantations and
trees in the forest makes it difficult for conventional UAVs to safely manoeuvre the forest.

4.4.2. UAV and UGV Constraints

From the given regulations of flying a drone for surveying, the maximum altitude
to be flown must not exceed 50 m for safety purposes. With this constraint, the remote
sensing activities affected the resolution of the data captured. Moreover, the maximum
thrusts generated by the UAV actuators sum to approximately 20 Kg, which generates a
restriction on carrying multiple sensors in a single flight. Before the experiments were
carried out, certain rules were proposed by the forest management to operate the drone
within a forestry site. These were: (1) drones cannot be flown over the site to gather the
HoF data during the breeding season (i.e., March–September) every year; (2) the drone can
be flown to collect tree-health data outside this time under a general film agreement in
areas approved by the forest authorities; (3) the drone will need to be flown by a licensed
drone pilot, who will be responsible for alerting the Civil Aviation Authority (CAA) and
following their regulations; (4) the deployment of ground robots is to remotely support
forest rangers with the tasks on the ground.

Robots are programmable machines that can aid forest personnel when performing
tasks that are (a) repetitive, (b) expensive and ineffective when the benefit is not sufficiently
large compared to the cost and/or (c) dangerous and life-threatening [91]. However, using
robots in forests brings a new set of challenges. For instance, it is challenging to design
a suitable programmable machine that can work in a hostile forest environment as the
terrain is uneven and unpredictable, with many physical obstacles and the remoteness of
the forest sites. The significant issues that need to be addressed when using robots therein
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are localisation, navigation and mobility. Moreover, to conduct the tests in the field with
robots and drones, the weather conditions must be suitable for their operation. For instance,
a wet and rainy environment can generate instability, which could damage the mechanism
and its sensors. Therefore, such field tests have to be conducted on a dry day [92].

With the unconditional rules and restrictions of flying drones as imposed by the UK
CAA and forest authorities, the policy of deploying RFRs can be less cumbersome due
to the naturally reduced risk as compared to the UAV. With this being said, the RFR can
manage to collect the data, but the deployment of a UAV will provide larger area coverage
and further data collection. For instance, the RFR can be utilised to cover the ground area
such as the detection of burrows while the drone can cover areas that are challenging to
observe through the RFR.

4.4.3. Data Streaming and Object Detection

While implementing a real-time object-detection application, the main challenge is
identifying a low latency streaming protocol. The reason was that many online resources
and libraries are streaming protocols with high latency that could not be used for real-time
object-detection applications. For example, the Real-Time Streaming Protocol (RTSP) and
HTTP Live Streaming (HLS) [93,94], which are widely used for streaming, offer latency of
up to 3 s. This was more than what was required for time-critical use cases. We use Web
Real-Time Communication (WebRTC)[95], which provided a latency that was less than
250 ms. However, it also presented a new challenge, i.e., WebRTC was not supported in
Python. This is because WebRTC only works in the browser and cannot be accessible in
Python via a URL link like the other streaming protocols (e.g., RTMP and HLS).

To overcome this challenge, instead of using WebRTC directly in Python, the frames
were sent from WebRTC to Python over HTTP Post [96] and the results were returned to the
browser via HTTP Get. For example, the getUserMedia() [97] method was used to access
the user’s camera through the browser directly. The image was captured from the camera
using a canvas [98]. The HTMLCanvasElement.toBlob [99] method was used to convert
canvas images into a blob. After the conversion, HTTP Post was used to send data to the
YOLOv5. From there, the output was wrapped into a JSON object [100] and sent back to
the browser. Once the JSON response was received from YOLOv5, another canvas was
created that drew boxes around the detected objects using the outputs. This provided a
way to use WebRTC in Python object-detection frameworks without using it directly in
Python.

Other challenges with WebRTC included testing its latency when applied to real-time
applications. Although WebRTC provides tools for testing latency (e.g., chrome webrtc-
internals), these tools use Round Trip Time (RTT). The latter and latency are similar but
not identical. For example, RTT is the time it takes for a packet to be sent to a destination
plus the time it takes for an acknowledgement of that packet to be received back at the
origin. In contrast, latency is only the time it takes for a packet to be sent to a destination.
Furthermore, it cannot be assumed that latency is equal to half of RTT because delay can be
unequal between any two given endpoints.

4.4.4. Data Limitations

Limited datasets introduce the problem of overfitting. Therefore, to acquire good
results of accuracy in detecting FHI, machine-learning methods require a substantial
amount of data. Currently, available datasets are either insufficient or do not contain
images of indigenous tree species and certain FHI, such as wildlife signs and deadwood.
A complete dataset must contain images captured from different angles under different
conditions as much as possible. Gathering images for a custom dataset is a time-consuming
task, which requires expert knowledge for labelling images.

One major problem with a custom dataset is class imbalance [101], i.e., the unavail-
ability of a balanced number of instances per available class. This can result in a high rate
of false negative indicators. The problem of imbalanced data was handled by preparing
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the custom dataset for each FHI with 3K images and instances using the GoPro9. To in-
crease the size of the dataset, each dataset was augmented with different variations such as
horizontal/vertical flip, rotation, grayscale, saturation and brightness. For deadwood and
burrows, the images were also captured under low-light illumination at around the sunset.
This helps to detect FHI in dense forest areas that have a limited flow of natural light.

One of the main challenges is the variation in seasons, which impacts the colour and
the shape of leaves. As a result, some of the machine-learning algorithms designed to
detect objects that are found in nature at certain seasons only cannot be used for testing
and validation. For example, oak tree leaves are not available in winter for the application
of the machine-learning algorithm to accomplish species detection. However, monitoring
the trees during leaf season can provide indications of tree health. In addition, burrows
and deadwood detection can be achieved all year round—an important indicator of several
tree species’ health such as oak.

4.5. Future Works

Following the successful development of a surveying system that can observe and
analyse the forest’s health using UAVs and UGVs, several approaches and techniques have
been considered towards improving the current performance of the developed system.

This research mainly focused on utilising the 4G/Wi-Fi connectivity to transfer data.
However, parts of the forest area had no connectivity, which resulted in the robotic vehicle
losing relevant data. Hence, an alternative approach was considered which consists of
continuing the robot’s operation alongside a high processing computational machine as a
data aggregator to offload the data collected once a stable connection is acquired. This will
not only provide further information about the forest but will also maintain the consistency
of surveying various sites. Moreover, detecting the location of certain health factors once
the robot completes its mission was found challenging due to the dense plantations in
the area. For instance, the UGV which is equipped with an accurate GPS module only
provides the location of the robot and not the exact position of where the health indicator is
positioned. Therefore, future works can be considered in determining the exact location of
the plantation rather than the robot itself.

Many valuable lessons are learnt while implementing the WebRTC application and
machine-learning tools. For example, to understand the core concepts of WebRTC, the
WebRTC signalling server was explored with a consideration of how data connections
are built between clients and how they are shared through the signalling server. As the
majority of WebRTC applications are written in JavaScript, new JavaScript APIs are now
being further explored while developing real-time object-detection applications. Hence,
future works will emphasise utilising the new JavaScript APIs to generate an optimized
algorithm concerning operating the WebRTC whilst ensuring that the streaming is secured.
As for the machine-learning algorithm, carefully collecting and annotating training images
can significantly improve the final model’s accuracy. However, training the algorithm
tends to be time-consuming depending on the images to be trained. Hence, configuring
external graphical processing units (GPUs) can support training models faster, which
would efficiently result in the algorithm performing at higher accuracy based on additional
training images. Further methods such as feature extraction will be explored to improve the
accuracy of tree species detection from the ground. We include the usage of 5G networks
and more powerful SBC such as NVidia Jetson for real-time data transfer and object
detection in future works.

5. Conclusions

In this article, we proposed a smart digital monitoring system operated on UAVs and
UGVs to identify certain health factors that contributes to deforestation, person and fire.
Although manual data collections of certain forestry sites are still the conventional approach,
the experimental deployment of UAVs and UGVs with the incorporation of AI and wireless
connectivity has provided sufficient information concerning the surveyed sites. An Air6
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Hexacopter was leveraged to carry out remote sensing of tree species, tree canopies, fires
and persons while the quadruped robot was able to successfully observe and survey the
bottom layer of the forest including, dead logs, burrows and persons. With this being said,
both vehicles were equipped with visionary sensors to carry out various object defections
while feeding this data through the 5G-connected WebRTC platform. As for the quadruped
robot, multiple ground experiments were carried out in the rural area of Sherwood Forest,
which includes analysing the robots’ motions and capabilities with the uneven terrain. It
was observed through the GPS module operated on the SBC that the robot was able to
successfully manoeuvre the forest on grass and footpaths. The object-detection algorithms
such as YOLOv5x and YOLOv5s are compared in terms of their accuracy and size (weights
file), concluding that YOLOv5s provides the same accuracy as other algorithms; however, it
is much smaller in size as compared to YOLOV4, YOLOv4-Scaled and YOLOv4-Tiny which
makes it the right candidate to be deployed on embedded devices with less computation
capabilities and limited battery for prolonged forest monitoring. The incorporation of the
detection algorithm provided a good accuracy concerning all the objects, which indicates
that the proposed Hexacopter and quadruped robot can sufficiently support environmental
monitoring and surveying.
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