
Citation: Zeng, H.; Jiang, S.; Cui, T.;

Lu, Z.; Li, J.; Lee, B.-G.; Zhu, J.; Yang,

X. ScatterHough: Automatic Lane

Detection from Noisy LiDAR

Data. Sensors 2022, 22, 5424.

https://doi.org/10.3390/s22145424

Academic Editors: Dong Liu and

Zhizhong Kang

Received: 9 June 2022

Accepted: 18 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ScatterHough: Automatic Lane Detection from Noisy
LiDAR Data
Honghao Zeng 1 , Shihong Jiang 2, Tianxiang Cui 1,* , Zheng Lu 1, Jiawei Li 1, Boon-Giin Lee 1 ,
Junsong Zhu 1 and Xiaoying Yang 1

1 School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China;
scyhz6@nottingham.edu.cn (H.Z.); zheng.lu@nottingham.edu.cn (Z.L.); jiawei.li@nottingham.edu.cn (J.L.);
boon-giin.lee@nottingham.edu.cn (B.-G.L.); junsong.zhu@nottingham.edu.cn (J.Z.);
scyxy3@nottingham.edu.cn (X.Y.)

2 Huawei Technologies Co., Ltd., Shanghai 201206, China; jiangshihong1020@163.com
* Correspondence: tianxiang.cui@nottingham.edu.cn

Abstract: Lane detection plays an essential role in autonomous driving. Using LiDAR data instead of
RGB images makes lane detection a simple straight line, and curve fitting problem works for realtime
applications even under poor weather or lighting conditions. Handling scatter distributed noisy data
is a crucial step to reduce lane detection error from LiDAR data. Classic Hough Transform (HT) only
allows points in a straight line to vote on the corresponding parameters, which is not suitable for
data in scatter form. In this paper, a Scatter Hough algorithm is proposed for better lane detection
on scatter data. Two additional operations, ρ neighbor voting and ρ neighbor vote-reduction, are
introduced to HT to make points in the same curve vote and consider their neighbors’ voting result as
well. The evaluation of the proposed method shows that this method can adaptively fit both straight
lines and curves with high accuracy, compared with benchmark and state-of-the-art methods.

Keywords: Hough Transform; curve fitting; scatter data; LiDAR point cloud

1. Introduction

Over the last decade, autonomous driving has attracted more and more attention
in both the academic community and automobile industry. Advanced Driver Assistance
Systems (ADAS) become more and more intelligent providing assistance in daily driving
or even taking an active part in less complicated situations such as highways or close loop
scenarios. Among all the subsystems or algorithms in ADAS, automatic lane detection is
essential for keeping vehicles safe and making road users better.

While lanes are usually easily identified by human drivers, automatic detection of
lanes under all conditions are not as simple as many may think. Lane marking may be
faded in terms of color or texture, after years of use or lack of maintenance. Some part of
lane marks may be blocked or washed away due to road works. To make the situation
worse, under poor weather conditions such as heavy rain or snow or low light conditions
such as mid night, lane marks may be even hard for naked human eyes. Traditional RGB
based lane detection methods [1–6] often fail to provide accurate results in these situations,
even with the help of popular deep-learning based techniques [7,8].

To tackle such challenge, in addition to normal RGB cameras, many modern vehicles
are equipped with LiDAR sensors for more robust data input in real time. It is shown that,
based on LiDAR data, simple line or curve fitting that is robust to noises could produce
practical lane detection performance in real time [9–11]. Such line fitting methods assume
lanes are straight or curves and use different function prototypes for the fitting such as
polynomial or Bezier curves of various orders [7,12].

Two commonly used methods in the fitting of noise data in the area of Computer Vision
are RANdom SAmple Consensus (RANSAC) [13] and Hough Transform (HT) [14,15]. In terms

Sensors 2022, 22, 5424. https://doi.org/10.3390/s22145424 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4670-7066
https://orcid.org/0000-0002-0102-2581
https://orcid.org/0000-0001-5743-1010
https://orcid.org/0000-0003-0210-608X
https://doi.org/10.3390/s22145424
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145424?type=check_update&version=2

Sensors 2022, 22, 5424 2 of 18

of straight line fitting, RANSAC randomly samples data to estimate model parameters.
The data points are then divided into two sets, inliers and outliers, according to whether
they locate in the neighborhood of the model. A good estimation of parameters makes
most sample data allocated in the inlier set. RANSAC does not guarantee the optimal
solution because of limited sampling. Curve fitting has a high degree of freedom, and it
is more susceptible to noise. In practice, it is difficult for RANSAC to obtain an optimal
solution in curve fitting. In contrast, HT searches for the optimal solution by voting in
the quantified model parameter space. Only the points located in a straight line could
vote for the parameters. Other points do not contribute to voting, even for those in the
neighborhood of the straight line. In curve fitting, the computational complexity of HT
increases exponentially with the number of parameters, greatly reducing the computational
efficiency.

Valid data points fluctuate around the true value due to noise. We call them scatter
points. Data points in the neighborhood of estimated value should participate in the
evaluation of the model. In order to obtain an optimal solution of the scatter fitting, we
proposed a Scatter Hough algorithm for automatic lane detection, which allows the points
in the neighborhood of estimated value to vote. In terms of curve fitting, the adaptive line
segment is used to fit the curve, the candidate points are extracted around the straight line,
and the curve parameters are obtained by fitting the candidate points by the least square
method. Because the parameter space has only two dimensions of rho-theta, computational
complexity is also reduced. In this way, our method is able better detect lanes in a straight
line or a curve given noisy LiDAR data, often the case in real world situations. Experimental
results on a popular real world dataset, PandaSet, show that Scatter Hough has a better
performance in line fitting compared with RANSAC and original HT. At the same time, the
adaptive line segment fitting curve can also achieve good performance in curve fitting. The
contributions of this work are summarized as follows:

• ρ neighbor voting method is introduced into HT to allow points in the neighborhood
of estimated value to vote, tailed for scatter points;

• ρ neighbor vote-reduction method is introduced into HT to drop votes that already
contribute to existing fitted lines for better curve fitting;

• Experimental results on the popular PandaSet demonstrate that our method achieves
better performance compared with other line fitting approaches.

2. Related Work

Lane detection plays an important role in autonomous driving. Traditional lane
detection techniques use RGB images as input and are often based on handcrafted features
and algorithms [2–5]. The work from Kluge and Lakshmanan [1] is the first attempt to
design a lane detection model from RGB images, using features such as color, shape, and
texture. The authors use clustering techniques to remove noises for better detection. In
addition to these features, Hur et al. [6] use optical flow calculated from RGB images
to further improve detection performance. While producing reasonable results, these
handcrafted feature based methods often suffer from poor road conditions including
lane variations due to different country regulations, poor weather conditions such as
rain or snow, blurry images due to poor lighting condition, or large movement due to
vehicle speeding. These practical issues make traditional lane detection techniques almost
impossible to use in real world situations.

In recent years, with the fast development of deep-learning based techniques, many
works attempt to detect lanes using techniques such as Convolutional Neural Networks
(CNN). One of the representative deep-learning based methods is the work from Huval et al. [7],
which uses CNN as a backbone to extract learnable features from RGB input, a similar
model as to RCNN [16,17]. The method firstly divides the input image into grids and
then uses a sliding window to generate multiple proposal bounding boxes which are
regressed and classified for lane generation. Such methods produce excellent results
when the input images are clear. However, because RGB images are the only input of the

Sensors 2022, 22, 5424 3 of 18

model, the detection accuracy is greatly affected by poor weather and lighting condition,
or when the target is distant [8]. Moreover, such model is resource demanding, including
both time and computational power due to factors such as the sliding window approach,
deep neural networks, and DBSCAN clustering. Such a strong demand in time and
computational power makes the model almost impossible to use in modern ADAS. Some
experts suggest using cloud-edge computing to release the computational burden. The idea
is that the autonomous vehicles are only responsible for sampling data, while the server
may undertake the heavy computations and send back the results via the Internet. This is a
good development direction, but mobile networks sometimes can have very large network
latencies, and they may potentially cause serious damage [18].

Due to poor robustness and a large amount of calculation from these models, many
works have started to use LiDAR data as the main input. LiDAR was initially designed to
be equipped on trucks since they usually have a higher height that allows LiDAR to better
perceive the surrounding environment. Generally speaking, LiDAR that is equipped on
a 4 m-high truck can reach a detection range of 150 m [19]. Linder et al. [20] propose to
use input from a LiDAR sensor to determine which part of road is the lane based on the
different sensing values returned from surfaces of different materials. Compared with RGB
based methods, such methods are not affected by weather and lighting conditions at all
and little affected by distance. Furthermore, due to the quality of LiDAR data, deep neural
networks are not needed to provide better detection accuracy. It is shown that simple line
fitting algorithms with strong noise removal can produce satisfactory results in real world
situations [9–11].

Generally, LiDAR-based lane detection methods can be decomposed into two main
steps. The first step is to use LiDAR to extract geometric or physical features, and the
second step is to fit the lane line using the extracted discrete data. In the first step, the raw
physical information such as echo width and reflection intensity will be summarized into
histograms, and data clustering algorithms such as DBSCAN will be applied to minimize
the cluster variance and accordingly calculate the segmentation threshold of pavement and
lane lines. Such approaches normally are very fast, but they are not robust due to lots of
interference values (abnormal points) produced in the process [18]. One way to reduce the
effects of abnormal points is to use GPS positioning, but this may require additional systems
and a certain delay can be caused because of the network bandwidth [21]. The data fusion
framework can be also adopted. For example, Zheng et al. [4] uses a deep learning model to
find the mapping relationship between the LiDAR point cloud and camera RGB data, and
make their semantics complementary. Although it can offer a higher clustering accuracy,
the expensive computational cost makes it almost impossible to be deployed in practice. In
the second step, a traditional approach focuses on polynomial fitting [9,10,21,22]. These
methods assume lanes are straight lines or curves and use different function prototypes for
the fitting such as polynomial or Bezier curves of various orders [7,12]. Algorithms such as
RANSAC, DBSCAN, and their variants [13,23–29] are usually used to reduce effects from
noises captured from the data. Tabelini et al. [22] and Li et al. [9] attempt to use polynomial
line fit with neural networks trying to balance good fitting performance and computational
demand. In this work, we mainly focus on the second step of LiDAR-based lane detection
and propose a modified Hough method to transfer data points from the image space to
parameter space for better lane detection accounting for noisy data.

3. The Proposed ScatterHough

Hough Transformation initially used the two-dimensional slope-intercept plane as
the parameter space to detect lines [14]. Lines were detected by voting in the quanti-
fied parameter space, but the chosen plane was unbounded, which made it hard to be
used in practice. Duda et al. [15] replaced the original slope–intercept plane with the ρ-θ
plane with a bounded θ range, and further simplified the computation. This modifica-
tion is now considered as the classic implementation of HT, which is still being widely
adopted in practice. In this classic HT, lines are specified by the polar(norm) representation

Sensors 2022, 22, 5424 4 of 18

ρ = xi cosθ + yi sinθ, where ρ is the distance from the origin to the closest point on the
straight line, and θ is the angle between the x-axis and the line connecting the origin with
that closest point. For any point (xi, yi) on the line, ρ and θ remain constant, and each
point in the xy-plane should give a sinusoid in the polar Hough parameter ρθ-space. Each
curve in the Hough space represents the family of lines that pass through a particular point
(xi, yi) in the xy-plane.

Hough transform is performed by quantizing the Hough space into finite intervals,
known as accumulator cells. As it runs, each (xi, yi) is transformed into a discretized (ρ, θ)
curve, and the accumulator cells which lie along this curve are incremented. By looking for
local maxima in the accumulator space, the most likely lines can be extracted.

In real world scenarios, data points are often accompanied by noise and are distributed
in the form of scattered points in space. The Hough transform makes the points on the
same line/curve vote, and the points in the neighborhood do not participate in the voting,
which is not suitable for the situation where the data are presented as scattered points.
To resolve this issue, we propose two additional steps, ρ neighbor voting and ρ neighbor
vote-reduction, in order to reduce the effect of the scatter-distributed noises.

3.1. ρ Neighbor Voting

After simple accumulation in the classic HT, a cluster operation is performed on each
non-empty ρ-θ cell Aρθ in the accumulator array A to add up all its neighbors’ votes in the
neighbor offset range [−d, d]. The number of clustered votes will then be recorded. This
operation is described in Equation (1), as shown in Figure 1c. The implementation details
can be found in Algorithm 1:

A′ρθ =
ρ+d

∑
ρi=ρ−d

Aρiθ (1)

As illustrated in Figure 2, the neighbors are the points (xi, yi) with distances to the
line (ρ, θ) less than a given distance d in Cartesian coordinates. In the Hough space, these
neighbors are equivalent to the curves that follow:

| xi sin θ + yi cos θ − ρ | < d (2)

(a) (b) (c)

Figure 1. ρ Neighbor Voting. For (b,c), the x-axis is θ and the y-axis is ρ, and the colors with the deeper
depth represent the bigger numbers of votes. (a) original data; (b) classic HT voting in Hough space;
(c) ScatterHough voting in Hough space.

Sensors 2022, 22, 5424 5 of 18

(a) (b)

Figure 2. ρ Neighborhood. (a) neighborhood under Cartesian coordinates, each dot (in different
colors) is a candidate Cartesian point and two candidate Cartesian points determine a fitted line;
(b) neighborhood under Hough space, each dot corresponds to one fitted line (in same color) in
Cartesian space and each curve represents all the possible lines that passing through one candidate
Cartesian point (in same color).

Algorithm 1: ρ Neighbor Voting.

Input: A: A HT voting accumulator matrix with ρ ∈ [ρmin, ρmax] and
θ ∈ [θmin, θmax]
d: The neighbor offset

Output: A HT voting accumulator matrix after ρ neighbor voting

1 A′ ⇐ A zero-filled accumulator matrix in the shape of A
2 foreach (ρ, θ) ∈ {(ρ, θ) | Aρθ > 0} do
3 sum⇐ 0
4 foreach n ∈ [−d, d] do
5 ρ′ ⇐ ρ + n
6 if ρ′ ∈ [ρmin, ρmax] then
7 sum⇐ sum + Aρ′θ

8 end
9 end

10 A′ρθ ⇐ sum
11 end
12 return A′

3.2. ρ Neighbor Vote-Reduction

In the clustered Hough space, only the ρ-θ pair with the highest vote number will
be picked. All of its neighbors that contribute to this vote will then be dropped from the
search space. The contributions to other votes by these dropped neighbors will also be
removed. Such an operation ensures that each point belongs to one straight line only. The
implementation details can be found in Algorithm 2.

Figure 3 shows the iterative process of the straight line fitting by using ρ neighbor
voting and ρ neighbor vote-reduction.

Sensors 2022, 22, 5424 6 of 18

Since the highest vote is used for each step to find the fitted lines instead of simply
using a fixed threshold, such an operation can be adapted to fit curve scatters as well.

Algorithm 2: ρ Neighbor Vote-reduction.
Input: A: A HT voting accumulator matrix after ρ neighbor voting with

ρ ∈ [ρmin, ρmax] and θ ∈ [θmin, θmax]
d: The neighbor offset
threshold: minimum vote to get a line

Output: A set of detected lines in the form of (ρ, θ)
1 lines⇐ ∅
2 while (ρ, θ) = argmax(A), where Aρθ > threshold do
3 lines⇐ lines ∪ {(ρ, θ)}
4 Pneighbor ⇐ {(x, y) | |x cos θ + y sin θ − ρ| < d}
5 foreach (x, y) ∈ Pneighbor do
6 foreach θ′ ∈ [θmin, θmax] do
7 ρ′ ⇐ x cos θ′ + y sin θ′

8 foreach ρ′′ ∈ [ρ′ − d, ρ′ + d] do
9 Aρ′′θ ⇐ Aρ′′θ − 1

10 end
11 end
12 end
13 end
14 return lines

(a) (b) (c) (d)

Figure 3. ρ Neighbor Vote-reduction. The top line, from left to right: original data, first line fit, second
line fit, and third line fit. The bottom line, from left to right, first iteration of the proposed method
in Hough space, second iteration of the proposed method in Hough space, third iteration of the
proposed method in Hough space, fourth iteration of the proposed method in Hough space, the
x-axis is θ and the y-axis is ρ, and the colors with the deeper depth represent the bigger numbers of
votes. (a) 1st iteration; (b) 2nd iteration; (c) 3rd iteration; (d) 4th iteration.

Sensors 2022, 22, 5424 7 of 18

4. Evaluation
4.1. Dataset

The dataset we used is PandaSet maintained by Scale AI (https://scale.com/resources/
download/pandaset, accessed on 24 March 2022.). It contains a variety of scene data,
including various types of streets, intersections, circular islands, and viaducts with high-
quality supporting annotations.

4.2. Experimental Results

We compared the proposed ScatterHough with RANSAC [13], DSAC [30], multi-
RANSAC [25], and polynomial curve fitting(Poly). Different types of scenes are selected
in the experiments, including straight dual-lane, crossroad, fork road, slope road, double
dashed line, and curve line. We use 3D point clouds to visualize the fitting results, in which
the outputs of different algorithms are denoted by colored lines. An RGB image shows a
view of the corresponding scene. Computational results are shown in Figures 4–7.

In order to make a numerical comparison, we calculated the number of fitting points
and the mean square error for each scenes. The results are reported in Tables 1 and 2. Here,
inline indicates the number of the points with the distance to the straight line is less than a
pre-set value (0.25 m in this work), total is the number of total points, and it should be the
same for the specific scene. accuracy is calculated as inline divided by total.

It can be seen that our proposed method can provide a better fit for the lane line in
a real-world scenario and obtain the highest inline and accuracy compared with the other
four algorithms. The straight lines in our outputs are parallel to each other, and they do
not cross each other, while the outputs of multiRANSAC have obvious differences from the
real world lane line in the sense that they occasionally cross over each other. Furthermore,
our method shows the strong anti-interference capability, especially when the lane line is
partially blocked and the LiDAR point cloud is not comprehensive.

For two lane lines with a significant distance between them, our algorithm can correctly
separate them into two independent lines. Our method also takes both the distribution
and the density of points into considerations since the unbalanced nature of a LiDAR point
cloud can be potentially misleading.

https://scale.com/resources/download/pandaset
https://scale.com/resources/download/pandaset

Sensors 2022, 22, 5424 8 of 18

Figure 4. Visualization results for all scenes, from left to right: multiRansac, Ours, RGB.

Sensors 2022, 22, 5424 9 of 18

Figure 5. Visualization results for all scenes, from left to right: RANSAC, Ours, RGB.

Sensors 2022, 22, 5424 10 of 18

Figure 6. Visualization results for all scenes, from left to right: DSAC, Ours, RGB.

Sensors 2022, 22, 5424 11 of 18

Figure 7. Visualization results for all scenes, from left to right: Poly, Ours, RGB.

Sensors 2022, 22, 5424 12 of 18

Table 1. Comparison results for all scenes. The best results are indicated in bold.

Scene Method Metric Result

Straight dual-lane line

ScatterHough (Ours)
inline 665
total 821

accuracy 0.8090

Ransac
inline 533
total 821

accuracy 0.6492

Dsac
inline 280
total 821

accuracy 0.3410

multiRansac
inline 614
total 821

accuracy 0.7479

Poly
inline 216
total 821

accuracy 0.2631

3-lane crossroad

ScatterHough (Ours)
inline 335
total 479

accuracy 0.6994

Ransac
inline 179
total 479

accuracy 0.3737

Dsac
inline 12
total 479

accuracy 0.0251

multiRansac
inline 31
total 479

accuracy 0.0647

Poly
inline 5
total 479

accuracy 0.0104

fork road

ScatterHough (Ours)
inline 90
total 178

accuracy 0.5056

Ransac
inline 50
total 178

accuracy 0.2809

Dsac
inline 3
total 178

accuracy 0.0169

multiRansac
inline 41
total 178

accuracy 0.2303

Poly
inline 0
total 178

accuracy 0

slope road

ScatterHough (Ours)
inline 594
total 734

accuracy 0.8093

Ransac
inline 55
total 734

accuracy 0.0749

Dsac
inline 125
total 734

accuracy 0.1703

multiRansac
inline 162
total 734

accuracy 0.2207

Poly
inline 52
total 734

accuracy 0.0708

Sensors 2022, 22, 5424 13 of 18

Table 2. Comparison results for all scenes. The best results are indicated in bold.

Scene Method Metric Result

double dashed line

ScatterHough (Ours)
inline 393
total 429

accuracy 0.9161

Ransac
inline 106
total 429

accuracy 0.2471

Dsac
inline 13
total 429

accuracy 0.0303

multiRansac
inline 305
total 429

accuracy 0.7110

Poly
inline 0
total 429

accuracy 0

curve line

ScatterHough (Ours)
inline 794
total 1335

accuracy 0.5947

Ransac
inline 688
total 1335

accuracy 0.5154

Dsac
inline 44
total 1335

accuracy 0.0330

multiRansac
inline 425
total 1335

accuracy 0.3184

Poly
inline 23
total 1335

accuracy 0.0172

Overall

ScatterHough (Ours)
inline 3926
total 5702

accuracy 0.6885

Ransac
inline 1983
total 5702

accuracy 0.3477

Dsac
inline 854
total 5702

accuracy 0.1497

multiRansac
inline 2124
total 5702

accuracy 0.3725

Poly
inline 356
total 5702

accuracy 0.0624

4.3. Computational Efficiency

We compared the proposed ScatterHough with the same four algorithms for efficiency.
The algorithms were coded in Python, and all the tests were run on the same Intel i9 8950hk
2.6 GHz CPU with 32 GB RAM PC and the Windows 10 operating system. We use frame
rate to measure the number of consecutive frames that can be processed for each algorithm.
The results are reported in Table 3.

Table 3. Efficiency comparison results for different algorithms.

Method ScatterHough (Ours) Ransac Dsac multiRansac Poly

frames per second (FPS) 12 8 2 5 313

It can be found that a polynomial curve fitting method can achieve the highest FPS
because of its nature. However, since it puts a strong constraint on the function prototype,
its fitting effect is very poor in complex practical scenarios (see Tables 1 and 2). Our

Sensors 2022, 22, 5424 14 of 18

method achieves the FPS of 12, which outperforms Ransac, Dsac, and multiRansac. In
practice, the effective detection range of most LiDARs is within 220 m [21], and since the
maximum driving speed of vehicles cannot exceed 250 km/h (approximately 70 m/s) in
most countries, such frame rate can fully satisfy the real-time processing need for ADAS.

4.4. Hyper-Parameters Setting

There are three main hyper-parameters in the proposed method: the lane width d,
the threshold number of the points for fitting a straight line, and the MaxGap between
two sections. Different values of each hyper-parameter are analyzed and the visualization
results are shown in Figures 8–10.

Table 4 shows the comparison results for different values of d. We can see that, when
d = 0.1 or d = 0.25, the model can have the better fits for the lane line with higher accuracies.
However, when the value of d increases, the fitting line obviously deviates from the reality.
In most countries, the lane width is within 0.25 m, and we choose d = 0.25 as the default
value in this work. Table 5 shows the comparison results for different values of threshold.
We can see that, when threshold is too small, it can cause the over-fitting problem. For
example, in Figure 9a, there is a vertical straight line on the far left, which is obviously not
a lane line. Because of the small threshold, a new lane line is mistakenly fitted. In contrast,
when threshold is too big, it can cause incomplete results. As shown in Figure 9c,d, the
dashed line area is lost. In this work, we use threshold = 30 as the default value. The
comparison results for different values of MaxGap are reported in Table 6. As we can see,
when MaxGap is too small, some certain lane lines cannot be separated (e.g., Figure 10a).
When the value of MaxGap increases, longer lines will be fitted. However, when MaxGap
is too big, the two sides of the lane line will be connected (e.g., Figure 10c,d). In this work,
we set MaxGap = 10 as our default value.

(a) (b)

(c) (d)

Figure 8. Visualization results for different values of d. (a) d = 0.1; (b) d = 0.25; (c) d = 1; (d) d = 2.

Table 4. Comparison results for different values of d. The best results are indicated in bold.

d = 0.1 d = 0.25 d = 1 d = 2

inline 769 802 129 32
total 821 821 821 821

accuracy 0.9367 0.9769 0.1571 0.0390

Sensors 2022, 22, 5424 15 of 18

(a) (b)

(c) (d)

Figure 9. Visualization results for different values of threshold. (a) threshold = 10; (b) threshold = 30;
(c) threshold = 60; (d) threshold = 120.

Table 5. Comparison results for different values of threshold. The best results are indicated in bold.

Threshold = 10 Threshold = 30 Threshold = 60 Threshold = 120

inline 403 409 73 12
total 429 429 429 429

accuracy 0.9394 0.9534 0.1702 0.0280

(a) (b)

(c) (d)

Figure 10. Visualization results for different values of MaxGap. (a) MaxGap = 5; (b) MaxGap = 10;
(c) MaxGap = 15; (d) MaxGap = 25.

Sensors 2022, 22, 5424 16 of 18

Table 6. Comparison results for different values of MaxGap. The best results are indicated in bold.

MaxGap = 5 MaxGap = 10 MaxGap = 15 MaxGap = 25

inline 344 409 412 412
total 429 429 429 429

accuracy 0.8019 0.9534 0.9604 0.9604

4.5. Discussion

Our method uses Hough as the prototype. As a result, when fitting multiple line seg-
ments at the same time, the lines will not cross. It has the advantages over the randomness
algorithms such as RANSAC since the lines may cross if the randomly sampled points
come from different lines in the iterative process. In real-world situations, the lane lines can
be influenced by vehicles, road works and whether conditions result in partial occlusion.
Our proposed method is robust to the incomplete lane line and environmental noises.
In addition, our method takes both the number of points and the distribution of points
into consideration in order to avoid the misleading problem caused by a high density of
points for the same targets. Furthermore, our proposed method is computationally efficient
and only requires the small storage space, which is attractive in real automatic driving
applications compared to the neural network based models.

5. Conclusions

We have proposed an algorithm based on Hough transform to overcome the diffi-
culties in current automatic driving, such as insufficient computing resources and high
environmental noise, and have tested the algorithm on the PandaSet benchmark. Com-
pared with previous mainstream algorithms, our algorithm has the advantages of low
computational complexity and robustness to environmental noise. The proposed method
has the potential to outperform the mainstream neural network methods given that the
sensor technology continues to improve in the future.

Author Contributions: Conceptualization, S.J. and T.C.; methodology, H.Z. and S.J.; validation, H.Z.,
J.Z. and X.Y.; formal analysis, H.Z.; investigation, H.Z., T.C. and Z.L.; resources, Z.L., B.-G.L. and J.L.;
data curation, H.Z.; writing—original draft preparation, H.Z., J.Z. and X.Y.; writing—review and
editing, T.C., Z.L. and J.L.; visualization, H.Z. and B.-G.L.; supervision, T.C.; project administration,
T.C.; funding acquisition, B.-G.L. and Z.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the Ningbo Science and Technology Bureau under Service
Industry S&T Programme with project code 2019F1028 and Major Projects Fund with project code
2021Z089. This work is also supported by Ningbo 2025 key technology projects (code E01220200006)
and Ningbo Science and Technology Bureau under Major ST Programme with project code 2021Z037.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The PandaSet dataset is publicly available from https://scale.com/
resources/download/pandaset accessed on 24 March 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kluge, K.; Lakshmanan, S. A deformable-template approach to lane detection. In Proceedings of the Intelligent Vehicles’95.

Symposium, Detroit, MI, USA, 25–26 September 1995; pp. 54–59. [CrossRef]
2. Liu, R.; Yuan, Z.; Liu, T.; Xiong, Z. End-to-end lane shape prediction with transformers. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–9 January 2021; pp. 3694–3702.
3. Tabelini, L.; Berriel, R.; Paixao, T.M.; Badue, C.; De Souza, A.F.; Oliveira-Santos, T. Keep your eyes on the lane: Real-time

attention-guided lane detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021; pp. 294–302.

4. Zheng, T.; Fang, H.; Zhang, Y.; Tang, W.; Yang, Z.; Liu, H.; Cai, D. Resa: Recurrent feature-shift aggregator for lane detection.
arXiv 2020, arXiv:2008.13719.

https://scale.com/resources/download/pandaset
https://scale.com/resources/download/pandaset
http://doi.org/10.1109/IVS.1995.528257

Sensors 2022, 22, 5424 17 of 18

5. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixao, T.M.; Mutz, F.; et al.
Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [CrossRef]

6. Hur, J.; Kang, S.N.; Seo, S.W. Multi-lane detection in urban driving environments using conditional random fields. In Proceedings
of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast City, Australia, 23–26 June 2013; IEEE: Piscataway, NJ, USA,
2013; pp. 1297–1302.

7. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.; Migimatsu, T.; Cheng-Yue, R.;
others. An empirical evaluation of deep learning on highway driving. arXiv 2015, arXiv:1504.01716.

8. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as deep: Spatial cnn for traffic scene understanding. In Proceedings of the
AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

9. Li, X.; Li, J.; Hu, X.; Yang, J. Line-CNN: End-to-End Traffic Line Detection With Line Proposal Unit. IEEE Trans. Intell. Transp.
Syst. 2020, 21, 248–258. [CrossRef]

10. Xu, H.; Wang, S.; Cai, X.; Zhang, W.; Liang, X.; Li, Z. Curvelane-nas: Unifying lane-sensitive architecture search and adaptive
point blending. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 689–704.

11. Neven, D.; De Brabandere, B.; Georgoulis, S.; Proesmans, M.; Van Gool, L. Towards end-to-end lane detection: an instance
segmentation approach. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 286–291.

12. Feng, Z.; Guo, S.; Tan, X.; Xu, K.; Wang, M.; Ma, L. Rethinking efficient lane detection via curve modeling. In Proceedings of the
Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022.

13. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

14. Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent US3069654A, 18 December 1962.
15. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.

[CrossRef]
16. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

18. Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial
Intelligence of Things. IEEE Internet Things J. 2021, 8, 7789–7817. [CrossRef]

19. Li, K.; Shao, J.; Guo, D. A Multi-Feature Search Window Method for Road Boundary Detection Based on LIDAR Data. Sensors
2019, 19, 1551. [CrossRef] [PubMed]

20. Lindner, P.; Richter, E.; Wanielik, G.; Takagi, K.; Isogai, A. Multi-channel lidar processing for lane detection and estimation. In
Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7
October 2009; pp. 1–6. [CrossRef]

21. Ghallabi, F.; El-Haj-Shhade, G.; Mittet, M.A.; Nashashibi, F. LIDAR-Based road signs detection For Vehicle Localization in an HD
Map. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 1484–1490.

22. Tabelini, L.; Berriel, R.; Paixo, T.M.; Badue, C.; Oliveira-Santos, T. PolyLaneNet: Lane Estimation via Deep Polynomial Regression.
arXiv 2020, arXiv:2004.10924.

23. Lasenby, J.; Zisserman, A.; Cipolla, R.; Longuet Higgins, H.C.; Torr, P.H.S. Geometric motion segmentation and model selection.
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci 1998, 356, 1321–1340. [CrossRef]

24. Vincent, E.; Laganiere, R. Detecting planar homographies in an image pair. In Proceedings of the ISPA 2001. 2nd International
Symposium on Image and Signal Processing and Analysis. In Conjunction with 23rd International Conference on Information
Technology Interfaces (IEEE Cat.), Pula, Croatia, 19–21 June 2001; pp. 182–187. [CrossRef]

25. Zuliani, M.; Kenney, C.S.; Manjunath, B.S. The multiRANSAC algorithm and its application to detect planar homographies. In
Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, 14 September 2005; Volume 3, pp. 3–153.
ISSN: 2381-8549, [CrossRef]

26. Kim, J.; Lee, M. Robust lane detection based on convolutional neural network and random sample consensus. In Proceedings
of the International Conference on Neural Information Processing, Montreal, QC, Canada, 8–11 December 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 454–461.

27. Gao, Y.L.; Luo, S.Z.; Wang, Z.H.; Chen, C.C.; Pan, J.Y. Locality Sensitive Discriminative Unsupervised Dimensionality Reduction.
Symmetry 2019, 11, 1036. [CrossRef]

28. Ge, H.; Zhu, Z.; Lou, K.; Wei, W.; Liu, R.; Damasevicius, R.; Wozniak, M. Classification of Infrared Objects in Manifold Space
Using Kullback–Leibler Divergence of Gaussian Distributions of Image Points. Symmetry 2020, 12, 434. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2020.113816
http://dx.doi.org/10.1109/TITS.2019.2890870
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/JIOT.2020.3039359
http://dx.doi.org/10.3390/s19071551
http://www.ncbi.nlm.nih.gov/pubmed/30935070
http://dx.doi.org/10.1109/ITSC.2009.5309704
http://dx.doi.org/10.1098/rsta.1998.0224
http://dx.doi.org/10.1109/ISPA.2001.938625
http://dx.doi.org/10.1109/ICIP.2005.1530351
http://dx.doi.org/10.3390/sym11081036
http://dx.doi.org/10.3390/sym12030434

Sensors 2022, 22, 5424 18 of 18

29. Jaw, E.; Wang, X. Feature Selection and Ensemble-Based Intrusion Detection System: An Efficient and Comprehensive Approach.
Symmetry 2021, 13, 1764. [CrossRef]

30. Brachmann, E.; Krull, A.; Nowozin, S.; Shotton, J.; Michel, F.; Gumhold, S.; Rother, C. DSAC-Differentiable RANSAC for Camera
Localization. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

http://dx.doi.org/10.3390/sym13101764

	Introduction
	Related Work
	The Proposed ScatterHough
	rho Neighbor Voting
	rho Neighbor vote-reduction

	Evaluation
	Dataset
	Experimental Results
	Computational Efficiency
	Hyper-Parameters Setting
	Discussion

	Conclusions
	References

