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Abstract: An intelligent reflecting surface (IRS) is a programmable device that can be used to control
electromagnetic waves propagation by changing the electric and magnetic properties of its surface.
Therefore, IRS is considered a smart technology for the sixth generation (6G) of communication
networks. In addition, machine learning (ML) techniques are now widely adopted in wireless
communication as the computation power of devices has increased. As it is an emerging topic,
we provide a comprehensive overview of the state-of-the-art on ML, especially on deep learning
(DL)-based IRS-enhanced communication. We focus on their operating principles, channel estimation
(CE), and the applications of machine learning to IRS-enhanced wireless networks. In addition, we
systematically survey existing designs for IRS-enhanced wireless networks. Furthermore, we identify
major issues and research opportunities associated with the integration of IRS and other emerging
technologies for applications to next-generation wireless communication.

Keywords: intelligent reflecting surfaces (IRSs); machine learning; multiple input multiple output;
wireless networks

1. Introduction

Wireless communication systems are changing dramatically as a high data rate and
quality of service are in soaring demand. Fifth generation (5G) wireless communica-
tion has already been deployed and is currently in service in many countries [1]. There-
fore, sixth generation (6G) wireless communication has received full attention from the
researchers. The 6G wireless networks include an ultra-high data rate, high reliability,
global coverage, low latency, high energy efficiency, and high reliability [2]. To meet these
requirements, we need more advanced network devices and new techniques for efficient
wireless communication. The literature published in recent years suggests that, for 6G,
the main ideas are terahertz communication, artificial intelligent and intelligent reflecting
surfaces (IRSs), or reconfigurable intelligent surfaces [3,4].

IRS is considered a new paradigm for wireless communication in the 6G [5]. IRS is a
thin metasurface made of a dielectric material capable of reflecting electromagnetic (EM)
waves in an organized way. Thus, IRS is considered to be a software-controlled smart radio
environment that can mitigate multipath problems and is effective for millimeter wave or
terahertz communication [6]. In recent years, the application of IRS devices has dramatically
increased, owing to its excellent convenience in wireless communication, such as mobile
edge computing, simultaneous wireless information and power transfer, enhanced physical
layer security, device-to-device communication, mmWave massive multiple-input multiple-
output (MIMO), unmanned aerial vehicles communication for smart cities, and intelligent
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internet of things (IoT) applications for wireless sensor networks [7]. In the state-of-the-art,
many studies have been conducted on the design of IRS-aided communication for the
different performance matrices [8–10]. The study conducted in IRS can be categorized as
cascade channel estimation, phase shift optimization, beamforming optimization, multiuser
communication, and reflecting metasurface grouping [11–14].

Machine learning (ML) methods are considered as a revolutionary technology of
the branch of artificial intelligence (AI) [15]. ML methods can learn from data and make
predictions for future events. Recently, ML-based approaches have been widely adopted in
wireless communication technologies [16–19]. IRS-based communication has also adapted
different ML techniques for performance enhancement. The categories of ML applied in
IRS are classified as deep learning (DL), reinforcement learning (RL), supervised learning
(SL), unsupervised learning (UL), and federated learning (FL). Results in the previous
studies demonstrated that ML-based methods have a comparable performance with the
conventional methods while reducing the computational complexity [16,20]. Wireless
communication technologies can be revolutionized by the power of ML. Recently, deep
learning (DL)-based IRS technology can help to better extract the inherent relationship
between the input–output signals and achieve a more reliable channel estimation, as shown
for OFDM and mmWave massive MIMO [21,22] compared to the conventional or traditional
model-based approaches. A DL-based channel estimation for an IRS-aided system was
proposed in [23], where the authors proposed a single IRS system while considering MISO-
OFDM. In [7], convolutional neural networks (CNN) for estimating the direct and cascaded
channels sequentially were proposed. However, this design may suffer from the error
propagation issue, since the estimated direct channel is used to construct the estimated
cascaded channel.

In the literature, some survey papers covered IRS-based technologies [7,24–26].
Liu et al. [7] provided fundamental principals of IRS communication and interactions
with electromagnetic signals. Next, the authors surveyed a performance analysis of the
multi-antenna assisted IRS system, and beamforming and resource allocation techniques.
Finally, a part for ML-based IRS communication and some direction integrating IRS with
other technologies were provided. The key technologies that can be integrated with IRS are
non-orthogonal multiple access, physical layer security, simultaneous wireless information
and power transfer, unmanned aerial vehicles, and autonomous driving vehicles. The au-
thors in [24] provided a survey of IRS technology that was focused on hardware design and
implementation. In addition, basic concepts, the channel model, physical layer design im-
plementations issues, AI-based solutions for IRS, and system deployment challenges were
provided. The study in [25] conducted a survey on the IRS operation principle, metasurface
fundamentals, IRS implementation structure, field-programmable gate-array-based IRS,
and future research directions for IRS. Another study in [26] focused on a state-of-the-art
survey of IRS-assisted technology below a 10 GHz frequency. The authors surveyed the
IRS reflecting antenna array operation principle using microstrip patch antennas and adap-
tation in a wireless communication system. In addition, the authors discussed metasurface
properties and reflections for metasurfaces. ML methods are considered to be a powerful
tool in solving different problems in wireless communication, and will dominate the future
research trend. Thus, this survey is entirely dedicated to reporting ML-based IRS works for
the readers. The contributions of the paper can be summarized as follows:

• In the beginning, we give a complete insight into IRS technology. We provide a compre-
hensive introduction of the IRS technology, including its structure, working principle,
and advantages.

• ML-based approaches are provided in a systematic way to understand the state-of-
the-art research. We categorize different ML techniques as DL, RL, SL, UL, and FL.
Each related paper is described in a comprehensive way by placing them into one of
the categories. The problems that are related to IRS system using ML are described as
channel state information (CSI), phase shift estimation, signal detection, beamforming,
optimization, spectral efficiency, and privacy protection or security.
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• Finally, we give some of the future research scopes that are further needed to be
investigated by combined IRS and ML approaches.

The organization of the paper is as follows. Section 2 describes the IRS technology
fundamentals. Section 3 describes the different ML methods used in the IRS communication
system, some future research directions are described in Section 4, and Section 5 concludes
the paper.

2. IRS Technology Fundamentals

In this section, we introduce typical IRS hardware architecture and the fundamental
working principles.

2.1. IRS Hardware Architecture and Its Working Principle

Based on the meta-surface, the implementation of IRS hardware is digitally control-
lable, and is made of two-dimensional meta-material [27]. In order to operate in the
subwavelength frequency of interest, the meta-surface is a planar array that consists of a
large number of meta-atoms with electrical thickness [28]. The individual signal response,
such as a reflection, amplitude, and phase shift of the IRS meta surface atom element, can be
changed by properly designing the elements, including the geometrical shape (e.g., square
or split-ring), size/dimension, orientation, arrangement, and so on. The reflection coeffi-
cient of each element should be tunable to cater to dynamic wireless channels arising from
the user (UE) mobility in the wireless communication system. Three main approaches are
introduced in the literature for controlling IRS reflection mechanical attenuation (e.g., me-
chanical translation and rotation), functional materials (e.g., liquid crystal and graphene),
and electronic devices (e.g., positive-intrinsic-negative (PIN) diodes, field-effect transistors
(FETs), micro-electromechanical system (MEMS) switches, etc.). Among them, electronic
devices are widely adopted because of their fast response time, low reflection loss, and low
energy cost. Finally, dynamically adjustable reflection coefficients are needed to create the
IRS elements, and it is essential to link them to the network to acquire knowledge of the ex-
terior communication environment in order to qualify its real-time adaptive reflection [29].

One typical architecture of an IRS device is illustrated in Figure 1, where the IRS
consists of a smart controller and three layers. The first layer is made up of a large number
of reconfigurable metallic patches that are printed on the dielectric substrate to directly
manipulate the incident signals. Behind this layer, a copper plate is usually used to
avoid the signal energy leakage during IRS’s reflection. A control circuit board excites the
reflecting element and is responsible for adjusting the reflection amplitude/phase shift
of each element. In addition, the reflection adaption is triggered by a smart controller
attached to the IRS. Moreover, the controller between BS and UE is accomplished by a
field-programmable gate array (FPGA), which also works as an entrance to communicate
and coordinate with other network parameters (e.g., base stations (BSs), access points
(APs), and UE terminals) by different wireless links for low-rate information interchange
between them.

Figure 1 shows the equivalent circuit as a sample of a separate element structure
where each element is embedded with a PIN diode in the middle point of the element.
The PIN diode can be changed to either the “ON” or “OFF” state by regulating various
biasing voltages to the PIN diode through a direct-current feeding line, which allows
the element to result in a phase-shift difference in π in the coming signal [30]. Setting
up the corresponding biasing voltages by the smart controller, different phase shifts of
IRS elements can be realized separately. According to [30], the changing frequency can
be up to 5 megahertz (MHz) in the PIN diode element, which is equal to a changing
time of 0.2 microseconds (µs). This is much smaller than the typical channel coherence
time, which well matches with the application of a mobile with time-varying channels.
Besides tuning the phase shift, extra control of the reflection amplitude of every element
of IRS gives much greater flexibility in reshaping the reflected signal to obtain different
communication objectives successfully. Additionally, this provides an effective way to trade
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off the relationship between the cost of hardware and the performance of the reflection.
In practice, the amplitude control is basically more cost-effective than phase control and
there are many ways to obtain amplitude adjustment for the IRS network. One of the
common processes is to adjust the load resistance in every IRS element [31].

Figure 1. The architecture of reconfigurable reflecting element based on PIN diode with different layers.

Consider this as an example: a particular location of the incident energy of the signal
is decreased as heat by variation in the resistance of every element of IRS, and then an
effective scale of the reflection amplitude in [0, 1] is achieved. This is almost the same
as the work of a passive radio frequency identification tag that can regulate the reflected
signal power strength via changing its load impedance for data modulation. For optimizing
the reflection design, it is required to have independent control of the amplitude and
phase shift of every element of IRS. However, this requires a more intelligent hardware
implementation (e.g., the design of a multilayer surface [32]) than the aforementioned
reason due to the individual control only. Ideally, the amplitude and phase shift per
element can be individually and randomly tuned for IRS reflection.

2.2. IRS Reflection

Figure 2 shows the channel model design of IRS-based wireless communication where
the channels from the BS to the UE through each element of the IRS are constructed with
three components. They are the channel link between BS and IRS, the reflection of IRS
elements, and the channel link between the IRS and UE. Such a composite channel behaves
differently from the conventional point-to-point direct channel. However, from the BS,
each element of the IRS receives the superposed multi-path signals and then scatters the
associated signal with an adaptable amplitude and/or phase, such as a single point source,
which leads to a “multiplicative” channel model.
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Figure 2. IRS-aided wireless communication system with BS and UE channel link.

We can express the complex reflection coefficient of the reflected signal by the n-th
element of the IRS mathematically as follows:

hn = (βnejθn)xn, n = 1, . . . N, (1)

where hn denotes the reflected signal of the nth element, xn is the incident signal to the
IRS, N represents the total number of the reflecting elements at the IRS, and βn and θn
present the Equations (1) and (2) with the reflection coefficient and control the reflected
signal amplitude and phase, respectively [33]. By using the appropriate designs for the IRS
phase shifts, amplitude, or both, a certain metric objective, such as the system achievable
rate or the coverage, can be optimized by changing the channel environment. This is
fundamentally different from conventional wireless communication research, where the
design and optimization opportunities are confined to the pair of transceivers [24].

Moreover, according to the design of the IRS-aided wireless systems, for the fun-
damental relationship between the reflection amplitude and phase shift, we can assume
an analytical model for the phase shift. The model is generally applicable to a variety of
semiconductor devices used for the application of the IRS. We consider the phase shift
and the corresponding amplitude Ln = βn(θn)ejθn with θn ∈ [−π, π] and βn(θn) ∈ [0, 1],
respectively. Therefore the reflection amplitude βn(θn) can be expressed as follows:

βn(θn) = (1− βmin)

(
sin(θn − φ) + 1

2

)γ

+ βmin, (2)

where βmin ≥ 0, φ ≥ 0, and γ ≥ 0 are the constants related to the specific circuit implemen-
tation. Figure 3 shows that the βmin is the minimum amplitude, φ is the horizontal distance
between −π/2 and βmin, and γ controls the steepness of the function curve. Note that,
for γ = 0, (2) is equivalent to the ideal phase-shift model, i.e., βn(θn) = 1, ∀n. In practice,
IRS circuits are fixed once they are fabricated and these parameters can be easily found by
a standard curve fitting tool [34].
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Figure 3. The phase shift model and its different parameters.

2.3. Channel Model of IRS

We consider the system model shown in Figure 4, where a BS communicates with
a UE using an IRS-assisted network. It is assumed that the base station has M uniform
linear array antennas and the IRS has N reflective elements. One user is considered in the
services area having a single antenna. The received signal via IRS can be defined as [10]:

yirs = huΨHbx + n (3)

where yirs is the received signal at the UE, x ∈ CM×1 is the transmitted signal, Hb ∈
CN×M is the channel matrix from BS to IRS, hu ∈ C1×N is the channel vector from
IRS to UE, and n ∼ CN (0, σ2) is the additive white Gaussian noise (AWGN) at the
user. Ψ = diag(z) ∈ CN×N is a diagonal matrix representing the phase shift values with
z = [β1ejθ1,β2ejθ2 , . . . βNejθN ]T ∈ CN×1. The total channel with direct communication can
be formulated as [35]:

yt = huΨHbx + Hdx + n (4)

where Hd ∈ C1×M is the direct channel between BS and UE. The BS-IRS channel Hb can be
written as follows:

Hb =

√
MN
P1

P1

∑
p1=1

α1
pt(β1

p, θ1
p)r(β1

p) (5)

where
√

MN
P1

is the normalization factor, P1 is the number of paths between BS and IRS, α1
p

is the complex gain for path p, t(β1
p, θ1

p) ∈ CN are the array response vectors related to IRS,
and r(β1

p) ∈ CM are the array response vectors of BS. The array response vectors can be
expressed as follows:
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t(β, θ) =
1√
N

[
1, . . . , ej 2π

λ dr(n1 cos(θ) sin(β)+n2 sin(θ)), . . . , ej 2π
λ dr((N1−1) cos(θ) sin(β)+(N2−1) sin(θ))

]T

, (6)

r(β) =
1√
M

[
1, . . . , ej 2π

λ da(m sin(β)), . . . , ej 2π
λ da((M−1) sin(φ))

]T

, (7)

where dr is the elements spacing for IRS, da is the antennas spacing for BS, λ is the signal
wavelength, and 0 ≤ n1 < N1 and 0 ≤ n2 < N2 denote the horizontal and vertical indices
of IRS elements. For indexing the BS antenna, m is used, where 0 ≤ m < M. The channel
matrix between the IRS and UE can be expressed as follows:

hu =

√
N
P2

P2

∑
p2=1

α2
pr2(β2

p, θ2
p), (8)

where
√

N
P2

is a normalization factor, P2 is the number of paths between IRS and UE, α2
p is

the complex gain for the p-th path, and β2
p and θ2

p are the azimuth and elevation of angle of
departure, respectively.

Figure 4. IRS-based communication model for base station to user link scenario.

The cascade channel from BS to UE can be expressed as follows:

Hca =

√
MN

P1, P2

P1

∑
p1=1

P2

∑
p2=1

α1
pα2

p × diag(r2(β2
p, θ2

p))t(β1
p, θ1

p)r(β1
p) (9)
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2.4. IRS Based Communication Advantages

Finding a clear line-of-sight communication channel is a big challenge for wireless
communication. In a practical scenario, many obstacles can make the transmitted signal
very weak, and then interruption of the service can occur. Figure 5 shows the comparison
between the energy efficiency and data rate for the IRS and decode-and-forward (DF) relay
system [36]. It is evident that IRS can provide a higher data rate in low-energy consumption
compared to the DF relay. Some of the striking advantages can be listed as:

• IRS can provide an alternative path where direct communication is not possible. A vir-
tual path is established dynamically when the communication takes place between
the transmitter and receiver [29].

• IRS devices are passive in nature, which implies less power consumption compared to
relay communication. The amplification and forwarding of an incoming signal are
possible without employing power amplifiers [37]. Instead, the signal phase shift is
controlled by the reflecting elements to direct the signal to the UE.

• Millimeter wavelength communication can address the bandwidth shortage problem
for 6G communication. However, the path loss is higher than other low-frequency
bands [38]. IRS can improve the communication to gain a better performance.

• IRS can be utilized to compensate for the channel rank condition in an environment
suffering from a rank deficiency issue [39].

• The propagation of EM waves can be reconfigured in a software-controlled fashion,
which can turn the probabilistic wireless channel model into a deterministic model [40].

• As the IRS is based on the reflection of signals with directed beamforming, Ralyleigh
fast fading is converted to Rician slow fading.

• IRS can provide an effective solution for both the co-channel and inter-channel inter-
ference of wireless communication [29].

Figure 5. The comparison between energy efficiency and data rate for DF relay and IRS.
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3. Machine Learning for IRS-Assisted Communication Systems

The ML technique is a powerful technology and has achieved remarkable interests
in wireless communications due to its learning capability and large search-space [41–43].
In this section, we review the existing research contributions related to ML-based IRS
wireless communication with its application and challenges. In addition, ML-based IRS
systems and potential opportunities for future research community are presented. Table 1
shows a comparison between some recent ML-based technologies for IRS-assisted wire-
less communication.

ML is related to the portion of science that studies the theory and characteristics of
learning algorithms, their performance, and associated systems. ML is a wide multidisci-
plinary area that draws concepts from a variety of domains, including information theory,
AI, statistics, optimal control, and optimization theory. In addition, it makes new ideas
for other scientific, mathematical, and engineering fields [44–47]. Due to the deployment
in different field applications, ML has touched nearly every scientific subject and has had
a significant effect on research and society [48]. Some recent application fields of ML
are autonomous systems, suggestion engines, informatics, data mining, and recognition
systems [49]. The ML technology consists of two phases: training and decision making.
In the training phase, a dataset is used to train and understand the model of the system.
During the decision-making process, the trained model is employed to derive the pro-
jected output for every new input given to the system. The taxonomy of ML involves
various subfields, such as RL, UL, and SL [50]. A detailed classification of an ML-based IRS
system is described in the next section by the overview of Figure 6. We also summarize
machine-learning approaches for IRS-based communication in Table 2.

Figure 6. Taxonomy of ML-based IRS system.

3.1. Deep Learning for IRS-Enhanced Communication Systems

For the revolution of communication systems, DL is a potential and important tech-
nique. As a result of its potential learning capabilities, DL can be applied in various areas of
IRS-enhanced wireless networks [16,51,52]. In MIMO communication, the timely acquisi-
tion and appropriate CSI play a vital role in the wireless communication system. Due to the
large number of antennas in a massive MIMO communication system, the estimation of CSI
becomes more difficult and complex [53]. To overcome this drawback, DL-based research
has been conducted by many researchers for estimating CSI, especially for DL-based IRS
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communication systems [54]. The authors in [35] proposed a DL method for training the
IRS reflection matrices from sampled channel knowledge without any command of the
IRS geometrical array for estimating the large number of unspecified parameters that are
created by IRS. The key idea is to extract environment descriptors that capture information
about the multi-path signature of a signal travelling towards IRS. This information helps
to train the DL model to estimate the channel parameters. In [55], authors proposed a DL
algorithm for the enhancement of the key generation rate (KGR) in the physical layer key
generation by using a single antenna UE time division duplexing mode system. The authors
proposed KGNet for frequency band feature mapping to construct a reciprocal channel
feature between communication parties. To estimate the compressive CSI for IRS-assisted
mmWave systems with a low training overhead, the authors in [23] introduced a deep
denoising neural network. The proposed DL method can jointly process real and imaginary
parts of the channel matrix. The simulation results provide a robust result for SNR = 10 dB,
with different numbers of multipath signal components. In this way, for estimating the CSI
of an IRS-assited wireless network, the DL method can be adopted. In addition to the above
applications of DL in IRS-enhanced wireless networks, to estimate the mapping between
a UE position and the IRS phase configuration to maximize the received SNR, a deep neural
network (DNN)-based approach in the indoor communication environment was proposed
in [56]. The proposed DL architecture consists of five input layers, three hidden layers, and
an output layer. The hidden layers are mainly responsible for the input–output mapping
the user position and optimal IRS phase configuration. Moreover, for the optimal IRS
phase shift configuration, DL can also be applied. The authors in [57] proposed a DL-based
algorithm for optimally designing the phase shift of the IRS by training in an offline stage.
As the number of reflecting elements increases, the effective gain of the reflecting path
increases. In addition, an increase in the number of antennas in the user can enhance the
performance. In addition, the DL-based IRS wireless networks can be deployed for signal
detection. The signal estimation and detection in the IRS-assisted wireless networks were
carried out in [58]. For estimating channels and phase angles of a reflected signal received
by an IRS, a DL-based approach was introduced. The bit-error-rate is also improved by the
application of the DL method in an IRS-based wireless communication system.

3.2. Reinforcement Learning for IRS-Enhanced Communication Systems

RL is constructed to transform the AI field. In addition, it represents a next step with
regard to the creation of autonomous systems with a higher-level knowledge of the visual
world. Currently, RL is also applied to the field of robotics, allowing control policies for
robots to be learned directly from camera inputs in the real world [59]. The learning capa-
bility of the RL model exploits learning from the environment, learning from the feedback
of UE, and learning from its mistakes, which may mitigate the challenges encountered in
conventional IRS-enhanced wireless networks, and thus the performance can be improved.
In recent years, several works related to RL-based IRS wireless communication have been
carried out to enhance the communication performance, focusing on 6G network applica-
tion [60–62]. Figure 7 shows a typical application scenario for RL-based communication.
Each user sends the feedback through a relay buffer, which is used to update the beam-
forming policy by the base station. In [63], the authors proposed deep deterministic policy
gradient (DDPG)-based models in the IRS wireless network with the multiple input single
output (MISO) communication system. Based on the simulation result, the IRS-NOMA
downlink outperforms IRS orthogonal multiple access (OMA) downlink transmission
significantly. However, the complexity of the proposed methods increases exponentially as
the number of reflecting element increases.
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Figure 7. RL-based IRS-enhanced communication system.

The phase shifts of the IRS structure are mainly of discrete form, so the deep Q-network
(DQN) learning model is appropriate to mitigate the difficulty of the phase shift design.
For acquiring the whole advantages of an IRS wireless communication system with the
aid of an RL algorithm, the architectures of the joint transmit and passive beamform-
ing of an IRS-assisted communication system were considered in MISO systems [64,65],
OFDM-based systems [66], wireless security systems [67], and millimeter wave systems [68].
Moreover, the RL-based algorithm is susceptible to simultaneously design the alternating
optimization (AO) method for the transmit beamforming at the BS and the passive beam-
forming at the IRS device. For more details in [64], the authors proposed a DDPG-based
algorithm by utilizing the sum rate as instant rewards for training the model to gain a
maximum throughput. In the applied model, the successive transmit beamforming and
IRS phase shift were cooperatively optimized with less complexity. A deep RL approach
in [65] was proposed for IRS phase shift design. Under the Rician fading channel, the
proposed approach almost achieves an upper bound in terms of the received SNR value.
By using the direct optimizing interaction matrices from the sampled channel knowledge
in [66], the authors applied a deep RL-based algorithm for maximizing the achievable com-
munication rate in the IRS wireless network. The only single beam was used for training
episodes in the applied deep RL algorithm. Thus, the proposed algorithm can avoid the
data collection phase during the training period, which reduces the computational time.
RL-based approaches can ensure security in IRS-based communication, which was reported
in [67]. The optimal beamforming for both the base station and IRS reflection maximizes the
worst-case secrecy rate. The proposed scheme can enable a secrecy rate with a satisfactory
quality of service. In [68], authors proposed a deep RL-based algorithm that acquired a
maximum throughput by estimating the perfect and imperfect CSI and modeling a return
distribution for each state-action pair, and a univariate regression algorithm was also
proposed, which modeled the inherent randomness interconnection between the IRS and
communicating environment. In addition, a post-decision state and prioritized experience
replay schemes were used to enhance the learning efficiency and secrecy performance.

3.3. Supervised Learning for IRS-Enhanced Communication Systems

In the presence of a supervisor, the type of learning that recognizes the system param-
eters is known as SL. In this learning, the collection of data is needed for an algorithm that
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is combined with output and input information. Depending on the input and output data
connection, the model can be built up. After that, a fresh data set is input into the model
to obtain a prediction result [69–71]. SL is one of the strongest branches of ML, which
includes regression, decision tree and random forest, K-nearest neighbors (KNN), support
vector machines (SVM), and Bayes classification. This powerful model can be applied to
various challenging fields, such as spectrum sensing [72], prediction of traffic/QoE [73],
channel/antenna sorting [74], and association of network [75]. In recent years, owing to
the benefits of a low complexity and faster speed, SL algorithms can be applied to solve
the associated difficulty with enough training data in the IRS-empowered wireless com-
munication system. Figure 8 depicts the SL-based IRS communication system. The signal
generated from the base station is first transmitted to IRS elements. Next, the reflected
signal from IRS is captured at the user to create a dataset. The dataset is used for training
to create an SL-based model for an optimal IRS interaction, as shown in Figure 8. In [76],
authors proposed a SL convolutional neural network (CNN) model in the MISO system for
obtaining the sum-rate maximization in the IRS wireless communication system. The CNN
model is deployed in the IRS, where the input is an incident RF signal and the output
is the set of interfering users. More than a 99% accuracy was achieved by the proposed
model. The OFDM-based single receiving antenna system model has been utilized in the
IRS network to achieve a maximum performance rate with the SL algorithm [35,77,78].
The study in [77] proposed an ordinary differential equation (ODE)-based CNN model
for IRS-based communication. ODE-based methods can be used to describe the latent
relation between different layers in a neural network. The performance analysis shows that
ODE-based CNN is always superior compared to a standard CCN network. The authors
in [78] proposed an algorithm that leverages previous channel information to improve the
quality of an optimal IRS interaction. The authors of [79] proposed a SL algorithm in the
OFDM-based single input single output (SISO) system to obtain a maximum performance
in the IRS network. The MIMO system can obtain the maximum output performance with
the assistance of the SL-CNN model, where the received pilot signals were used as the
input data for the ML model [23,80]. The study conducted in [80] proposed a twin CNN
architecture for both direct and cascade channel estimation using pilot signals. The pro-
posed method can tolerate a four-degree displacement in the user location. In addition, a
SL-based IRS wireless network communication system was carried out in the [78,81–83],
where most of the papers mentioned the increase in the achievable rate maximization.

Figure 8. SL-based IRS-enhanced communication system.
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Table 1. Comparison between ML-based technologies for IRS-assisted wireless communication.

References ML Model Architecture Major Contributions Remarks

[84] DNN with three full layers Phase reconfiguration Performance is close to the perfect CSI-based
approach. The pilot signal overhead is reduced

[85]
Multi-layer perceptron (MLP)

with eight hidden layers,
ReLU activation function

CE by normalized mean
squared error algorithm

Performance improves with higher signal-to-noise
ratio (SNR)

[23] Complex-valued DnCNN Compressive sensing-based
broadband CE algorithm

Robustness makes it possible for application in
different SNRs without repetitive training

[86]
Deep-learning-based phase
shift control (D-PSC), fully

connected layers

Find out optimal phase shifts
maximizing data rate

Data rate more than 25% over the conventional
phase shift control schemes using the same

pilot resources

[54] CNN with
three convolution layers

Predict the optimal IRS
phase shift

Can converge to near-optimal data rates using less
than 2% of the total number of receiver locations

[87] Deep-RL Decaying-DQN-
based algorithm

Proposed system significantly reduces energy
dissipation by integrating IRSs in UAV-enabled

wireless networks

[88] ML-inspired
algorithmic framework Cross-entropy optimization

Proposed method can simultaneously optimize
transmit and reflecting beamforming in an

IRS-assisted wireless system

[89] ML framework Optimization-driven
DDPG algorithm

Proposed model can improve both convergence
and reward performance compared to

conventional model-free learning scheme

[90] Fully-connected DNN model Spectral efficiency problem
Proposed model has less computational

complexity and does not require any
computational load for data labeling

[91] Neural network model IRS-aided
localization calculation

Proposed system requires multiple APs and a large
number of fingerprint grid samples and then

acquires great localization results

[83] DNN with three hidden layers
Beam management (BM)

classification for
mmWave networks

Gained highly efficient BM with remarkably
attenuate system overhead

[52]
Artificial neural network

(ANN) with 10 layers, ReLU
activation functions

ANN data-driven
approaches for optimization

Proposed model can be trained to learn virtually
any input–output map [92]

[93]
CNN with three conventional

layers, ReLU
activation functions

CE using deep
denoising algorithm

Proposed method can use optimal minimum mean
square error estimator with channel probability

density function

[94]
Recurrent neural network

(RNN) model, ReLU
activation functions

CE using single and
multi-scale RNN algorithm

Model enhanced flexibility of overall network to
obtain better generalization and fitting capabilities

Table 2. Machine learning approaches for IRS-based communication.

IRS Communication Problem ML Approach Developed Model

Channel estimation DL, SL, RL, FL deep multi-layer perceptron, ChannelNet,
CV-DnCNN, DReL, CDRN, ODE-CNN, KGNet

Signal detection DL DeepIRS, CNN, SVM

Phase shift configuration and beamforming DL, RL, SL, FL, UL DQN, DNN, DL-RNN, DQN, DeepMIMO, LPSNet

Security DL, FL DRL, CNN

Resource allocation DL, FL DNN, AirFL
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In [81], a hybrid precoding architecture was proposed for THz communication for
IRS-based communication. An SL-based approach was adapted to optimize the hybrid
precoding problem. It has been shown that the proposed method has a similar performance
to the traditional hybrid precoding algorithm. The authors in [82] proposed an RIS-assisted
drone communication network where the drone is connected to the base station via IRS. An
SL-based approach was implemented to find the consistent communication link between
the base station and drone. The study in [83] proposed an ML-based beam management
framework for IRS-assisted mmWave networks. Environmental and mobility awareness
were used to maximize the beamforming accuracy.

3.4. Unsupervised Learning for IRS-Enhanced Communication Systems

The algorithm helps to find out the error level for every inspection by correctly rec-
ognizing the input and output data without any assistance by a supervisor called an
UL machine [95]. In brief, the UL technique constructively finds the data connections to
form a cluster and obtain an unlabeled input dataset [69]. UL methods do not depend
on prior knowledge and this learning technique is not data-hungry. Several UL algo-
rithms have been developed in the recent research community [96], such as clustering
of K-means, maximization of expectation, principal component analysis (PCA), and in-
dependent component analysis (ICA). These proposed UL algorithms can be deployed
in the IRS-enhanced wireless communication to improve the difficulty issue, such as the
deployment of BS, UE clustering/association of UE [97], detection of network state [98],
aggregation of dataset [99], and cancellation of interference [100]. In [101], authors pro-
posed IRS-assisted UL-CNN, a feedforward neural networks (FNN) algorithm in the MISO
communication system with multiple UEs to acquire the maximum sum-rate. To obtain
the maximum spectral efficiency, a UL-based learning phase-shift neural network (LPSNet)
algorithm was proposed in [90]. The maximization problem of spectral efficiency was
formulated and a small number of hidden layers were used in the ML architecture to solve
the problem. The proposed algorithm was tested with 16× 2 MIMO configuration.

3.5. Federated Learning for IRS-Enhanced Communication Systems

In ML, FL has become the main point in the large-scale area and distributed opti-
mization due to the exploration of training statistical models by a direct route on distant
devices [102]. In the FL, the inaccessibility of personal data is no longer a problem. The FL
algorithm is learned at the edge in allocated networks. The FL model can be deployed to
design multiple IRS networks because of its privacy-preserving nature. In this network, IRS
operates as a distributed trainer, trains its generated data, and also transfers it to local model
parameters instead of the raw training dataset to an aggregating unit. In this way, FL can be
learned in a decentralized manner for the deployment and design policy. Figure 9 shows an
example of an FL-based IRS networking system. Each user has a local ML model trained by
a local dataset that sends the learned parameter to the base station. Again, the base station
trains a global model by having the parameters from users. In [103], authors proposed an
IRS-assisted optimal beam reflection (OBR)-FL algorithm in the single receiving antenna
communication system with multiple UEs to increase the data rate. The experimental
results suggest that the achievable rate is similar to other centralized machine learning
models and that there is no significant difference if the receiver number is changed. In [104],
the authors proposed an air federated learning (AirFL) framework to solve resource alloca-
tion and device selection problems for aggregation accuracy enhancement and coverage
rate improvement. According to the simulation results, the proposed model can converge
faster, with a small training loss. In order to contribute to unmanned aerial vehicle (UAV)
trajectory application, an MIMO system was designed with the proposed FL-CNN model,
where the received pilot signals were used as the input data for the ML model [105]. For re-
liable channel estimation, the authors proposed that the model should be trained on 15 dB
SNR and 5 bit quantization.
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Figure 9. FL-based IRS-enhanced communication system.

4. Future Research Trends for ML-Based IRS-Assisted Wireless Communication

ML-based models are efficiently deployed for wireless communication to enhance the
service quality. The different application scenarios of an IRS-based wireless communication
system are illustrated in Figure 10. Figure 10a shows a situation where a user is out of the
line of sight due to an obstacle; in this case, IRS can help with communication. As shown in
Figure 10b, massive devices can be implemented using IRS. Figure 10c shows that physical
layer security can be enhanced using IRS with controlled beamforming. It is expected that
mmWave massive communication can be implemented successfully using IRS as shown in
Figure 10d. Figure 10e shows that IRS can be useful in wireless power transfer for indoor
IoT networks. In this section, we describe some of future research scopes that combine ML
and IRS.

Figure 10. IRS-aided wireless communication applications.

4.1. Optimal Placement of IRS

The position of the reflecting surface is fixed and cannot be changed after implementa-
tion. Thus, it is necessary to have sufficient information for the performance of IRS in the
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environment before practical deployment. To obtain a maximum performance, the place-
ment of the IRS device should be based on the operating performance. This is applied for
both the indoor and outdoor placement of IRS. ML models can be employed to estimate
the particular cases with optimized results [106]. As each of the installation cases may be
different, new models can be effective to estimate the performance.

4.2. Dynamic Hybrid Beamforming

IRS devices can create controllable beamforming by reflecting the BS signal. The beam-
forming depends on the passive elements on the IRS device and can generate UE-specific
formation. ML algorithms can be efficiently applied to estimate effective beamforming for the
UE service. In addition, UE feedback can be added to make the dynamic beamforming for
mobile UEs. New training data and models need to be investigated for optimal performance.

4.3. Data Collection and Model Training

Data collection is a crucial part of training ML models and the accuracy of the model
depends on the data [107]. As biased data can result in imperfect models, data collection
is a challenge for the deployment of ML-based techniques in IRS-based communication.
The main estimation factors are signal detection, CE, and the beamforming design for
the receiver. For the successful implementation of ML-based techniques, data collection
algorithms can be a future research topic.

4.4. Constrained System Modeling

IRS-based communication can be employed in a constrained system or device to
increase the performance without additional cost. Energy and time-constrained commu-
nication systems in industrial environments can be investigated by using ML methods.
In addition, a good signal-to-noise ratio can be achieved for non-line of sight commu-
nication. A new investigation can be made to identify the advantages of IRS-assisted
communication for such systems.

4.5. Channel State Characterization

Different models have been proposed to categorize the IRS-assisted communication,
such as an independent diffusive scatter-based model, physics model, impedance network-
based model, and tile and code-book-based framework [108]. Machine-learning-based CE
is now undergoing research, and different techniques have been used to estimate channel
modeling [109]. However, many proposed optimization techniques are computationally
complex. New optimization techniques can be a scope for future research.

4.6. IRS for IoT Network

IoT devices are increasing exponentially due to their diverse applications and high
demands [110]. The IoT and 6G technology are accelerating the industrial revolution 4.0.
IRS-based wireless communication can increase the connectivity of IoT devices in both
indoor and outdoor environments. As the IoT devices are placed in a scattered way,
the wireless system performance is unpredictable, and, thus, ML-based algorithms can
be adapted to mimic the environment behavior. Most IoT devices are sensor nodes that
generate different data related to some physical values. Further research can shed light on
the impact of IRS for IoT connectivity using ML methods.

4.7. Protection Against Eavesdropping

Security is a great concern in communication systems in recent years and physical
layer security (PLS) has attracted considerable attention. PLS has an advantage over the
cryptography technique. PLS has less computational complexity and the structure of 6G
network is decentralized; thus, key management will be difficult for each device in the
network [111]. As IRS creates beamforming, security during data transmission can be
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achieved. Different environment threats combined with ML techniques can be modeled,
and appropriate actions can be taken. This approach can be investigated in future studies.

4.8. MmWave Communication

The mmWave is considered a promising technology for increasing the bandwidth
demand in 6G communication [112]. Some studies have been performed using IRS-assisted
mmWave communication, but more studies are needed to investigate the impact of IRS.
Some research directions can be modulation techniques, antenna array architecture, schedul-
ing algorithms, signal waveform, and the deployed IRS with ML methods.

4.9. EDGE Intelligence

Edge computing refers to the movement of computations on the network edge rather
than in the server [113], and eventually transfers the processing on source proximity. Edge
computing provides a low latency, less energy consumption, low cost, privacy, and band-
width efficiency in the communication of UE to the server. ML-based edge computing can
provide an optimized system for network function [114]. It is expected that IRS and ML
can provide a better performance for edge computing, which needs to be investigated in
the future.

4.10. Hybrid Communication Implementation

Visible light communication (VLC) can also be a supporting technology to enhance
the RF bandwidth [115]. A VLC/radio frequency (RF) hybrid technology can open new
areas of research using IRS-based communication. As an example scenario, underwater
communication can be a candidate for a hybrid communication system. Optical communi-
cation [116] can be used for data transmission in deep underwater and RF communication
can be integrated to transmit data to the server near the surface. As IRS is based on the
reflection of signals, it will work on both optical and RF waves.

5. Conclusions

In this paper, we have provided a comprehensive survey on ML-based IRS enhanced
wireless communication technology for solving different problems. We have surveyed
different ML-based IRS communication system model architectures, such as SL, UL, FL,
and RL, with extensive discussion. Finally, we have provided some future research op-
portunities, challenges, and applications of ML-based IRS communication. We hope that
the ML-based IRS system will contribute to the efficient direction and design of a high-
performance system for the next generation wireless communication.
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84. Özdoğan, Ö.; Björnson, E. Deep learning-based phase reconfiguration for intelligent reflecting surfaces. In Proceedings of the
2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–5 November 2020; pp. 707–711.

85. Li, W.B.; Shin, Y. Deep Learning for Intelligent Reflecting Surfaces Aided MIMO Systems. In Proceedings of the 2021 International
Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 19–21 October 2021;
pp. 902–905.

86. Kim, H.; Wu, J.; Park, Y.; Kim, S.; Shim, B. Deep Learning-Based Intelligent Reflecting Surface Phase Shift Control. In Proceedings
of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Virtual, 27 September–28 October 2021; pp. 1–5.

87. Liu, X.; Liu, Y.; Chen, Y. Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks.
IEEE J. Sel. Areas Commun. 2020, 39, 2042–2055. [CrossRef]

http://dx.doi.org/10.1109/TVT.2022.3141935
http://dx.doi.org/10.1109/TCOMM.2021.3100866
http://dx.doi.org/10.1109/JSAC.2020.3000835
http://dx.doi.org/10.1109/LWC.2020.2969167
http://dx.doi.org/10.1109/TWC.2020.3024860
http://dx.doi.org/10.1109/TWC.2021.3107520
http://dx.doi.org/10.3390/electronics9101635
http://dx.doi.org/10.1109/TWC.2017.2779511
http://dx.doi.org/10.1109/TVT.2017.2709622
http://dx.doi.org/10.1109/TVT.2015.2438058
http://dx.doi.org/10.1109/TVT.2021.3064042
http://dx.doi.org/10.1109/LCOMM.2021.3064596
http://dx.doi.org/10.1109/TCOMM.2021.3097726
http://dx.doi.org/10.1109/LWC.2020.2993699
http://dx.doi.org/10.23919/JCC.2020.10.007
http://dx.doi.org/10.1109/JSAC.2020.3041401


Sensors 2022, 22, 5405 21 of 21

88. Chen, J.C. Machine Learning-Inspired Algorithmic Framework for Intelligent Reflecting Surface-Assisted Wireless Systems. IEEE
Trans. Veh. Technol. 2021, 70, 10671–10685. [CrossRef]

89. Gong, S.; Lin, J.; Zhang, J.; Niyato, D.; Kim, D.I.; Guizani, M. Optimization-driven machine learning for intelligent reflecting
surfaces assisted wireless networks. arXiv 2020, arXiv:2008.12938.

90. Nguyen, N.T.; Nguyen, L.V.; Huynh-The, T.; Nguyen, D.H.; Swindlehurst, A.L.; Juntti, M. Machine Learning-based Reconfigurable
Intelligent Surface-aided MIMO Systems. In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), Oulu, Finland, 27–30 September 2021; pp. 101–105.

91. Nguyen, C.L.; Georgiou, O.; Gradoni, G. Reconfigurable intelligent surfaces and machine learning for wireless fingerprinting
localization. arXiv 2020, arXiv:2010.03251.

92. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,
2, 359–366. [CrossRef]

93. Liu, C.; Liu, X.; Ng, D.W.K.; Yuan, J. Deep residual network empowered channel estimation for IRS-assisted multi-user
communication systems. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC,
Canada, 14–23 June 2021; pp. 1–7.

94. Jin, Y.; Zhang, J.; Zhang, X.; Xiao, H.; Ai, B.; Ng, D.W.K. Channel Estimation for Semi-Passive Reconfigurable Intelligent Surfaces
With Enhanced Deep Residual Networks. IEEE Trans. Veh. Technol. 2021, 70, 11083–11088. [CrossRef]

95. Schmarje, L.; Santarossa, M.; Schröder, S.M.; Koch, R. A survey on semi-, self-and unsupervised learning for image classification.
IEEE Access 2021, 9, 82146–82168. [CrossRef]

96. Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.C.; Hanzo, L. Thirty years of machine learning: The road to Pareto-optimal
wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 1472–1514. [CrossRef]

97. Liu, X.; Liu, Y.; Chen, Y. Reinforcement learning in multiple-UAV networks: Deployment and movement design. IEEE Trans. Veh.
Technol. 2019, 68, 8036–8049. [CrossRef]

98. Assra, A.; Yang, J.; Champagne, B. An EM approach for cooperative spectrum sensing in multiantenna CR networks. IEEE Trans.
Veh. Technol. 2015, 65, 1229–1243. [CrossRef]

99. Morell, A.; Correa, A.; Barceló, M.; Vicario, J.L. Data aggregation and principal component analysis in WSNs. IEEE Trans. Wirel.
Commun. 2016, 15, 3908–3919. [CrossRef]

100. Li, J.; Zhang, H.; Fan, M. Digital self-interference cancellation based on independent component analysis for co-time co-frequency
full-duplex communication systems. IEEE Access 2017, 5, 10222–10231. [CrossRef]

101. Song, H.; Zhang, M.; Gao, J.; Zhong, C. Unsupervised learning-based joint active and passive beamforming design for
reconfigurable intelligent surfaces aided wireless networks. IEEE Commun. Lett. 2020, 25, 892–896. [CrossRef]

102. Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated learning for wireless communications: Motivation, opportunities, and challenges.
IEEE Commun. Mag. 2020, 58, 46–51. [CrossRef]

103. Ma, D.; Li, L.; Ren, H.; Wang, D.; Li, X.; Han, Z. Distributed rate optimization for intelligent reflecting surface with federated
learning. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin,
Ireland, 7–11 June 2020; pp. 1–6.

104. Ni, W.; Liu, Y.; Yang, Z.; Tian, H.; Shen, X. Federated learning in multi-RIS aided systems. IEEE Internet Things J. 2021, 9, 9608–9624.
[CrossRef]

105. Elbir, A.M.; Coleri, S. Federated Learning for Channel Estimation in Conventional and RIS-Assisted Massive MIMO. IEEE Trans.
Wirel. Commun. 2022, 21, 4255–4268. [CrossRef]

106. Subrt, L.; Pechac, P. Intelligent walls as autonomous parts of smart indoor environments. IET Commun. 2012, 6, 1004–1010. [CrossRef]
107. Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data.

ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [CrossRef]
108. Yu, X.; Jamali, V.; Xu, D.; Ng, D.W.K.; Schober, R. Smart and reconfigurable wireless communications: From IRS modeling to

algorithm design. IEEE Wireless Commun. 2021, 28, 118–125. [CrossRef]
109. Elbir, A.M.; Mishra, K.V. A survey of deep learning architectures for intelligent reflecting surfaces. arXiv 2020, arXiv:2009.02540.
110. Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2019,

7, 16–32. [CrossRef]
111. Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.K.; Gao, X. A survey of physical layer security techniques for 5G wireless networks

and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [CrossRef]
112. Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless

systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [CrossRef]
113. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
114. Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
115. Sejan, M.A.S.; Chung, W.Y. Indoor fine particulate matter monitoring in a large area using bidirectional multihop VLC. IEEE

Internet Things J. 2020, 8, 7214–7228. [CrossRef]
116. Rahman, M.H.; Sejan, M.A.S. Performance analysis of indoor positioning system using visible light based on two-LEDs and image

sensor for different handhold situation of mobile phone. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP),
Dhaka, Bangladesh, 5–7 June 2020; pp. 1515–1518.

http://dx.doi.org/10.1109/TVT.2021.3110970
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1109/TVT.2021.3109937
http://dx.doi.org/10.1109/ACCESS.2021.3084358
http://dx.doi.org/10.1109/COMST.2020.2965856
http://dx.doi.org/10.1109/TVT.2019.2922849
http://dx.doi.org/10.1109/TVT.2015.2408369
http://dx.doi.org/10.1109/TWC.2016.2531041
http://dx.doi.org/10.1109/ACCESS.2017.2712614
http://dx.doi.org/10.1109/LCOMM.2020.3041510
http://dx.doi.org/10.1109/MCOM.001.1900461
http://dx.doi.org/10.1109/JIOT.2021.3130444
http://dx.doi.org/10.1109/TWC.2021.3128392
http://dx.doi.org/10.1049/iet-com.2010.0544
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1109/MWC.001.2100145
http://dx.doi.org/10.1109/JIOT.2019.2948888
http://dx.doi.org/10.1109/JSAC.2018.2825560
http://dx.doi.org/10.1109/COMST.2017.2787460
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/JIOT.2020.3039784

	Introduction
	IRS Technology Fundamentals
	IRS Hardware Architecture and Its Working Principle
	IRS Reflection
	Channel Model of IRS
	IRS Based Communication Advantages

	Machine Learning for IRS-Assisted Communication Systems
	Deep Learning for IRS-Enhanced Communication Systems
	Reinforcement Learning for IRS-Enhanced Communication Systems
	Supervised Learning for IRS-Enhanced Communication Systems
	Unsupervised Learning for IRS-Enhanced Communication Systems
	Federated Learning for IRS-Enhanced Communication Systems

	Future Research Trends for ML-Based IRS-Assisted Wireless Communication
	Optimal Placement of IRS
	Dynamic Hybrid Beamforming
	Data Collection and Model Training
	Constrained System Modeling
	Channel State Characterization
	IRS for IoT Network
	Protection Against Eavesdropping
	MmWave Communication
	EDGE Intelligence
	Hybrid Communication Implementation

	Conclusions
	References

