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Abstract: Due to a ship’s extreme motion, there is a risk of injuries and accidents as people may
become unbalanced and be injured or fall from the ship. Thus, individuals must adjust their move-
ments when walking in an unstable environment to avoid falling or losing balance. A person’s
ability to control their center of mass (COM) during lateral motion is critical to maintaining balance
when walking. Dynamic balancing is also crucial to maintain stability while walking. The margin
of stability (MOS) is used to define this dynamic balancing. This study aimed to develop a model
for predicting balance control and stability in walking on ships by estimating the peak COM excur-
sion and MOS variability using accelerometers. We recruited 30 healthy individuals for this study.
During the experiment, participants walked for two minutes at self-selected speeds, and we used
a computer-assisted rehabilitation environment (CAREN) system to simulate the roll motion. The
proposed prediction models in this study successfully predicted the peak COM excursion and MOS
variability. This study may be used to protect and save seafarers or passengers by assessing the risk
of balance loss.

Keywords: gait stability; ship rolling; center of mass; margin of stability; accelerometer; CAREN

1. Introduction

Recent advances in wearable sensors have enabled gait analysis outside the laboratory.
Continuous gait monitoring during free-living activities presents a promising approach to
the gait study, investigating the risk of falling in real-world settings. Individual walking
characteristics differ from one individual to another, and walking strategies can change
depending on the walking environment [1]. Walking on a moving ship is very different
from walking on land. A ship’s movement directly affects a person’s ability to walk [1,2].
The extreme motion of the ship may result in accidents, such as being injured or falling
overboard, through the ship causing people to become unbalanced. Such ship’s motion
may compromise the safety of sailors and passengers. It was found that 22 people fall off
cruise ships each year and only about 20% of them survive [3]. Moreover, according to
the National Institute for Occupational Safety and Health (NIOSH), almost one-quarter of
all Alaskan fisher deaths between 1990 and 1999 resulted from man overboard (MOB) [4].
Particularly, MOB accidents on a small fishing boat with a few crew members on board are
riskier since there is no proper method to alert the MOB condition [5]. Thus, to reduce the
likelihood of falling off-board accidents, it is of the utmost importance to predict the risk of
falls in the moving environment of a ship.

The human body is less lateral stable when walking [6–10]. The lateral motion control
of the center of mass (COM) is essential for maintaining balance during walking [11]. In
this regard, the deviation of the gait pattern in the lateral direction has been proposed as
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a reasonable predictor of falls [11]. The COM excursion was used to assess the control of
balance in different ways. Ogaya et al. [12] investigated muscle contributions to the COM
excursion during forward body-tilting. Jansen et al. [11] examined how muscle action
controls stabilizing mediolateral COM excursion at different walking speeds. Walking in an
unstable environment requires individuals to alter their movements to avoid losing balance
or falling. Hof and colleagues utilized the velocity of the COM to extrapolate the velocity-
controlled position of the COM (XCOM) to demonstrate the mechanical stability of gait [13].
The relationship between the XCOM and the base of support (BOS) indicates the mechanical
stability of the system. Dynamic balancing in human walking is essential to maintain
stability and can be parameterized by the margin of stability (MOS). Noamani et al. [14]
estimated MOS for sitting balance by determining the limit of dynamic stability using
wearable device. Based on the Gill et al. study [15], the mediolateral MOS and COM were
found to be valid indicators of mediolateral mechanical stability during beam walking.
Young and Dingwell [16] found that the MOS variability was affected by wider or longer
steps while walking.

Due to ship motion, individuals are subjected to constant perturbations while walking
on ships. Since the ship’s length is generally longer than its width, the ship’s movement
is usually greater in the roll than in the pitch [17]. For this study, we focused on the roll
motion of the ship, which is the primary movement of the ship. In recent studies, persistent
perturbations have been used to investigate how non-disabled individuals respond to
unstable environments [10,18–22]. The mean and variability of MOS were both increased
by continuous lateral perturbations [20]. Accordingly, in a constant perturbation protocol,
MOS values can indicate the changes expected to maintain stability under instability
conditions [21,22]. These results show that the lateral MOS can be quantified to determine
the fall risk. Therefore, if the COM excursion or MOS variability can be predicted using
wearable sensors, the risk of falling will be able to be detected during walking during the
ship’s rolling motion.

The purpose of this study was to construct a model for predicting balance control and
stability in walking on ships by estimating the peak COM excursion and MOS variability.
We used the CAREN system during experiments to simulate the roll motion and quantified
the peak COM excursion and MOS variability. This study can be used to protect and save
seafarers or passengers by determining the risk of falling overboard.

2. Materials and Methods
2.1. Participants

A total of 30 healthy individuals were recruited for this study. The demographics of
the participants are shown in Table 1. All subjects read and signed an informed consent
form approved by the University of Nebraska Medical Center Institutional Review Board
(IRB 141-21-EP). The general inclusion criterion was being between the ages of 19 and
55 years. Participants were excluded if they had (1) previously had major lower extremity
injury or surgery; (2) known cardiovascular conditions that made it unsafe for them to
exercise; (3) a history of dizziness due to vestibular disorders, such as Meniere’s disease
and vertigo; and (4) any difficulty in walking in unstable moving environments.

Table 1. Participants’ demographics.

Characteristics Mean ± Standard Deviation

Gender (male/female) 20/10
Age (years) 30.3 ± 6.1
Height (cm) 173.0 ± 9.4
Weight (kg) 71.9 ± 14.5

Body Mass Index (BMI) (kg/m2) 23.8 ± 3.4
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2.2. Data Collection

We used a 3D motion capture system (Vicon Motion System Ltd., Oxford, UK) with
10 cameras to record the subjects’ movement at 100 Hz for gold standard data. Thirty-seven
reflective markers were attached to anatomical landmarks based on the Plug-in Gait full-
body model [23]: four markers on the head, five on the torso, twelve on the upper limb,
four on the pelvis, and twelve on the lower limb. We also placed seven accelerometers
(Xsens, Enschede, The Netherlands) to obtain three-dimensional accelerations from the
pelvis and each foot, shank, and thigh. Since upper body motion is more appropriate to
measure balance, the acceleration data from the pelvis were used for data analysis in this
study. The placement of reflective makers and accelerometers is shown in Figure 1a. Peak
COM excursion was calculated by obtaining the position of COM from the motion captures.
MOS variability was calculated by using MOS values from a right limb since there was
no significant difference in balance when comparing both sides within participants. To
simulate the ship’s roll motion, we used a computer-assisted rehabilitation environment
(CAREN) system (Motek, Amsterdam, The Netherlands), simulating up to 20 degrees
of rolling.
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Figure 1. Experimental settings: (a) placement of reflective markers and IMU sensors; (b) example of
simulated roll.

Participants were asked to walk for two minutes at a self-selected walking speed using
the CAREN system with a split-belt treadmill. The simulated roll was tested bilaterally
while participants were walking on the CAREN. There were five different conditions:
no rolling (NR), 5-, 10-, 15-, and 20-degrees of rolling (i.e., each rolling condition was



Sensors 2022, 22, 5416 4 of 13

abbreviated as R5, R10, R15, and R20). Participants performed once for each condition.
A safety harness was worn by all participants to avoid accidental falls on the moving
platform. Figure 1b illustrates the roll condition while walking on the split-belt treadmill
using the CAREN. To prevent learning effects, five different walking trials were conducted
in random order.

2.3. Step Detection and Feature Extraction

For the step event detection and feature extraction methods, the same methods as
in our previous works were used [24,25]. We used a peak detection method for the step
detection by recognizing the highest peak of vertical acceleration. Twenty gait features
listed in Table 2 were extracted from the pelvis. In addition, the average (denoted by a
lowercase “a”), symmetry (denoted by a lowercase “s”), and variability (denoted by a
lowercase “v”) of each feature were calculated. A total 60 features were normalized by
centering data and then used for this study. Detailed methods for the step detection and
feature extraction are well described in [24,25], respectively.

Table 2. Description of extracted features.

Feature Description

M Whole step vector magnitude
M10 Initial 10% step vector magnitude
LM Lateral vector magnitude during a whole step
VM Vertical vector magnitude during a whole step
AM Anterior–posterior vector magnitude during a whole step
MD Vector magnitude during double stance

LMD Lateral vector magnitude during double stance
VMD Vertical vector magnitude during double stance
AMD Anterior-posterior vector magnitude during double stance
M30 Vector magnitude during mid-stance

LM30 Lateral vector magnitude during mid-stance
VM30 Vertical vector magnitude during mid-stance
AM30 Anterior–posterior vector magnitude during mid-stance
LHM Lateral heel-strike magnitude
LHS Standard deviation of lateral acceleration during initial 10% step

VHM Vertical heel-strike magnitude
VHS Standard deviation of vertical acceleration during initial 10% step
AHM Anterior–posterior heel-strike magnitude
AHS Standard deviation of anterior-posterior acceleration during initial 10% step
ST Step Time

2.4. Feature Selection and Modeling

Feature selection is a key part of developing predictive models [26]. The feature selec-
tion process involves selecting relevant features and eliminating irrelevant and redundant
ones to simplify the model and prevent overfitting. If all possible features are included
in a model, overfitting will decrease the model’s performance. It is important to exclude
features that are insensitive to sources of variation to avoid overfitting. We examined
several feature selection techniques to find the best feature selection method in this study.

2.4.1. LASSO and Elastic Net

The least absolute shrinkage and selection operator (LASSO) minimizes the residual
sum of squares of a vector of regression coefficients subject to a constraint on the L1-norm
of the vector [27]. This technique is used to estimate and select variables simultaneously,
and this method shrinks the coefficients of less important variables to zero, resulting in a
sparser model. The LASSO equation is defined as:

n

∑
i=1

(yi −∑
j

xijβ j)
2
+ λ

p

∑
j=1

∣∣β j
∣∣ (1)
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where yi and xij are the respective outcome and predictors of the ith subject; λ is a non-negative
tuning parameter; and β is a vector of regression coefficients that needs to be estimated.

Elastic Net, a combination of ridge regression and LASSO, was proposed in 2005 [28].
When many variables are present and compared to observations, a variable selection
based on an elastic net can yield superior results when there is multi-collinearity between
predictors [28]. The equation of the elastic net is defined as:

minβ

[
1
n

n

∑
i=1

(yi − xT
l β)

2
+ λ

(
(1− α)

‖β‖2
2

2
+ α‖β‖1

)]
(2)

where yi and xT
i =

(
xi1, · · · , xip

)
are the respective outcome and predictors of the ith

subject; λ is a non-negative tuning parameter; β =
(

β1, · · · , βp
)T is a vector of regression

coefficients that needs to be estimated; and ‖β‖1 and ‖β‖2 are the regularization terms
called L1-norm and L2-norm, respectively:

‖β‖1 =
p

∑
j=1

∣∣β j
∣∣ (3)

‖β‖2 =

√√√√ p

∑
j=1

β2
j (4)

2.4.2. F-Test Feature Selection

F-tests are used in the feature selection method to test each predictor’s p-value indi-
vidually and rank the features using the p-values from the F-tests. The F-test is a statistical
procedure used when testing the hypothesis that responses were drawn from populations
that have the same mean when comparing it with the alternative hypothesis that the means
may not be the same in all populations [29,30]. If the p-value of the test statistic is small,
the corresponding predictor is significant.

2.4.3. Neighborhood Component Analysis

The neighborhood component analysis (NCA) proposed by Yang et al. [31] is a non-
parametric method used to select features for both regression and classification algorithms
in order to increase the accuracy of the predictions. This method is ideally suited for
the estimation of feature importance for supervised models that are based on pairwise
distances between observations to predict responses [31]. Moreover, dimensional reduction
using the NCA does not lead to a loss of information [32].

2.4.4. ReliefF Feature Selection

The original ReliefF algorithm [33] estimates the quality of attributes by looking at
how well their values distinguish between instances that are close to one another. ReliefF
works with a continuous response variable. In this algorithm, predictors that are penalized
for assigning different values to neighbors with the same response values are rewarded for
assigning different values to neighbors with different response values [34,35]. However,
ReliefF computes the final predictor weights based on intermediate weights. ReliefF has
the unique ability to exploit information locally while taking the context into account, yet
still provide a global perspective [34].

2.4.5. Model Fitting

For fitting the predictive model, we used a linear regression model and a ridge
regression depending on the presence of multicollinearity. If there was multicollinearity
among the features selected by each feature selection method, the ridge regression model
was used; otherwise, we used the linear regression model. The variance inflation factor
(VIF) was used to determine the existence of multicollinearity [36]. A linear regression
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model is commonly used to investigate the relationship between continuous outcome
(i.e., peak COM excursion or MOS variability) and independent variables (i.e., selected
features) [37]. Ridge regression minimizes the MSE of the estimates by shrinking its
coefficients toward zero [38]. This is a regularization method for analyzing all data resulting
from the multicollinearity issue [39].

2.5. Performance Criteria

To compare the predictive accuracy for our best models constructed by using the
different feature selection methods, the mean absolute error (MAE) as a performance
measure was calculated for the test data for each model:

MAE =
1
n

n

∑
i=1
|Yp(i)−Ya(i)| (5)

where Yp(i) and Ya(i) are the respective predicted and actual values of the ith subject for
each response variable.

The performance of our model was evaluated using the following criteria. First, we
split the whole dataset into a ratio of 7 to 3 for training and testing datasets, respectively.
The regression coefficients were determined by the training set. These coefficients were
then used to predict the COM excursion and MOS variability for the testing set. This
process was repeated 100 times using a random selection of training and testing datasets
for each iteration. In all comparisons, each model for the different selection methods was
executed using the same set of random selections, ensuring that the validation dataset was
the same across models.

2.6. Statistical Analysis

A paired t-test was used to determine the mean difference between the actual values
and the predicted values for peak COM excursion and MOS variability. We assumed that if
there was no significant difference between the actual and predicted values, the prediction
results were reliable. In addition to the p-value approach, we also examined meaningful
change in the peak COM excursion and MOS variability so we could compare our prediction
results to the actual values using an effect size. Effect size quantifies a difference between
two means based on distribution so that the results of different measures can be compared.
The effect size is calculated using Cohen’s d, which is defined as [40]:

d =
(µ1 − µ2)

σ1
(6)

where u1 and u2, respectively, are the means of actual values and predicted values and
σ1 is the standard deviation of actual values. For interpreting the effect size, the values
of <0.2, 0.5–0.6, and >0.8 represent small, medium, and large changes, respectively [40].
All statistical analyses were performed using MATLAB version R2020a (Mathworks Inc.,
Natick, MA, USA) and statistical significance was set at p < 0.05.

3. Results
3.1. Feature Selection and Model Fitting Results

We initially used five different feature selection algorithms. Elastic Net and NCA
methods were excluded because the selected features varied according to data of different
scales. Accordingly, we compared only the remaining three methods, LASSO, F-test, and
ReliefF, to achieve consistent results regardless of the data scale. The top 10 most selected
features with the three methods are shown in Table 3. For peak COM excursion, vAHS and
sAHS were commonly selected in three methods and similar features were selected between
LASSO and ReliefF. For MOS variability, there were no features selected commonly in the
three methods and similar features were selected between LASSO and ReliefF. We observed
more consistency in feature selection between LASSO and ReliefF than between the F-test
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and either of the other two methods. The initial 10% of step-related features (e.g., AHS, LHS,
LHM, VHS, and VHM) and double-stance-related (e.g., AMD) features were mostly selected
in three methods for both peak COM excursion and MOS variability. The variability-related
features were most selected with the F-test method for both dependent variables.

Table 3. Top 10 selected features for peak COM excursion and MOS variability using LASSO, F-test,
and ReliefF (* indicates that rank is the same each other).

Rank
Peak COM Excursion MOS Variability

LASSO F-Test ReliefF LASSO F-Test ReliefF

1 vAHS vAHS sAHS sLHS * vAHS sAHS
2 sLHS * sAHS aAHS sAHS * vLHM sAMD
3 sAHS * vAMD aAM sAMD * vLM aAMD
4 sST * vAM aAMD aLHM * vLMD sLHS
5 sAMD vLM sAM aAMD * vLHS sAM
6 aLHM sVHM sAMD sVHM * vST vLM30
7 aVHS vLHM aST vLM30 vAMD vAHS
8 aVHM vST aAM30 aVM30 sVHM aAM
9 aAMD vLM30 sLHS vAHM vVHM sMD

10 sAM sMD vAHS sMD vAM vM

To fit the predictive model, we first checked VIF values to see if there was multi-
collinearity among the top 10 features selected by three feature selection methods. If the
VIF was greater than 5, the features were highly correlated [36,41]. The VIF values between
the selected features with three different feature selection methods for both dependent
variables are represented in Table 4. Based on the results, we found that LASSO has no
multicollinearity while the F-test and ReliefF have multicollinearity problems in peak COM
excursion and MOS variability. Thus, a linear regression model was used for the LASSO
method, and a ridge regression model was used for the F-test and ReliefF methods.

Table 4. VIF values among top 10 features selected by each feature selection method for peak COM
excursion and MOS variability (* indicates if VIF > 5).

Feature
Peak COM Excursion MOS Variability

LASSO F-Test ReliefF LASSO F-Test ReliefF

1 2.24 1.34 433.55 * 1.61 4.12 7.12 *
2 1.70 2.48 93.76 * 1.53 12.88 * 8.00 *
3 2.11 1.38 164.77 * 1.52 9.03 * 3.66
4 1.94 6.71 * 3.01 1.84 14.25 * 2.88
5 3.01 9.51 * 4.61 2.34 8.04 * 2.48
6 2.33 8.57 * 3.22 1.59 12.23 * 1.48
7 1.54 1.69 2.14 2.22 14.18 * 2.52
8 2.38 5.57 * 1.50 1.63 9.11 * 2.30
9 1.50 8.79 * 2.35 1.62 8.02 * 1.31

10 2.73 1.78 1.95 1.14 1.94 1.75
The names of the features for each model are shown in Table 3.

3.2. Prediction and Validation Results

We calculated the MAE for each model summarized in Table 5 and then compared
the results to choose the best model. The best models were selected with the most petite
MAE: the top seven features with LASSO for peak COM excursion (MAE: 0.0883) and the
top ten features with the LASSO for MS variability (MAE: 0.0041).

The prediction results for the selected best models are shown in Figure 2. For compari-
son of the best models among different feature selection methods, the LASSO performed
better than others (MAEs for peak COM excursion: LASSO (0.0883 m) > F-test (0.0896 m)
> ReliefF (0.0909 m), and for MOS variability: LASSO (0.0041 m) > ReliefF (0.00466 m) >
F-test (0.0051 m)).
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Figure 2. Scatter plots for predicted results vs. actual values: (a) peak COM excursion and
(b) MOS variability.

To validate our prediction model, we performed a paired t-test between actual value
and predicted value. Comparisons between the predicted results and the actual measured
values for peak COM excursion and MOS variability by the paired t-test are shown in
Figure 3 and Table 6. There was no difference between the actual and predicted values
for the peak COM excursion (p = 0.0527) while there were significant differences between
the actual and predicted values for the MOS variability (p = 0.0318). For determining the
practical significance, we also computed the effect size using Cohen’s d. The effect sizes for
the peak COM excursion and MOS variability were 0.0053 and 0.0111, respectively.
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Table 5. Comparison of prediction error (MAE) for each feature selection method in peak COM
excursion and MOS variability.

No. of Feature
Peak COM Excursion MOS Variability

LASSO F-Test ReliefF LASSO F-Test ReliefF

1 0.0997 - - - - -
2 - 0.0935 0.1007 - 0.0056 0.0061
3 - 0.0935 0.1006 - 0.0055 0.0051
4 0.0929 0.0936 0.1010 - 0.0056 0.0048
5 0.0916 0.0941 0.1007 - 0.0055 0.0049
6 0.0921 0.0947 0.0947 0.0045 0.0054 0.00474
7 0.0883 0.0901 0.0946 0.0045 0.0054 0.00466
8 0.0885 0.0896 0.0960 0.0044 0.0052 0.00468
9 0.0885 0.0899 0.0945 0.0043 0.0052 0.00469

10 0.0890 0.0901 0.0909 0.0041 0.0051 0.00472
The names of the features for each model are shown in Table 3.

Table 6. Results of the paired t-test and effect size between the actual and predicted values for peak
COM excursion and MOS variability (* indicates p < 0.05).

Dependent Variable Group Mean Standard Deviation p-Value Effect Size (Cohen’s d)

Peak COM excursion
Actual 0.3585 0.1513

0.0527 0.0053Predicted 0.3593 0.1041
MOS

variability
Actual 0.0215 0.0090

0.0318 * 0.0111Predicted 0.0216 0.0078

4. Discussion

This study demonstrates that wearable sensors can be used to predict gait stability
on a ship in simulated sea conditions. Utilizing the best feature selection method and
linear regression models, we developed prediction models for peak COM excursion and
MOS variability. Intuitively, the prediction errors were minor, and the adjusted r-squared
values of the prediction models for the peak COM excursion and MOS variability look
reliable at 0.6789 and 0.7043, respectively (Figure 2). We employed paired t-test analysis
to evaluate the reliability of the developed models. As shown in Table 6 and Figure 3, we
found no difference in the peak COM excursion (p = 0.0527), which means our prediction
result for the peak COM excursion was reliable. On the other hand, there was a statistically
significant difference in MOS variability (p = 0.0318) at the 95% significance level, but we
can say that there was no difference at the 90% significance level. In addition, we used an
effect size to determine the practical significance of our research results. The effect size
indicates the importance of the difference between groups. Statistical significance using
the p-value can be deceptive as it is affected by the large sample size [40]. The effect sizes
between the actual values and the prediction results for the COM excursion and MOS
variability were 0.0053 and 0.0111, respectively (Table 6). The effect sizes were less than 0.2,
which means there were no practical differences in both variables. Thus, we proved that
our prediction results were reliable.

Furthermore, the study exhibited the best feature selection method for predicting the
peak COM excursion and MOS variability. The results of our research indicated that the
LASSO gave the best prediction results with the smallest MAE (Table 5). The best MAEs
with the LASSO for predicting the peak COM excursion and MOS variability were 0.0883 m
and 0.0041 m, respectively. Previous studies have quantified the lateral COM and MOS to
determine the fall risk [10,18–22]. Therefore, we can predict fall risk while walking in sea
environments by estimating these variables.

There are several limitations to this study. First, the participants are relatively young
and healthy individuals and have little experience onboard a ship. Therefore, it is unrea-
sonable to generalize our results to experienced sailors and middle-aged and older cruise
ships’ main customers. Nevertheless, our findings are sufficient to predict the walking
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stability of young and inexperienced trainees or new crew members because they are more
likely to lose balance with ship movements than experienced crew members. Second, only
the ship’s rolling motion was applied in the experiment. The actual movement of the ship
in the sea involves six degrees of freedom, including rolling, pitching, etc. In addition, the
actual ship has a rolling motion of more than 20 degrees in bad weather, but only 20 degrees
of rolling were tested in our experiment since the CAREN system only supports up to
20 degrees. However, this was the first study to predict walking stability in a sea environ-
ment to the best of our knowledge. Therefore, further research is needed for verification by
applying our method to ships in real-world sea environments. Lastly, the predictions of
COM excursion and MOS variability may be affected by individual differences, such as age,
height, weight, BMI, or their balance control ability. In the experimental design of future
studies, therefore, these human factors should be taken into account in order to examine
individuals’ differences.

5. Conclusions

This study investigated whether typical dynamic stability measures, peak COM ex-
cursion, and MOS variability could be predicted in healthy individuals walking in sea
environments using wearable sensors. The proposed prediction models in this study suc-
cessfully predicted the peak COM excursion and MOS variability. We also assessed three
feature selection methods for predicting gait stability on a ship at sea by estimating the peak
COM excursion and MOS variability. The LASSO resulted in the lowest prediction errors.
Our findings can be used to assess the risk of balance loss. Further studies should investi-
gate the validity of these findings when the methods are applied to a real sea environment
to prevent falling overboard by detecting the risk of falls.
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