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Abstract: Real-time, continuous and accurate blast furnace burden level information is of great signif-
icance for controlling the charging process, ensuring a smooth operation of a blast furnace, reducing
energy consumption and emissions and improving blast furnace output. However, the burden level
information measured by conventional mechanical stock rods and radar probes exhibit problems of
weak anti-interference ability, large fluctuations in accuracy, poor stability and discontinuity. There-
fore, a space-time fusion prediction and detection method of burden level based on a long-term focus
memory network (LFMN) and an efficient structure self-tuning RBF neural network (ESST-RBFNN) is
proposed. First, the space dimensional features are extracted by the space regression model based on
radar data. Then, the LFMN is designed to predict the burden level and extract the time dimensional
features. Finally, the ESST-RBFNN based on a proposed fast eigenvector space clustering algorithm
(ESC) is constructed to obtain reliable and continuous burden level information with high accuracy.
Both the simulation results and industrial verification indicate that the proposed method can provide
real-time and continuous burden level information in real-time, which has great practical value for
industrial production.

Keywords: blast furnace; burden level prediction and detection; mechanical stock rod; radar probe;
space-time fusion features

1. Introduction

The iron and steel industry is a major energy consumer and carbon emitter. As the most
critical equipment for iron and steel smelting, blast furnaces account for about 60%~70% of
the comprehensive energy consumption and cost of iron and steel [1], and CO2 emissions
account for more than 90% [2]. Blast furnace burden level is a key parameter of blast furnace
production [3]. Real-time and continuous blast furnace burden level with high accuracy
is of great significance for controlling the charging process, ensuring smooth operation of
blast furnace [4], reducing energy consumption and emissions and improving the blast
furnace output [5]. With the increasing requirements for refinement and intelligence of
the smelting process, real-time continuous high-precision measurement of blast furnace
burden levels is becoming increasingly important [6].

A blast furnace is an enclosed large countercurrent reactor [7], which has high tem-
peratures, high pressure and much dust, and its environment is extremely harsh [8]. At
present, the detection methods for the burden level of blast furnaces are mainly divided
into contact methods and non-contact methods [9]. The mechanical stock rod (mechanical
probe) is the main contact detection device, which is composed of a steel wire rope, a
heavy hammer, a winch motor outside the furnace, a reducer, an encoder and a master
controller for detection control [10]. This detection device has a simple structure and
reliable mechanical transmission mechanism and can adapt to the complex and harsh
environment in the blast furnace. Therefore, the burden level information obtained by
a mechanical probe has high accuracy [11]. However, it can neither achieve continuous
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measurement to ensure the continuity of burden level information nor track the change in
burden level in time when the blast furnace shows slip, inspect, or collapse conditions [12].
A radar probe is the most widely used non-contact detection device, which consists of an
antenna transmitter, a receiver, and a display screen [13]. The electromagnetic wave signal
is firstly transmitted to the burden surface, and then it is reflected by the burden surface
and received by the receiver to form a radar echo signal to measure the burden level. Its
working principle determines that the radar probe can obtain real-time and continuous
burden level information. However, due to the high-speed gas flow and high concentration
of dust in the furnace, it is easy to interfere with the echo signal of the radar probe, which
distorts the measurement data and reduces the measurement accuracy and reliability [14].
Therefore, obtaining high-precision and real-time continuous measurement data of the
burden level is challenging to solve.

Z.H. Ma et al. proposed a closed-loop speed control method, which realizes the
anti-overturning control in the variable torque control by changing the anti-overturning
torque, so as to make the mechanical probe drop at a uniform speed and ensure its stable
operation. On the basis of the mechanical probe tracking process, the descending speed of
the burden surface is used to judge whether an abnormal condition occurs [15]. Based on
the mechanical probe data, J. Hinnel and H. Saxén established the relationship between the
burden thickness and the detection data by using the neural network based on mechanical
probe data and systematically analyzed the falling rate of the furnace burden [16]. Although
this research has improved the accuracy of measuring the burden level with a mechanical
probe, it still cannot overcome the problem of discontinuity in the measuring process. For
the research of measuring burden level with a radar probe, in order to solve the problem
of low accuracy and reliability of a radar probe, S. Schuster et al. used an integrated
millimeter-wave design circuit and advanced signal processing technology to obtain the
average burden level information of a blast furnace in real-time [17]. Dominik Zankl
et al. proposed a BLASTDAR radar sensing system for real-time radar imaging of blast
furnace burden surface [18]. X.Z. Chen et al. proposed a new forward-looking staring
high-resolution imaging method for synthetic aperture radar (SAR) to further improve
the definition and resolution of radar imaging [19]. The above methods have made a
breakthrough in the real-time measurement of burden level with radar probe, especially for
the radar imaging of the whole burden level, which is of great significance to blast furnace
regulation and smelting. However, there is still a lack of efficient and feasible technical
methods to overcome the defects of low measurement accuracy and large fluctuations of
radar probes. In recent years, with the rapid development of deep learning technology, X.P.
Liu et al. proposed a new codec structure composed of a convolutional neural network
and long-term and a short-term memory network to classify distorted signals and perform
regression in a learning manner to model long-term historical measurements [5]. Compared
with the traditional manual denoising method, this method saves time and energy, but
its accuracy still requires improvements. Q.D. Shi et al. combined high-temperature
metallurgy, radar detection and image processing, and a new blast furnace surface deep
learning detection method of a blast furnace smelting state visualization system for a
burden surface based on energy weight is proposed, which realizes the visualization of
blast furnace smelting state and digitization of burden surface information [20]. H. Wang
et al. proposed a key point estimation method based on learning combined with a key
point-based connected region noise reduction algorithm (KP-CRNR) to reconstruct the
key points in the BSP image measured by the radar probe. This method improves the
measurement accuracy of the radar probe from the perspective of the working principle
of the sensor [21]. From the above research, the introduction of deep learning technology
improves the accuracy of radar probes for burden level measurement to a certain extent.
However, most of the existing studies ignore the important significance of a mechanical
probe for burden level measurement [22]. It is difficult to fundamentally solve the current
issue of low accuracy and large fluctuation of radar probe level measurement data just
from the characteristics of radar data.
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Therefore, the blast furnace smelting burden distribution mechanism is further ana-
lyzed, and it is discovered that the burden level has the features of slowly changing in the
time dimension and rapidly changing in the space dimension. That is, the burden level
fluctuates rapidly in the space dimension due to the rapid change in smelting conditions
and environment in the furnace, while its periodic features, alternating frequency and other
time dimensional features do not follow the rapid change in dimensional space features.
Based on this, a prediction and detection method of burden level is proposed based on a
long-term focus memory network and an efficient structure self-tuning RBF neural network.
Figure 1 shows the research framework. Firstly, the space feature regression model of radar
data based on mechanical probe data is established to extract the space dimensional features
of blast furnace burden level. Then, the mechanical stock rod data are set as the standard
long-term memory, and a long-term focus memory depth network structure is constructed.
Combining the historical periodic radar data and the mechanical probe data, not only the
burden level information of the next cycle is predicted with high precision but also the
time dimensional features of which are accurately extracted. Finally, based on a proposed
fast eigenvector space clustering algorithm, an efficient structure self-tuning RBF neural
network is constructed. By integrating the advantages of mechanical probe data and radar
data, the real-time continuous detection of burden level information with high precision is
realized. Simulation results and industrial data verification demonstrate that the proposed
method for blast furnace burden level prediction and continuity-accuracy detection has
good real-time performance, high precision and obvious industrial practical value.
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Figure 1. Research framework of the blast furnace burden level prediction and detection.

The remainder of the paper is organized as follows. In Section 2, the space dimensional
feature extraction based on the space feature regression model of radar data is introduced.
In Section 3, the long-term focus memory network is developed to realize the burden level
prediction and tim-dimensional feature extraction. In Section 4, the efficient structure
self-tuning RBF neural network based on a fast eigenvector space clustering algorithm
is presented to realize real-time, continuous and accurate burden level detection. The
simulation and industrial verification results are given in Section 5. Section 6 gives the
discussion and the conclusions.

2. Space Dimensional Feature Extraction
2.1. Analysis of the Mechanical Probe Data and Radar Data

The distribution mechanism of a blast furnace is batch charging, which has the nature
of periodicity. A distribution cycle of a blast furnace is 3 to 6 min. Generally, the first
1.5 min is the feeding period in a cycle, and the last 1.5 to 6 min is the idle period in a cycle.
As shown in Figure 2, the change in blast furnace burden level has the periodic subsection
nonlinear characteristic. At the same time, it can be seen that in a distribution cycle, the
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burden level decreases with the increase in burden surfaces in the feeding period and
increases with the decrease in burden surfaces in the idle period. Analyzing the mechanical
probe data and radar data indicates that the burden level data sampled by the mechanical
probe is discrete, and the mechanical probe is randomly sampled once in each distribution
cycle, while the burden level data sampled by the radar probe is continuous. The different
sampling properties of the two kinds of probe data make it difficult for the two detection
data to match accurately within an infinite time distribution, so it is difficult to integrate the
advantages of the two detection data, which makes it very challenging to obtain the blast
furnace burden level in real-time with high accuracy. In order to accurately match the data
of the two probes and build a strong correlation between the two detection data, a sliding
window with a width of N is used to construct a single mapping relationship between the
data of the radar probe and the mechanical probe, and Figure 3 shows the schematic of the
data processing process of the sliding window. In this way, the matching problem of the
two infinite dimensional detection data is transformed into a corresponding problem of
the two detection data, providing a data foundation for the subsequent algorithm in this
paper. According to the previous research, when the window size is N = 10, the accuracy
of burden level detection is the highest [22].
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2.2. Space Feature Regression Model of the Radar Data

The change in the burden level has the space features of material falling speed, accel-
eration, and jerk, etc. Since the radar data can fully reflect the space change in the burden
level, based on the mechanical probe data, a piecewise space feature regression model
is established for the radar data to obtain the space feature parameters of blast furnace
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burden level change. We choose the fifth order curve to fit it, with each coefficient order
corresponding to some physical significance. The time sequence of the radar data in a
single period is set as Qi = {(ti1, li1), (ti2, li2), · · · (tim, lim)}. Piecewise nonlinear regression
fitting of the radar data by the fifth-order polynomial is described as

li =
{

sdi + vdit + adit2 + jdit3 + hdit4 + kdit5 + εi, tmaxi ≤ t ≤ tmini
sui + vuit + auit2 + juit3 + huit4 + kuit5 + εi, tmini ≤ t ≤ tmaxi+1

(1)

where i = 1, 2, · · · , n presents the i th cycle; u and d present the feeding period and the idle
period, respectively; s, v, a, j, h and k are the initial position, falling speed, acceleration, jerk,
jerk changing rate and high-order term of the burden level, respectively; tmaxi and tmaxi+1
are the beginning time and the ending time of the cycle; tmini is the dividing time between
the feeding period and the idle period of this cycle; εi is the measurement error.

To improve the accuracy and reliability of the data, combining the measurement data
sequence of the mechanical probe (tRi, lRi) as the standard reference point into Equation (1),
the space feature regression model of the radar data based on the mechanical probe data is
described as

li =
{

sdi + vdit + adit2 + jdit3 + hdit4 + kdit5 + εi + (LR − lRi), t′maxi ≤ t ≤ tmini+1
sui + vuit + auit2 + juit3 + huit4 + kuit5 + εi + (LR − lRi), tmini+1 ≤ t ≤ t′maxi+1

(2)

where LR is the radar data closest to the detection time t = ti of the mechanical probe
in the i th cycle. To ensure that the continuous regression curve of radar data segments
is continuous at the periodic junction, the dividing points of the cycle tmaxi and tmaxi+1
divided based on discrete data are adjusted to t′maxi and t′maxi+1. Setting ldi(t) and lui(t) as
the burden level value in the falling period and rising period of the i th cycle, for ldi

(
t′maxi

)
in the feeding period, ldi

(
t′maxi

)
= lui−1

(
t′maxi+1

)
, and for lui

(
t′maxi+1

)
in the idle period,

lui

(
t′maxi+1

)
= ldi+1

(
t′maxi

)
. Figure 4 shows the original burden level measurement curve

obtained based on the space feature regression model of radar data and the piecewise
regression nonlinear (PRNN) curve after fine-tuning the periodic dividing points. The area
between the red solid lines in the figure represents the i th cycle, and the area between the
red dotted lines represents the idle period of the i th cycle and the feeding period of the
i + 1 th cycle. Compared with the original radar data curve, the space feature regression
curve of radar data is smoother and more coherent.
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3. Time Dimensional Feature Extraction and Burden Level Prediction Based on
Long-Term Focus Memory Network

The time dimensional change in blast furnace burden level corresponds to its space
change features, and it has the time dimensional features of extreme time points such as
speed, acceleration, jerk and jerk changing rate. Considering the complex and changeable
environment in the blast furnace, the radar data are different in different environments.
However, in the adjacent cycle, due to the extremely short sampling time interval and the
small change in the detection environment, the feature changes in the radar detection data
tend to be consistent in the time dimension. According to the distribution mechanism of
the blast furnace, the distribution of the blast furnace does not change significantly in a
short time; that is, the periodic feature in the time dimension does not change, so the slow
variation feature of radar data reflects the features that the distribution mechanism does
not change in a short time, and it can well predict the change trend of the burden level.
Therefore, based on the slow variation feature of radar data in the time dimension, the
LFMN deep network structure is proposed. By training the LFMN network, the radar data
of the i + 1 th cycle is predicted. The biggest advantage of this deep network in burden
level prediction is that it introduces the attention mechanism with the mechanical probe
data as accurate and reliable, slowly varying burden level information, which improves the
reliability and accuracy of burden level information predicted based on the slow variation
features of radar data. According to the actual distribution mechanism of the blast furnace,
we combine the radar data of the i− 1 th and the i th cycle with the predicted radar data of
the i + 1 th cycle, and the time dimensional features of the i + 1 can be extracted.

The LFMN network is composed of an input layer, a long-term focus memory layer
consisting of multiple memory units, and an output layer. Its structure is shown in Figure 5.
The input samples of the network input layer are set as follows,

xi(k) =

 (t′maxi, tmini+1, sdi, vdi, adi, jdi, γi, Ti, fi, li
k−N+1, · · ·, li

k

)
, t′maxi < ti

k ≤ tmini+1

(tmini+1, t′maxi+1, sui, vui, aui , jui, γi, Ti, fi, li
k−N+1, · · ·, li

k

)
, tmin+1 < ti

k ≤ t′maxi+1

(3)

where i represents the cycle of the current input data, i ≤ q, and q represent the last one of
the detected cycles. For the i th cycle,

(
t′maxi, tmini+1

)
is the feeding period,

(
tmini+1, t′maxi+1

)
is the idle period, (γi, Ti, fi) are the working condition parameters that have the greatest
correlation with the blast furnace burden level, representing the opening of the material
flow valve, the furnace top temperature and the furnace top air volume, respectively.(

li
k−N+1, · · · , li

k

)
is the N radar data in the k th window of the i th cycle processed by the

sliding window, and the sliding windows are shown in Figure 3. The output of the network
is set as the predicted n radar data of the q + 1 th cycle

(
lq+1
1 , · · · , lq+1

n

)
.
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For each memory unit in the long-term focus memory layer, it contains two state
variables h and C, saving the short-term memory and long-term focus memory of the
network. At time t, each memory unit has three inputs, which are the input sample xt of
the time t, the short-term memory ht−1 of the time t− 1, and the long-term focus memory
Ct−1. The internal structure of each long-term focus memory unit is shown in the right
figure of Figure 4, including four control gates, which are the input gate, forgetting gate,
guiding gate, and output gate. The long-term focus memory C is controlled by the input
gate and the forgetting gate, which determines how many input states at the current time t
are updated into the long-term focus memory.

The forgetting gate determines how much of the long-term focus memory Ct−1 of the
time t− 1 is retained for the current time t. Therefore, the long-term focus memory Ct of
the time t can be described as

Ct = ft ∗ Ct−1 + it ∗
∼
Ct

ft = σ
(

w f · [ht−1, xi(k)] + b f

)
it = σ(wi · [ht−1, xi(k)] + bi)

∼
Ct = tanh(wc · [ht−1, xi(k)] + bc)

(4)

where ft, it represent the forgetting gate and the input gate; w f , wi are the weight matrix of
forgetting gate and input gate in network training; b f , bi are the bias of the forgetting gate

and input gate; σ represents the sigmoid activation function;
∼
Ct is the long-term memory of

the current time t; wc, bc represent the weight matrix and the bias of the current inputting
long-term state.

The guiding gate is set to retain the focus information of the long-term focus memory
unit. This is because the mechanical probe data contains the most important long-term
changing information of the burden level, and it has the advantages of high accuracy and
reliability. The model of the guiding gate is described as

Ct ′ = θCy + (1− θ)Ct

Cy =
i

∑
j=1

(
f j +

(
LRj − lRj

)) (5)

where C′t represents the long-term focus memory of the time t stored in the long-term focus
memory layer; Cy represents the long-term burden level focus information, which combines
radar data and mechanical probe data; LRj is the radar data closest to the mechanical probe
data in the j th cycle. lRj is the mechanical probe data in the j th cycle; f j represents
the burden level prediction model based on radar data of the j th cycle, which can be
expressed as 

f j =
5
∑

r=1

(
αjr ∗ exp

(
−
((

t− bjr
)
/cjr

)2
))

 ajr
bjr
cjr

 =

 aj1 aj2 aj3 aj4 aj5
bj1 bj2 bj3 bj4 bj5
cj1 cj2 cj3 cj4 cj5

 (6)

where αjr, bjr, cjr, r = 1, 2, · · · , 5 are the radar model’s fifth order Gaussian fitting coefficients
of the j th cycle of the radar data.

The output gate is responsible for controlling the contribution of long-term focus
memory to the network output value at the current time t. Its effect can be quantitatively
described as {

ht = ot ∗ tanh(Ct ′ )
ot = σ(wo · [ht−1, xi(k)] + bo)

(7)
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where ot represents the output gate, wo, bo are the weight matrix and the bias of output
gate. The LFMN network can be trained by the error back propagation algorithm, and the
predicted n burden level values of the i + 1 th cycle are

hi+1 =
(

li+1
1 , · · ·, li+1

n

)
(8)

Combining the radar data of the i− 1 th and the i th cycle with the predicted radar
data of the i + 1 th cycle, the time dimension features of the i + 1 can be extracted through
the following Equation (9){

li
k
′ =

αli−1
k +βli

k+νli+1
k

3
α + β + ν = 1 , k = 1, 2, · · ·, n

(9)

where k represents the predicted burden level information of the k th cycle, and α, β, ν are
the data fusion weight of the i− 1, i, i + 1 th cycle, respectively. The weights are selected
based on experience, which are set as (0.25, 0.25, 0.5) in this paper. Then, for the burden
level sequence li

k
′ of the i th cycle with time dimensional features of multiple cycles, the

space feature regression model of radar data is used for regression to obtain the continuous
function l′i of the burden level change in the cycle, and the time dimensional features of
blast furnace burden level of the i th cycle can be extracted, as shown below{

ctid =
(

tidvmin, tidvmax, tidamin, tidamax, tidjmin, tidjmax

)
ctiu =

(
tiuvmin, tiuvmax, tiuamin, tiuamax, tiujmin, tiujmax

) (10)

where tidvmin, tidvmax, tidamin, tidamax, tidjmin, tidjmax and tiuvmin, tiuvmax, tiuamin, tiuamax, tiujmin,
tiujmax are the time points at which the extreme values of burden level speed, acceleration
and jerk are taken in the feeding period and the idle period of the i th cycle.

4. ESST-RBFNN

Based on the slow change features in time dimension and fast change features in the
space dimension of the burden level, integrating the advantages of the two detection data
and overcoming the common shortcomings, the efficient structure self-tuning RBF neural
network (ESST-RBFNN) is designed, and the real-time continuous detection of blast furnace
burden level with high accuracy can be realized. The structure of the network will change
with the change in input, which adapts to different blast furnace environments and have
industrial universality. At the same time, an efficient eigenvector space clustering (ESC)
algorithm is proposed, which improves the efficiency of training and ensures the real-time
detection of the burden level. Firstly, the input samples of the algorithm are composed of
the time dimensional features and space dimensional features of the burden level, the radar
data processed by the sliding window and the key working condition parameters. Secondly,
based on the proposed fast eigenvector space clustering algorithm, the clustering center
and width of the input samples are determined. Thirdly, based on the RBF neural network,
a dynamic self-tuning network structure is designed. According to the characteristics of
input samples, the number of hidden nodes is automatically increased and clipped to
realize that the network structure changes with the characteristics of input samples, and
the relevant parameters of the network structure are adjusted and updated independently
to realize the self-tuning of the structure and complete the learning and training process of
the ESST-RBFNN algorithm. Finally, the trained network is used to output the burden level
information at the next time, and the whole algorithm is realized.
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4.1. Fast Eigenvector Space Clustering Algorithm (ESC)

The input sample consists of four parts, which are the key operating condition param-
eters, space dimensional features, time dimensional features of each cycle and the radar
data processed by the sliding window in this cycle. Its specific form is shown as follows

xi(k) =


(t′maxi, tmini+1, ctid,sdi, vdi, adi, jdi, γi, Ti, fi, li

k−N+1, · · ·, li
k

)
,

t′maxi < ti
k ≤ tmini+1

(tmini+1, t′maxi+1, ctiu, sui, vui, aui , jui, γi, Ti, fi, li
k−N+1, · · ·, li

k

)
,

tmin+1 < ti
k ≤ t′maxi+1

(11)

where xi(k) represents the input sample of the k th window in the i th cycle. It can
be analyzed that radar data are the most critical data in the input samples. In a single
cycle, burden level changes are usually up and down the standard burden level, which
leads to the typical accumulation of radar data. In addition, the environment in the
furnace is bad, meaning that the echo-based radar data fluctuate greatly, so the accuracy
is not high, and the signal-to-noise ratio is low. To overcome the interference of the
furnace environment, the fast eigenvector space clustering algorithm (ESC) is proposed
to reveal the intrinsic correlation of the input data. The algorithm clusters n input sample
datasets X̂ = {x1, x2, · · · xk, · · · xn} into K categories. The clustering center vector set is
C = {c1, c2, · · · cK}, and the input sample data set is centralized as X = (x1, x2, . . . , xn)

T ,
where xi ∈ Rd, i = 1, 2, . . . , n. In the d-dimensional data space, the problem of making the
clustering center vector describe the internal clustering characteristics of input samples as
much as possible can be equivalent to the optimization problem, as shown in the following
Equation (12)

minJK =
n

∑
i

xi
2 −

K

∑
k=1

1
nk

∑
Xi ,cK∈C

xicT
K (12)

where nK is the number of input samples in category K. Set the original indicator vector
matrix of the category feature space as GK = (g1, g2, . . . , gK)

T ,where each row of the
original indicator vector matrix of the category feature space has only one non-zero value,
and each column can have multiple non-zero values, which indicates that each datum only
belongs to the category represented by the column and does not belong to other categories.
The matrix HK = (h1, h2, . . . , hK)

T is obtained by the rotation equivalent transformation of

the matrix GK, where hK = (0, . . . , 0,

nK︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)

T

/
√

nK , and the non-zero value in
hK represents the corresponding sample belonging to the category K in the category feature
space. After introducing the feature space indicator vector, the optimization objective
function can be converted into the following Equation (13).

minJK =
n

∑
i

xi
2 − Tr(HKXXT HT

K) (13)

It should be noted that among the K clustering categories in the sample space X, the
mean center of the sample has an impact on the embodiment of the intrinsic clustering
characteristics of the samples. In order to eliminate this impact, the input sample space
is centered into X̃ = (x̃1, x̃2, . . . , x̃n)

T , where x̃i = xi − x is the centralized data matrix ob-
tained by removing the average value of the given data set x = ∑n

i xi/n. The optimization
objective function is rewritten as the following Equation (14)

minJK =
n

∑
i
(x̃i + x)2 − Tr

(
HK
(
X̃ + X

)(
X̃ + X̃

)T HT
K

)
(14)
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To further simplify the optimization objective function, a K× K orthogonal transfor-
mation matrix T is constructed, and the last column of the matrix is set as

TK = (
√

n1/n,
√

n2/n, . . . ,
√

nK/n)
T

(15)

Then the transformation matrix is linearly transformed into the indicator vector matrix
of the category feature space HK, and the transformed matrix is QK,

QK = HT
K T (16)

The last column of the matrix QK is given as

qk = (
√

n1/nh1 +
√

n2/nh2 + . . . +
√

nK/nhK)
T

=
√

1/neT , eT = (1, . . . , 1, . . . , 1)T (17)

By analyzing the relevant properties of the indicator vector matrix HK in the feature
space, it is found that its vector hK has the property of pairwise orthogonality, and it can be
expressed in the following form,

hT
K

hL = δKL
δKL = 1 , K = L
δKL = 0 , otherwise

(18)

For the matrix QK, the following Equation (19) holds

qT
KqL = TT

K hT
K

hLTL = δKL (19)

Set QK−1 = (q1, q2, . . . , qK−1), then using Equation (19) derives the following Equation (20)

QT
K−1QK−1 = IK−1 (20)

Substituting Equations (16) and (17) together, the rewritten matrix QK = [QK−1, qK]
into the optimization objective Equation (14) for a series of derivation, transformation and
simplification, the following Equation (21) can be obtained,

JK = Tr
(

X̃X̃T
)
− Tr

(
QT

K−1X̃X̃TQK−1

)
(21)

Considering that Tr
(
X̃X̃T) is a constant larger than zero and it is determined by

the input sample space, so minimizing JK and maximizing JD = Tr
(
QT

K−1X̃X̃TQK−1
)

is equivalently.
Using KyFan theorem, for a real symmetric matrix A = X̃X̃T with eigenvalues,

λ1 ≥ λ2 ≥ · · · λn are its eigenvalues and (ν1, ν2, · · · , vn) are its eigenvectors. Under the
constraint of QK−1

TQK−1 = IK−1, the maximum value of JD is QK−1 = (ν1, ν2, · · · , νK−1)U,
where U is a K× K orthogonal matrix, and the maximum value is

maxJD = λ1 + λ2 + · · ·+ λK−1 (22)

In combination with Equation (21), the upper and lower boundary of the optimization
objective can be obtained after proper and reasonable expansion as

nX̃2 −
K

∑
k=1

λk < JK < nX̃2 (23)

where nX̃2 is the total variance of samples X.



Sensors 2022, 22, 5412 11 of 23

Because the indicator vector matrices HK−1 and QK−1 of the category feature space
have the following relationship

QK−1 = HT
K−1TK−1 (24)

where TK−1 is a (K− 1)× (K− 1) orthogonal matrix. Then the indicator vector matrix K
HK−1 of the category feature space can be

HT
K−1 = (ν1, ν2, · · · , vK−1) (25)

In this way, the optimization objective function is guaranteed to obtain the minimum
value. Then, according to the indicator vector matrix HK−1, for any one of the former
K− 1 clustering categories in which the input samples X are divided into K categories, the
corresponding indicator vector of category feature space is Hj =

(
vj1, vj2, · · · , vjn

)
, which

can be used to judge whether the n samples belong to the category j. The discriminant is
as follows,

I
(
Cj
)
=
{

xi
∣∣vji > 0

}
i=1,2,··· ,n j=1,2,···K−1 (26)

where I
(
Cj
)

represents the input sample set belonging to category j. Note that the distribu-
tion of the former K− 1 categories of the input sample set X̂ can be determined by using
Equation (26). For the category, it is common practice to classify the samples that do not
belong to the former K − 1 categories in the input sample set X̂ as the category K. The
mathematical description is as the following

I(CK) = X̂−
K−1

∑
j=1

∪ I
(
Cj
)

(27)

For each clustering center vector, it can be calculated by the following Equation (28)

cj = ∑
xs∈I(Cj)

xs/m

j=1,2,··· ,K

(28)

where m is the elements number of the set I
(
Cj
)
.

4.2. Efficient Structure Self-Tuning RBF Neural Network (ESST-RBFNN)

Due to the strong nonlinear correlation between the radar data and the mechanical
probe data, in order to effectively integrate the advantages of the two-detection data and
improve the burden level measurement accuracy, a network named ESST-RBFNN with a
flexible and self-tuning structure is presented. The network structure is shown in Figure 6,
and the mathematical model of the network is described as

f (xi(k)) = yi(k) =
m
∑

j=1
wjgj(xi(k))

gj(xi(k))=exp (−
‖x−cj‖

2

σj
2 ) , j=1,2,...,K

(29)

where xi(k) is the k th fusion input sample of the i th cycle; yi(k) is the k th output burden
level data of the i th cycle; gj(xi(k)) is gaussian basis excitation function of the j th hidden
node; cj is the center of the j th basis function; σj is the width of the j th basis function; K is
the number of hidden nodes; wj is the output weight. The number of hidden nodes, the
center and the width of the basis function can be determined by the clustering results of
the ESC algorithm for the input samples set X̂. Generally, the number of hidden nodes is
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the number of clustering classes, and the centers of the basis functions are the clustering
centers. The width of the basis function σj is determined by the following Equation (30)

Gi = {xi(k) ∈ I(Cj)}
dj

max = max
xi(k)∈Gi

{‖xi(k)− cj‖2}

σj =
2dj

max
3 (1 ≤ j ≤ K)

(30)

where dj
max is the maximum distance from the clustering center to the sample point.
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To determine the weight wj, the output matrix of the hidden layer H can be calculated
according to Equation (29), which is a n × K matrix. The mechanical probe data corre-
sponding to the input samples used for neural network training can be set as a matrix Y,
and the network weight vector W can be obtained by solving the generalized inverse as
the following

W = [HTH]
−1

HTY (31)

According to the network structure shown in Figure 6, the network has the charac-
teristic of dynamic structure self-tuning, which can automatically increase the number of
hidden layer nodes, change the network structure and tune the network parameters itself
with the increase in training samples. The main steps of ESST-RBFNN are as follows,

Step 1: According to the characteristics of input samples, set the value of category
discrimination radius b as a positive real number.

Step 2: The algorithm begins. When the radar data of the first sliding window of the
first cycle is sampled, the first input sample is constructed as x1

1 according to Equation (11),
and the first cluster is formed and K = 1, the clustering center C = {c1}, c1 = x1

1, and the
first hidden node of the network hidden layer h1 is generated.

Step 3: When the k th input sample data of the i th cycle is sampled, the number of
samples n = k, k = 2, 3, · · · . There have been D − 1 clustering categories. The number
of classes is K = D − 1. The clustering centers C = {c1, c2, · · · cD−1}, and the hidden
nodes are hp, p = 1, 2, 3, · · · , K. The input sample data matrix is X =

(
x1

i , x2
i , · · · , xn

i
)T .
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Set ς =
{
(xs

i
, ys

i )
∣∣∣xs

i
∈ Rd, ys

i ∈ Rl , s = 1, 2, . . . , k− 1
}

as the network training set, where

Rd and Rl are the training input sample set and its corresponding mechanical probe data
set. If min

∥∥∥xk
i − cj

∥∥∥
cj∈C

2 < b, keep the current clustering result and the network structure

unchanged, and go to Step 7. Otherwise, dynamically adjust the network structure, increase
the number of the hidden layer nodes by 1, go to Step 4, update the clustering result, and
tune the network structure itself.

Step 4: Centralizing the input sample data matrix X into X̃ = (X̃1, X̃2, . . . , X̃n)
T , and

calculate the former D eigenvectors v1, . . . , vD of X̃X̃T to obtain the feature space indicator
vector of the category to which each sample belongs. All samples are reclassified by using
Equations (26) and (27) to obtain a new set of categories I = {I(C1), I(C2), · · · , I(CD)}.

Step 5: Use Equation (28) to calculate and update the clustering center vector set and
combine Equation (30) to synchronously update the center and width of the basis function
of the hidden nodes in the hidden layer of the network.

Step 6: Use Equation (31) to calculate and update the network weight vector to
complete the establishment and learning of ESST-RBFNN.

Step 7: Use Equation (29), set xk
i as the model input, and the current burden level

information yk
i can be obtained through real-time calculation. With the loop going on, the

real-time burden level measurement can be realized with high precision.

5. The Simulation and Industrial Verification Results

For the training of the network model, the hardware environment included Intel Xeon
(R) w-2133CPU, NVIDIA Geforce, and one RTX2080 graphics card; the language we chose
is python, and the platform we used is pytorch 1.7.1 and the CUDA version was 10.2. All
our simulation diagrams were drawn based on MATLAB. To verify the correctness of the
proposed methods of prediction and measurement of blast furnace burden level, the actual
detection data of mechanical probe and radar probe in the same area of a steel plant blast
furnace were collected for simulation. The radar probe sampled every 10 s, and the number
of samples is 76,426 rows, where 66,426 rows of the data were used for model training and
another 10,000 rows were used for model validation. The width of the sliding window was
preferred as N = 10. The data format is 76,424 × 10. The sampling interval of mechanical
stock rod is 3 ∼ 6 min, and the number of samples is 3149.

5.1. Verification Results of the Blast Furnaces Burden Level Prediction and the Time Features
Attraction Based on LFMN

LFMN is proposed to predict the blast furnace level in order to extract the time
dimensional features of extreme time points such as speed, acceleration, jerk, and the change
rate of jerk. For this purpose, it is required that the predicted burden level information
can reflect the periodicity of burden level change and fit the real-time mechanical probe
measurement data as much as possible, with a certain high accuracy. Figure 7 shows the
trend of the prediction of burden under normal working conditions. It can be seen that
the burden level data measured by the mechanical probe are mostly above and below the
standard control stockline 1.5 m of the blast furnace, and the time of burden level data in a
single cycle measured by the radar probe is kept within the 500 s left and right range. The
reason for the radar data being much higher or lower than the mechanical probe data is that
the radar uses microwaves to detect the burden level, and the microwaves are easily affected
by the high-speed gas flow and dust in the blast furnace. However, due to the introduced
guide layer mechanism and the slow variation features of the radar data, although the
burden level predicted by LFMN has a certain deviation from the measured burden level
data of the mechanical stock rod, it is highly consistent with the radar probe data in the
change trend, especially in the fluctuation cycle of the data. This shows that the method
of LFMN has high confidence in predicting blast furnace burden level information and
extracting its time dimensional features for normal working conditions of the blast furnace.
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Figure 7. Trend of burden level prediction under normal working conditions.

Figure 8 shows that when the blast furnace is abnormal, the measured value of the
mechanical probe usually deviates greatly from the standard control 1.5 m stockline of
the burden, or even reaches the limit position 2.1 m, as shown in the figure, while the
measured data of the radar probe often jumps greatly and frequently. From the prediction
result of LFMN, under abnormal conditions, the accuracy of LFMN for burden level
prediction decreases significantly for the reason that the network relies too much on radar
data. In the case of an extremely bad blast furnace environment, the burden level changes
periodically. The radar probe is affected by extreme environments, and the predicted
burden level deviation is large. For example, at the time of 3600 s, the error between the
predicted value of burden level and the measured value of the mechanical probe even
exceeds 0.2 m. However, it can be found that due to abnormal furnace conditions, the
blast furnace operator has significantly adjusted the blast furnace charging cycle into the
period of 6030 s ∼ 7030 s. The charging cycle in this period is much larger than 6 min in
this cycle. After this cycle, the operator artificially shortened the blast furnace charging
cycle to maintain the burden level at the standard control stockline. The figure shows
that the length of charging cycle is roughly in the range of 300 s ∼ 480 s after the time
of 7210 s. At this time, the prediction method of LFMN can perfectly track the periodic
change in the charging cycle and maintain considerable accuracy. In conclusion, it shows
that the prediction method of LFMN proposed in this paper can not only effectively reflect
the change trend of the burden level but also accurately predict both the periodicity and
time change trend of the burden level under normal or abnormal conditions. In order
to further verify the statistical significance and effectiveness of the proposed method of
LFMN, a comparative statistical analysis on the consistency between the accuracy of the
burden level predicted by the proposed method and the time period and the radar probe
is conducted. The conclusions are shown in Table 1 below. From the statistical table, it
can be found that the LFMN predicted error of the burden level is close to the radar probe
measured error. The absolute error and relative error are 1.392% and 0.06, respectively. This
shows that the method of LFMN can be used to directly predict the burden level of the
blast furnace, which has a good reference value for the actual operation of the blast furnace.
In addition, from the point of view of the coincidence degree of the blast furnace charging
cycle, the method of LFMN reached the coincidence degree of 98.87%, which shows that
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the proposed method has high reliability in extracting time dimensional features of the
blast furnace burden level information.
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Figure 8. Trend of burden level prediction under abnormal working conditions.

Table 1. Statistical prediction error comparison.

Method
Statistical Indices

MRE RMSE Cycle-Fit

Radar Probe 7.182% 0.176 99.53%
LFMN 8.574% 0.236 98.87%

5.2. Verification Results of the Blast Furnace Burden Level Detection Based on ESST-RBFNN

ESST-RBFNN is proposed to realize real-time, accurate, continuous, and reliable
detection of burden level information. Figure 9 shows the comparison of different methods
for measuring burden levels under normal working conditions. According to the discrete
burden level data measured by the mechanical probe, the burden level fluctuates around the
standard 1.5 m stockline, and the length of the charging cycle is basically fixed. Although
the radar data are continuous in real-time, it deviates from the accurate and reliable
mechanical probe data at different time points to different degrees, indicating that its
accuracy still needs to be greatly improved. The blast furnace burden level data predicted
by traditional RBFNN can fit the periodicity and the change trend of the radar data to a
certain extent, but it has a strong inhibition on the fluctuation of the burden level, meaning
that the fluctuation range of the measured burden level is within 0.2 m, which obviously
does not conform to the actual blast furnace charging site. At the same time, it cannot
accurately track the changes in the mechanical probe data, and the overall detection level
is high. This is because the traditional RBFNN does not take the correlation between the
data measured by the mechanical probe and the radar probe into account. It only considers
the radar data but ignores the accuracy and reliability of the mechanical probe data, which
makes the accuracy and reliability of the detected data low and does not conform to the
real production process. The ESST-RBFNN extracts accurate time dimensional features
and space dimensional features of the burden level through the method of LFMN and the
space feature regression model based on radar data. It also deeply excavates and utilizes
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the internal relationship between the two detection data. The detected burden level data
can not only perfectly fit the periodicity and change trend of radar probe data, but also
track the changes in mechanical probe data in real-time with high precision. It greatly
improves the accuracy and reliability of the detection data, which shows that the burden
level data detected by this method not only has the real-time and continuous advantages of
radar data but also has the accurate and reliable advantages of mechanical probe data. This
shows its high practical value.
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Figure 9. Comparison chart of different methods for measuring blast furnace burden level under
normal working conditions.

Figure 10 shows the comparison between the radar data, the detection data of the
traditional RBFNN and the ESST-RBFNN under abnormal working conditions. Under this
abnormal working condition, the mechanical probe data jumps up and down greatly. It can
be seen from Figure 10 that at this time, the radar data can hardly track the mechanical probe
data, and its accuracy is very low. This shows that under abnormal working conditions,
due to a large amount of dust in the blast furnace, the reference value of the radar data
is limited. The traditional RBFNN also has the disadvantage of obviously restraining the
fluctuation of burden level, and its sensitivity is poor. At the same time, similar to the radar
data, the detection data of the traditional RBFNN cannot track the mechanical probe data,
so its reliability and accuracy are not high. The ESST-RBFNN proposed in this paper is
not only perfectly consistent with the periodicity and change trend of the radar data but
can also accurately track the mechanical probe data most of the time. Only in the case
of extremely accidental anomalies, such as the three outliers shown in the figure, when
the burden level suddenly jumps sharply and changes greatly, the tracking effect at the
outlier position is poor. However, compared with the radar data, the reliability has been
significantly improved.
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Figure 10. Comparison chart of different methods for measuring blast furnace burden level under
abnormal working conditions.

Figures 11 and 12 show the absolute error and relative error distributions of the burden
level data measured by radar and the methods of traditional RBFNN and ESST-RBFNN
compared with the measured data of mechanical stock rod. The area between the black
dotted lines represents the main distribution area of the data measured by ESST-RBFNN. It
can be seen from the figure that the absolute error and relative error of radar data fluctuate
greatly. The absolute error is within the range of ±0.5 m, and the relative error even
reaches 40%. The absolute error and relative error of the traditional RBFNN method are
significantly improved compared with the radar probe; however, the conditions of burden
level lower than 1.4 m are minimal during the actual operation of the blast furnace, and
the traditional RBFNN method relies on the sample data too much, which leads to the error
distribution points of the method concentrated in the upper area of the figure, that is, the
measured value has an obvious larger error compared with the real value. Therefore, the
maximum relative error of the traditional RBFNN method reaches up to 25%. For the actual
blast furnace charging process controlled by the standard 1.5 m stockline, the errors of the
above two methods for burden level measurement are unacceptable in engineering, and the
practical application value of which is thus low. The proposed ESST-RBFNN overcomes the
problem that the traditional RBFNN is excessively dependent on the data samples by using
the space-time features of burden level distribution. The absolute error and relative error
range shown in the figure are within the range highlighted by the red line. The absolute
error is within the range of ±0.1 m and the relative error is within the range of ±5%. At
the same time, considering the relative error of the mechanical probe data itself, on the
premise of realizing the real-time continuous measurement of the blast furnace burden
level, the measured error of the burden level detection method proposed in this paper is
very close to the measured error of the mechanical probe, which satisfies the requirements
of the blast furnace smelting process and has very high practicality.
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Figure 13 shows the 45◦ line diagram of the measurement effect of the above three
methods to reflect the accuracy of the three material level measurement methods more
intuitively. It can be seen from the figure that the detection data obtained by the method of
ESST-RBFNN are distributed in the red measured standard line, forming a vertebral body,
whose accuracy is significantly high. However, compared with the detection methods of
radar probe and traditional RBFNN, the method of ESST-RBFNN has the closest detection
data to the standard line with the highest accuracy. When the standard line is within
1.5 ∼ 2.0 m, the data of three measurement methods are more distributed. The radar data
deviate far from the standard line with low accuracy. The traditional RBFNN measurement
data also deviate relatively far from the standard line and have the inherent error of high
detection level, and its accuracy is also low. The detection data of the ESST-RBFNN method
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are concentrated and closely distributed around the standard line, which can track the
standard burden level well, with high accuracy and reliability. When the standard line is
higher than 2.0 m, it indicates that the blast furnace has an abnormal working condition.
From the figure, it indicates that the detection methods of a radar probe and traditional
RBFNN are far from the standard line, and the accuracies of which are much lower. The
method of ESST-RBFNN has little fluctuations and can still track the measured burden
level with high precision.
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Figure 13. The 45◦ line diagram of the measurement effect of the three methods.

To further verify the correctness and effectiveness of the proposed method, the 24-h
operation data based on the 10,000 rows of validation data of the ESST-RBFNN method
were collected to draw the operation effect diagram, as shown in Figure 14. The absolute
error, relative error and hit rate of radar probe, and the methods of traditional RBFNN and
ESST-RBFNN for up to 3 months are counted, as shown in Table 2. It can be seen from
Figure 14 that based on the 10,000 rows of validation data within 24 h of operation, whether
under normal or abnormal conditions, the detection method of ESST-RBFNN can well track
the mechanical probe data with high accuracy and reliability. At the same time, it can well
fit the periodicity and variation trend of the radar data and has good real-time continuity.
From the 3-month statistical error analysis in Table 2, the MRE (Mean Relative Error) and
RMSE (Root Mean Square Error) of the burden level detection method of ESST-RBFNN
are nearly four times higher than those of the radar probe and the method of traditional
RBFNN. The hit rate of samples with relative error lower than 2% reaches up to 91.17%. The
hit rate of samples with relative error lower than 5% even reaches up to 99.33%. Compared
with the radar probe and the method of traditional RBFNN, there is a significant qualitative
improvement. The statistical analysis data further illustrate that the burden level detection
method of ESST-RBFNN proposed in this paper can obtain continuous and accurate blast
furnace burden level information with high precision.
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Figure 14. Operation effect diagram of the detection method of ESST-RBFNN based on the
validation data.

Table 2. Statistical error comparison.

Method
Statistical Indices

MRE RMSE Error-2% Error-5%

Radar 8.573% 0.1847 13.97% 32.53%
RBFNN 7.291% 0.1825 28.91% 66.50%

Proposed 2.361% 0.0480 91.17% 99.33%

6. Conclusions and Discussion
6.1. Conclusions

Real-time and continuous blast furnace burden level detection with high accuracy
and high reliability is of great significance to realizing green and fine production of blast
furnaces. The traditional mechanical probe detection method and radar detection method
cannot obtain real-time accurate and continuous burden level information. The proposed
method combines the advantages of high precision and reliability of mechanical probe data
and the real-time continuous characteristics of radar data. Based on the slow variation
features of burden level change in the time dimension and fast variation features in the
space dimension, it can obtain real-time accurate and continuous burden level information
with high precision and great reliability.

Based on the slow variation features of radar data, the LFMN network can predict
the blast furnace burden level with relatively high accuracy and extract time dimensional
features of the burden level information with great reliability. Combined with the proposed
ESC algorithm, the ESST-RBFNN can realize a self-renewing dynamic structure with
the ability of online training and provide a better approximation performance than the
traditional RBFNN. The simulation results and industrial verification indicate that the
proposed method can realize real-time and continuous blast furnace burden level detection
with high accuracy, high stability, and great reliability. Therefore, the proposed method has
a high industrial application value.
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6.2. Discussion

The proposed method can track the burden level information well under normal
working conditions and most abnormal working conditions, which obtains real-time and
continuous burden level information with high precision and great reliability. However, un-
der some extremely abnormal working conditions, when some extremely large fluctuations
occur, the accuracy and reliability of burden level detection will decrease to some extent,
where its practical value can be improved by further optimization. The main reason is that
the LFMN network relies too much on the slow variation features of radar data, which
means that when the burden level fluctuates significantly, the prediction of burden level
based on the slow variation features of radar data will not track the real information of the
burden level change trend, which needs to be further studied and improved in the future.
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Nomenclature

Abbreviations
PRNN piecewise regression nonlinear
LFMN long-term focus memory network
ESC eigenvector space clustering
RBFNN radial basis function neural network
ESST efficient structure self-tuning
MRE mean relative error
RMSE root mean square error
Symbols
Qi time sequence of the radar data in a single period (-)
li piecewise nonlinear regression fitting of radar data ( m)
s the initial position ( m)
v falling speed of the burden level ( ms−1)
a falling acceleration of the burden level ( ms−2)
j falling jerk of the burden level ( ms−3)
X̂ n input sample datasets (-)
K Categories (-)
X Centralized input data set (-)
nK number of input sample in category K(-)
GK original indicator vector matrix of the category feature space (-)
hK corresponding sample belonging to the category K(-)
T transformation matrix (-)
h jerk changing rate of burden level ( ms−4)
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k high-order term of burden level ( m)
tmaxi beginning time of the i th cycle ( s)
tmaxi+1 ending time of the i th cycle ( s)
tmini dividing time between feeding and idle period of i th cycle ( s)
εi measurement error ( m)
ldi(t) burden level value in the falling period of the i th cycle ( m)
lui(t) burden level value in the rising period of the i th cycle ( m)
xi(k) input samples of LFMN network (-)
γi opening material flow valve ( m)
Ti furnace top temperature ( ◦C)
fi furnace top air volume ( c f m)
h state variables saving the short-term memory of LFMN network (-)
C state variables saving the long-term focus memory of LFMN network (-)
w f the weight matrix of forgetting gate in network training (-)
wi the weight matrix of input gate in network training (-)
b f the bias of the forgetting gate (-)
bi the bias of the input gate (-)
I
(
Cj
)

input sample set belonging to category j(-)
yi(k) k th output burden level data of the i th cycle (-)
σj width of the j th basis function (-)
dj

max maximum distance from clustering center to the sample point (-)
ς network training set (-)
Rd training input sample set (-)
A real symmetric matrix (-)
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