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Abstract: A Digital Twin (DT) is a set of computer-generated models that map a physical object
into a virtual space. Both physical and virtual elements exchange information to monitor, simulate,
predict, diagnose and control the state and behavior of the physical object within the virtual space.
DTs supply a system with information and operating status, providing capabilities to create new
business models. In this paper, we focus on the construction of DTs. More specifically, we focus on
determining (methodologically) how to design, create and connect physical objects with their virtual
counterpart. We explore the problem into several phases: from functional requirement selection
and architecture planning to integration and verification of the final (digital) models. We address as
well how physical components exchange real-time information with DTs, as well as experimental
platforms to build DTs (including protocols and standards). We conclude with a discussion and
open challenges.

Keywords: digital twin; digital model; control system; cyber-physical system; network simulation;
software simulation; system simulation; Industry 4.0

1. Introduction

A Digital Twin (DT) is composed of computer-generated models representing physical
objects. Such models continually adapt to operational changes based on data collected
directly from the physical objects. DTs can be implemented over cyber-physical systems.
Examples range from isolated robots to complete environments, such as smart cities and
5G networks [1].

DTs are expected to forecast the state evolution of the physical object using the ex-
changed data. Such exchange from physical to the virtual domains can be conducted
following real-time constraints. DTs can also supply a system with information and operat-
ing status, providing capabilities to create new business models. It is also possible to make
more accurate predictions and provide situational awareness. Other uses of DTs include
reducing costs and risks and improving efficiency, security and resilience.

Incorporating a DT presents many advantages for the management of the physical
objects. For example, to predict and optimize the system behavior, i.e., using models
or even machine learning techniques, it is possible to predict future behaviors of the
system and improve the process productivity. A common use of DTs for this purpose
is to prevent service disruption under maintenance situations. A DT can also be used
to perform continuous monitoring via real-time data acquisition. This allows the DT to
provide information to make better business decisions and control the physical system.
DTs can provide a testing platform to verify different scenarios to choose the most efficient
one and to increase the system performance. Another common use of DTs is to improve
security and resilience, due to DT’s ability to detect malicious actions on a system. In
addition, it allows for a better risk assessment to test various what-if cases that may affect
the physical objects.

Academic research and industrial interest on DTs has grown in the last few years,
especially due to its future potential and wide range of useful applications. Gartner
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has listed DTs as one of the top ten technology trends for years to come [2], and it was
classified as one of the technology pillars of Industry 4.0 in [3]. Building a DT is still a
complex process; it requires many steps of design, modeling and implementation to obtain
a functional system. Nevertheless, DT modeling is still a challenge [4]. To start, there is a
lack of standards heading the construction of DTs, as well as a lack of mature methodologies
to lead the process from the initial design to the simulation of the complete system. Even
though multiple approaches and technologies have been proposed, it is necessary to have a
design procedure which can support the selection of techniques and tools to build a DT
based on the system requirements.

Our work aims at answering those aforementioned issues. We propose a concrete
process to design DTs, as well as creating models and using existing tools to implement
them. Our proposal comes from a systematic review of the existing literature’s building
techniques for DTs. We provide in-depth insights regarding the design, modeling and
development techniques, i.e., how we can build a DT starting with a Physical Object (PO)
that we want to model and reproduce by software. We formulate the following research
questions: how can we model a DT? How can we design a DT architecture? how can
we synchronize the data in real-time between both components, and what are the main
challenges in developing DTs? We also cover critical challenges and evolution trends.

To conduct our survey, we followed a systematic literature review methodology [5],
based on the following terms:

• Collection Strategy—We used a keyword search to make the first selection of poten-
tially relevant scientific publications published in the last five years. We considered
databases such as Google Scholar, IEEE Xplore, DBLP and Science Direct to collect
the publications. Articles were filtered out with the keyword digital twins. Duplicate
articles were deleted and the most relevant works were filtered according to their titles
and abstracts. We included other publications using references from the first dataset.
This second dataset may contain publications older than five years if the content was
deemed relevant for the survey;

• Dataset Filtering—The inclusion criteria for our study was based on the following
conditions: (1) the DT should be approached from a computer system viewpoint;
and (2) the proposal should be useful for the simulation and optimization of the real
system. The exclusion criteria was based on the following conditions: (1) no scientific
articles written in a language other than English or with full content access denied;
and (2) the fundamental concepts, their related properties or the DT implementation
were not adequately described;

• Literature Classification— We aimed at clarifying how to build DTs, i.e., which pro-
cess to follow to design the different parts of the platform and which existing tools
can be used. Hence, the selected literature was analyzed and classified based on our
proposed design procedure to design, model and develop a DT. We organize the
paper using the taxonomy shown in Figure 1. We propose a three-step procedure
that corresponds to the chronological order of the activities required to implement
a DT. The first step explains how to design a DT, i.e., how to define the functional
requirements and the system architecture. The second step explains how to model
a DT. This step requires creating system models that represent different aspects of
the PO and integrating them. Finally, the third step explains how to implement a
DT, i.e., which are the existing platforms, frameworks and tools for developing a DT,
how to synchronize the data between physical and virtual objects and the existing
communication protocols and standards for the information exchange.

Paper Organization: Section 2 provides general background information on DTs.
Sections 3–5 provide, respectively, our findings on designing, modeling and implement-
ing DTs. Sections 6 and 7 provide a discussion, the research challenges and the future
perspectives of the work. Section 8 concludes the paper.
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Figure 1. Organization of our work.

2. What Is a Digital Twin?

The DT concept was fist introduced in 2002 by Michael Grieves, and since then, the
concepts and its associated technologies have evolved significantly. A detailed review of
the DT history can be found in [6,7].

A DT is composed of a real space containing a physical object, a virtual space con-
taining a virtual object and a link for data flow from the real space to the virtual space
and information flow from the virtual space to the real space [8]. Hence, a DT can be seen as
a digital copy of a physical object (PO) and its process [9]. The PO’s behavior is converted
into a virtual object (VO); both components are interconnected with a high level of synchro-
nization between them [10,11]. This link enables data exchange allowing physical–digital
convergence [12]. DTs are normally used in Cyber–Physical Systems (CPS) and networks
as they integrate simulation of a physical product. For that, DT models the mechanical,
electrical, software and other properties to optimize the physical product based on the
updated real-time data synchronized from sensors [13].

A DT may integrate different physical laws, as well as different scales or probabilities
reflecting the underlying state of the PO. This can be based on, e.g., historical data of the
physical model [14,15]. Different physics models cooperate with different system descrip-
tions, such as aerodynamics, fluid dynamics, electromagnetics and tensions. Moreover,
the use of different scales adapt the simulation to the required depth in terms of temporal
constraints. For instance, users can navigate different parts of the DT, visiting different
elements of each component. This can be complemented with the adoption of different
probabilistic models associated with each building block, e.g., to augment the prediction
capabilities of the DT.

One characteristic property of DTs is the connection and real-time data exchange
allowing continuous or periodic synchronization of the Virtual Object (VO) and PO [7].
The direction of the information is mainly from the PO to the VO. However, the VO may
send data and information to the PO [16]. The VO processes the historical data, such as
maintenance history and operational history from the PO along with real-time dynamic data
sensed and collected from multiple sources describing the PO status and its surrounding
environment status. The VO sends information, for example, to correct some states or
errors, reinitialize a machine after a break or synchronize states with other cooperating
robots. It may produce additional predictions to enhance system maintenance [7].

Some authors [17–19] propose the notion of a Cognitive DT which is inspired by ad-
vances in cognitive science. They propose to add the following functions to the DT: selective
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attention or focus; perception by forming useful precepts from raw sensory data; memory
based on encoding and retrieving knowledge; reasoning by drawing inferences from ob-
servations, beliefs and models; learning from experiences, observations and teachers; and
problem-solving to achieve goals. Mortlock et al. [19] propose using graph learning as the
pathway towards creating cognitive functionalities in DTs. The graph is built using data
models that use a Graph Neural Network (GNN).

As stated in the literature, DTs are a development of modeling and simulation tech-
nology. However, they are also different, as they break through the limitations of these
techniques by integrating Internet of Things (IoT) technologies. Next, we outline the main
differences between these concepts.

2.1. Digital Models vs. Digital Shadows vs. Digital Twins (DT)

The main difference between DTs, digital shadows and digital models is the nature
and direction of the data flow between the physical and virtual systems.

A digital model is a digital version of an existing or planned physical object and there
is no automatic data exchange between the physical model and the digital model. This
means that once the digital model is created, a change made to the physical object has no
impact on the digital model either way [4].

In the digital shadow scenario, there is data flowing from the physical object to the
digital model. Hence, the model is actualized with new information from the real world.

In a DT, the data flows are between the existing physical object and the digital object,
and they are fully integrated in both directions. A change made to the physical object
automatically leads to a change in the digital object and vice versa. In DTs, the flow of data
is automatic and synchronizes the digital object with the current status of the physical one,
also sending control information to it.

The fundamental element of a DT is the connection between digital and physical
systems carrying data and control information between them. Having this data, a DT can
supply every required piece of information about the physical system in a real-time manner,
which constitutes the optimal target for DTs.

2.2. Digital Twins vs. Simulations

The major difference between a DT and a simulation is the data interconnection that
allows exhanging information between the PO and the VO, i.e., a simulation predicts future
states of a physical system based on a set of initial assumptions [20]. However, a DT tracks
the current and past states of the PO that is being used in operation and is being simulated
within the VO. Traditional simulation methods are of limited capability in evaluating
system performance and considering the physical part of the system [13].

Often, the computational models used to infer the current state of the PO are the same
models which can be used in simulation to predict future states. The simulation models
can provide additional decision-making information for optimizing future operations,
forecasting degradation mechanisms and predicting future failures.

Considering this DT definition, we analyze how to build a DT. The whole process
is shown in Figure 2. In the next Section, we explain the design phase, including how to
create a functional design and the system architecture.
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Figure 2. Methodological design of Digital Twins.

3. Digital Twin Design

The first step of the process to build a DT requires modeling the static properties of the
system. The objective is to determine the system requirements and constraints, including
the functions and functional decomposition. Model data flows and communication should
also be considered, as should the architecture and logical structure of the system and the
technical requirements to implement the solution, including hardware and software parts.

The VO is usually designed as a mirror of the PO. Thus, both components may co-exist
during the DT’s life cycle. In case the PO already exists at design time, the early phase
will then focus on connection tasks from the VO to the PO. It can also happen that the
PO component does not exist at all during the design phase of the VO. In such a case,
a prototype PO can be made in order to lead the construction of the VO, i.e., the prototype
and the VO are combined in order to validate some design choices. Regardless of the
existence of the PO at design time, the VO shall follow and mirror either the PO or its
prototype in the end. Simulation can be used to predict some malfunctioning if the product
is stressed or used in critical situations [16].

An important characteristic of the DT is its continuous synchronization with the
production system and its evolution; for example, changes in wiring or physical or fixation
position should be also considered in the VO. For this reason, during the system design,
the system must be designed to be adaptable and consider updated engineering models or
processes modifications.
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3.1. System Specification

The function model determines, firstly, the objective and functional requirements of
the DT, i.e., if the DT will help optimize, secure, monitor or predict the physical process.
Then, it is necessary to analyze which functions or activities of the physical process will
be included in the DT. For that, we need to elaborate a process plan considering both the
physical process and the DT functionalities, determine which equipment will be included,
which modeling aspect will be included (for example, mechanics, 3D space, electronics,
or others) and the relationship among both components, i.e., how both components are
going to exchange information. Moreover, we have to determine the non-functional DT
requirements [21].

3.1.1. Functional Requirements

This phase defines the objective and functional requirements of a DT to create its
specification. It also defines which information we need to extract and describe based
on the PO. The objective is to define accurate DT requirements and to obtain as much
information as possible to build the system. The successful analysis of the requirements is
key for the system modeling. In the literature, DTs have been used for different purposes,
such as optimizing, securing, monitoring, predicting, training or improving the physical
process. Normally, a DT combines one or more of these functionalities. Table 1 summarizes
some examples.

Optimization—All the data generated by the DT can be analyzed with advanced data
techniques to provide precise information. As a result, a DT can improve the performance
of a system, improve its efficiency, reduce costs or risks and improve decision making.
In this case, it is needed to define specific and measurable system objectives, as well as cost
functions, to control the system and evaluate them. Some research proposals that build
DTs to optimize a process are cited as follows.

Stan et al. [22] propose a system that uses multiple robot cells for product-on-pallet
distribution. The DT helps in the distribution planning, activity scheduling and resource
allocation, resource health monitoring, robust process control and maintenance of resources.
It optimizes the activities in three process stages: palletizing, storage and shipment of
products. Wang et al. [23] propose a 5G DT for cost-efficient and performance-optimal
management of the network. The approach creates a virtual representation of slicing to sim-
ulate its behaviors and predict and optimize the time-varying performance. The approach
uses a Graph Neural Network model to learn the insights directly from slicing-enabled
networks. Bhatti et al. [24] analyze how DTs can be implemented in electric cars to increase
energy efficiency and reduce greenhouse gas emissions. An et al. [25] proposed a DT
to reduce methane emissions that cause global warming. The framework uses drones to
measure real-time data about the emissions. Bottani et al. [26] propose an optimized DT to
optimize and prevent high-risk events for a beverage pasteurization system. It uses virtual
modeling of the process based on machine learning techniques. Guo et al. [27] built a
DT that optimizes, reduces complexity and reduces uncertainty in the layout of assembly
positions in the manufacturing industry, where the product remains at one assembly point
and workers, equipment and materials are moved around according to the assembly plan.
The DT considers customer demands, production capacity constraints and real-time ticket
pool management mechanisms to manage production activities optimally. It helps to make
production decisions and helps operators efficiently complete their tasks with error-free
operations. Gonzalez et al. [28] present a DT of a transportation system to evaluate its
condition and potential corrective solutions. The authors use the physics model to guide
the system, detect faults, improve energy efficiency and test what-if cases.
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Table 1. Sample requirements for the specification of a DT.

Optimization

Reference Application Modeling Function

An et al. [25] Aircrafts Control Models Reduce methane emissions.

Bhatti et al. [24] Electric cars Hybrid Model Increase energy efficiency and reduced greenhouse
gas emissions.

Bottani et al. [26] Industry Model-based Optimize and prevent high-risk events for a beverage
pasteurization system.

Guo et al. [27] Industry Structural Optimize the layout of assembly positions in the
manufacturing industry.

Gonzalez et al. [28] Industry Control Models Evaluate, control and correct a transportation system.

Stan et al. [22] Industry Data-based Distribution planning, activity scheduling,
resource allocation, resource monitoring, process control
and maintenance of resources.

Wang et al. [23] 5G Networks Data-based Manage 5G slicing efficiently in terms of cost
and performance.

Security

Reference Application Modeling Function

Cainelli et al. [29] 5G Networs Communication Design resilient 5G networks for industrial systems to
adapt their behavior in case of unforeseen events.

Huang et al. [30] Industry Data-based Detect anomalies with real-time monitoring.

Saad et al. [31] Industry Control Models Improve resilience in microgrids against
coordinated attacks.

Salvi et al. [32] Industry Data-based Improve attack response and minimize the impact in
power systems.

Schellenberger et al. [33] Industry Control Models Detect cyber–physical attacks in CPS.

Sousa et al. [34] Industry Data-based Mitigate DoS attacks on critical infrastructures.

Xu et al. [35] Industry Control Models Secure estimation and control for CPS attacks.

Xu et al. [36] Industry Data-based Live data analysis to detect attacks in CPS.

Monitoring and Prediction

Reference Application Modeling Function

Angjeliu et al. [37] Buildings Hybrid Optimize restoration works.

Barbi et al. [38] Ocean Observation Data-based Analyze executed actions and evaluate different
scenarios in the virtual environment.

Bartos et al. [39] Drainage networks Control Models Water management system to prevent flooding and
improve the water quality in real time.

Booyse et al. [40] Gearbox and
Aero-Propulsion

Data-based System health monitoring to detect and diagnose system
problems and predict maintenance.

Bhatti et al. [41] Industrial Robots Hybrid Detect and diagnose faults.

Modoni et al. [42] Industry Control Models Improve the quality of produced micro
manufactured devices.

Moghadam et al. [43] Industry Control Models Monitor and estimate the fatigue of system components.
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Table 1. Cont.

Improve the Development Process

Reference Application Modeling Function

Dong et al. [44] Industry Other Propose product design improvements and innovations.

Fedorko et al. [45] Industry Control Models Test physical properties in conveyor belts.

Li et al. [46] Industry Knowledge-based Create more sustainable manufacturing methods to
control environmental and social impacts.

Liu et al. [47] Industry Bayesian Network Improve traceability and quality control in
manufacturing processes.

Sun et al. [48] Industry Structural Improve quality control and assembly efficiency in high-
precision products.

Training

Reference Application Modeling Function

Cortes et al. [49] Industry Control Models Teach industrial concepts and techniques to create
qualified workforces.

Waat et al. [50] Industry Structural Factory assembly training with AR technologies for
new operators.

Security Improvement—Another application of DTs is to improve the risk assessment,
detection and evaluation of countermeasures to protect a system. For example, DTs can run
in parallel to a CPS to analyze the security and safety of the system during its operation.
Eckhart et al. [51] survey the application of a DT for a cybersecurity application in CPS.
CPSs have two interdependent layers, the physical layer and the cyber layer. Both need
to be secured to protect the system operation from threats. The main uses are to improve
the security design, to detect misconfiguration, pentest, compliance improvement and
security training. In addition, they allow for analyzing detection, mitigation and resilience
techniques in the VO before deploying the solution on the physical controlling components.
The information in the DT allows for detecting attacks and also restoring the system state
using data from the VO. Another benefit is that the DT may be used to elaborate a what-if
analysis, resulting in a better risk assessment. For example, it is possible to perturb the
system to test unexpected scenarios and analyze the response of the system.

Some proposals that use DTs to improve the system security are listed as follows.
Cainelli et al. [29] propose a DT to create resilient 5G networks in industrial systems to
avoid production downtime by reducing potential disturbances and supporting changes
in the production process through modifications in the use of the communication system.
The DT allows for collaboration between automation and communication systems, adapting
the behavior of the process in case of unforeseen events. Schellenberger et al. [33] extend
the original plant with an auxiliary system that does not add additional delay into the
system. The auxiliary system is designed as a linear discrete-time system with similar
dynamics of the original system and that is capable of attack detection. For this detection
strategy, a model of the overall system dynamics and the switching signal of the auxiliary
system are needed. The residuals of the Luenberger observer are then monitored for
deviations from zero, which indicates an attack. Salvi et al. [32] created a DT to improve
the resilience of critical infrastructures. It enhanced the response capacity to improve the
response time and reduce the impacts of attacks on power systems. The authors focused on
incident prevention and response management. Similarly, Saad et al. [31] address security
in microgrids. Their proposal builds the DT mathematically to protect individual and
coordinated attacks. The approach detects and mitigates false data injection and Denial of
Service (DoS) attacks. Huang et al. [30] propose an anomaly detection framework with
real-time monitoring for industrial systems. They use distributing supervised machine
learning for data processing and for making decisions between the physical layer, edge
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layer and cloud layer. Additionally, Sousa et al. [34] present an approach to design DTs
to secure critical infrastructures. They use high-fidelity replicas of Programmable Logic
Controllers (PLC) to mitigate DoS attacks that use flooding and amplification. Xu et al. [35]
present a DT using a chi-square detector that prevents adversaries that learn the system
dynamics to avoid detection. The approach also proposes secure estimation against stealthy
estimation attacks and control for CPS using a game theory mechanism. Xu et al. [36]
also present aDT for anomaly detection, but they proposal continuously and automatically
building theDT with live data from a CPS. This creates a Generative Adversarial Network
(GAN) to capture the temporal and spatial characteristics of the input data and recognize
adversarial samples.

Monitoring and Prediction—The PO is monitored by sensors that collect and store
data in real time. The goal is to process and use such sensed data to anticipate events.
This is beneficial to control the PO and also to organize the working teams, create better
synergies and use their time efficiently, which leads to a greater productivity. Moreover,
the industrial sector normally requires evaluations of multiple scenarios to make decisions
at the business model level. This evaluation is useful for managing risks and costs and for
forecasting demand.

In [38], Barbie et al. design a DT approach to develop Ocean Observation Systems
as autonomous robotic networks. It uses the Reference Architectural Model Industry 4.0.
The DT provides a visual representation of synchronized commands and allows evaluating
different scenarios in the virtual environment. It allows detecting errors and reduces the
impact of mistakes made by an operator of that ocean observation system. Booyse et al. [40]
propose a DT for system health monitoring. The approach aims at detecting and diagnosing
system problems and predicts maintenance based on unsupervised deep learning. The
DT is constructed using deep generative models which learn the distribution of healthy
data directly from operational data at the beginning of an asset’s life cycle to produce
an estimation of asset health. It learns a probabilistic representation of the real-world
asset, from which it is possible to sample data from the current operational conditions and
determine healthy data. Bhatti et al. [41] propose a real-time fault detection and diagnosis
mechanism for industrial robot actuators. The DT monitors the system, creates an alarm
and makes diagnoses as soon as electrical faults occur in the machine. Bartos et al. [39]
present a DT for water management to prevent flooding and improvewater quality. It
combines sensor data with online models to understand and control the system dynamics.
It simulates and estimates the state of drainage networks in real time. Another example
of using DTs to monitor a system is presented by Modoni et al. [42], who built a DT to
ensure the quality and metrology of a micro manufacturing system, i.e., the manufacturing
of compact and tiny devices that are wearable or that can be inserted into the body. The DT
continuously monitors the in-line parameters of the micro production process by mirroring
the physical process to compare it with analytic models and supply specific variations
of parameters, so as to keep them in optimal conditions always. Moreover, predicting
systems’ failures helps to better schedule the maintenance. For example, Angeliu et al. [37]
built a DT to analyze building structures and optimize restoration works on buildings.
Moghadam et al. [43] monitor wind turbines using a DT. For that, the DT is built with a
torsional dynamic model that uses online measurements and fatigue damage estimation
to calculate the remaining useful life of the system. The monitoring allows estimating the
system load and stress in the different components to feed the degradation and fatigue
models of each component. Errandonea et al. [52] review how DTs can be used to improve
different types of maintenance, such as reactive, preventive, predictive, prescriptive and
condition-based maintenance.

Development Improvement—Another application of DTs is to improve the design of
a product and test their functionalities. Traditional product design requires a functional
analyst to identify product design problems and improvement. Using a DT, it is possible
to analyze large quantities of information and make more precise design decisions, which
creates better product innovations. For example, Dong et al. [44] propose a DT with this
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objective. It allows for analyzing and improving the product design process. The DT
creates a product redesign method using the functional backtrack obtained from models.
Fedorko et al. [45] propose a DT for testing the properties and characteristics of a phys-
ical object, i.e., for physical experimentation. The objective is to overcome the limited
possibilities to physically experiment with convoy belts and reduce the time required to
do that.

In this line, DTs present a solution to create an environment to test objects using
models, without carrying it out physically. Li et al. [46] propose a DT to evolve traditional
manufacturing processes to more sustainable methods that control the generated environ-
mental and social impacts. For that, it analyzes the dynamic evolution of the whole life
cycle based on a DT mapping system. The objective is to create a manufacturing process
capable of reducing, reusing, recycling, recovering, redesigning and remanufacturing the
product level. At the production level, the objective is to reduce energy, resource con-
sumption, toxic waste and occupational hazards [53]. Liu et al. [47] address the problem
of the traceability and unpredictability of quality in manufacturing processes using a DT.
The system allows detecting the fault’s source, predicting the processing and dynamically
controlling the processing quality. Sun et al. [48] work on a similar problem. They propose
a DT to improve the quality control and assembly efficiency in high-precision products for
aerospace, marine and chemical industries. Similarly, [54] surveys the main challenges and
potential applications of DTs in product design and development areas.

User Training—DTs provide a platform to train operators in a low-cost and low-risk
environment. Using a dynamic environment helps broaden their experiences in controlling
the real system operation, especially when under maintenance, adverse or emergency
operating conditions [55]. Moreover, it enhances the operators’ decision-making abilities
and reduces the effects of wrong or inaccurate operations. DTs help to evolve to an Educa-
tion 4.0, to create a more qualified workforce and reduce the decision-making time in the
industrial sector. For this purpose, it is required to add a human–machine interface (HMI)
to interact with the DT. The incorporation of this functionality with Virtual Reality (VR) and
Augmented Reality (AR) is attracting attention. Some research works that propose DTs for
training purposes are presented as follows. Cortes et al. [49] present a DT to teach indus-
trial concepts such as the automation and programming of programmable logic controllers
(PLC), industrial network traffic and modeling using system dynamics. Waat et al. [50]
propose a DT with AR capabilities using physical geometrical models. The goal is to train
operators in factory assembly tasks. Junior operators are trained at the assembly line with
much less supervision from senior operators than in traditional scenarios.

3.1.2. Process Planning

The design of a DT is complex and includes several parts, such as models, internal
divisions, interfaces, material properties, spacial geometry and how the whole system
should be assembled, among others [37]. The process planning provides a description
of the process activities and the relationships among the components that implemented
them. It also determines which functionalities and system properties will be modeled in
the DT. The main objectives of the process planning is to clarify the process requirements,
the model selection and how data will be exchanged.

In most of the cases, the DT will address a phenomenon of interest, i.e., only a part
of the process will be included in the DT. For this reason, it is important to determine the
features or functions that will be included in the DT. In other cases, DTs may pursue an
identical copy of the PO, but this situation should be analyzed due to the fact that it may
bring extra complexity and redundant information. For that, Zhang et al. [56] define a
set of metrics to analyze how to define the right DT for a system. Similarly, Kutzke et
al. [57] propose an approach to evaluate which subsystems and functionalities will be
implemented in the DT. It chooses the DT subsystems based on a set of priority metrics
for each component. The priority highlights the components that should be included
because they lead to the greatest increase in the total system reliability and simultaneously
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represent the minimal cost set of components for implementing a DT. For that they use a
model-based systems engineering (MBSE) approach and present an example for unmanned
underwater vehicles.

The process planning also determines which equipment will be modeled in each
subsystem. This information helps to determine the DT’s development requirements and
which data should be collected from the physical process. The objective is to create a
comprehensive set of data describing the physical system. For example, a system dataset
may include the geometry, internal partitions, material properties, past technical interven-
tions, environmental data, deformation measurements, etc. This data will be used to build,
validate, calibrate and maintain the DT.

As a result, we obtain a detailed view of the system functions, activities, characteristics
and states that will be considered. We also identify and prioritize use cases for the system,
metrics and requirements, such as software and hardware constraints. For the selected
functionalities, data will be collected through sensors placed on the PO and sent to the
VO, where it should be structured. Hence, it is necessary to define which data will be
considered, for example, rotation, geometry measurements, material characterization,
dynamic properties of the system, etc. It determines also the model inputs and outputs.
Then, this data is classified to build a model of the PO. Usually, a combination of behavior,
structural and communication patterns are necessary to model the PO.

Data is essential for the DT. Hence, the data flows should be carefully designed. The DT
should reproduce how the components of the real system interact with each other and
how they exchange information. The communication patterns need to be analyzed and
modeled. Another point to analyze is how the DT exchanges data with humans, i.e., how
the different process stakeholders interact and use the system.

For that, Rasor et al. [58] present a technique to specify the product life cycle and
support collaborative planning and specifications for DTs, considering the vision and
collaboration of different stakeholders across the value chain. They also use a MBSE
methodology to implement their approach. Firstly, they define the macro specifications and
identify the use cases of the DT in a value chain network and outline the related life cycle
phases. For each use case, they assign the involved partners and their exchange with the
system’s components. As a result, they obtain abstract use cases relating to the value chain
roles (managers, engineering, operators, developers, etc) and the life cycle of the overall
system. Secondly, they define the micro-level specifications that formalize and detail the
identified use cases from abstract to concrete. Finally, they consolidate the uses cases and
define an architecture and concrete implementation requirements; they also determine data
sources and the underlying IT infrastructure (IT systems, components and programming
interfaces) to provide and process the data and models.

Liu et al. [59] propose a method to identify the machining processes, hierarchical data
structures and evaluation methods of the process. The approach uses three layers. Firstly,
a data mapping layer is used to acquire, organize, manage and map the collected data.
The collected data is acquired by a sensor and organized using an object-oriented method.
Secondly, the approach uses a data analysis layer in charge of the dynamic model creation,
and finally, a data decision layer to evaluate the process planning based on evaluation rules.
Sierla et al. [60] propose a method for semi-automatic DT specification for process plants.
The approach takes the available documentation, such as PDFs and other human-readable
formats, and analyzes the information to propose a DT.

The output the system specification includes the objectives, uses cases, the detail of the
process life cycle, the states and metrics, the roles, the hardware and the system’s software
requirements. This information is useful to plan the system architecture (cf., Section 3.2)
and to build the system model (cf., Section 4).

3.2. Architectural Design

There is no consensus about the properties of a DT and its corresponding component’s
architecture. However, a DT has at least three minimal parts [8]: a physical component
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(PO), a virtual copy of this component (VO) and the connection to exchange bidirectional
data between them. Other authors propose extending the minimal architecture to consider
more components. For example, Tao et al. [61] propose that a DT has five parts: a PO,
its VO and their connections, data and services. Singh et al. [62] propose an architecture
with seven layers, including: the PO composed of a control unit, sensors and actuators;
a communication layer in charge of data acquisition and edge processing of data; and
a security layer responsible for the secure handling of data flow. The fourth and fifth
layers are data storage and modeling and optimization. The sixth layer is the service
layer responsible for the development of advanced data-driven applications or standard
data analytics functions. The seventh layer is responsible for providing the value-adding
information to the appropriate stakeholder using data visualization. It also includes devices
that enable decision making for the user and the feedback of information to the physical
device, e.g., via a human–machine interface (HMI) or direct feedback to the control unit of
the physical twin. This architecture puts the physical process at the center and builds the
DT around the real-world functionalities. It can also be created incrementally to add new
components in different implementation cycles.

In addition, the DT architecture should evolve over time to incorporate system changes,
such as new components, new interfaces or new connections to other components, or adapt
the system behavior. The architecture should also support multiple models (cf., Section 4)
and interconnection with other DTs. For this reason, Minerva et al. [16] indicate that
the architecture for industrial DTs should contain the following four layers: business,
service, integration and data. The business layer deals with the processes and logic related
to the production of goods or services. The service layer controls how components and
services can be created, controlled and managed; it also provides DTs management and
simulation. The integration layer supports the dispatching of information to all the system’s
components. The data layer represents the different sources and the related enterprise
systems that are integrated. As a result, this architecture is more adaptable to add changes
once the system is operating.

A combination of the two previous approaches is proposed by Bevilacqua et al. [63],
who build an architecture to implement DTs dedicated to managing operators’ risk in
process plants. It considers the three minimal parts (PO, VO and connection), and the VO
is composed of control tools, simulation tools, anomaly detection and prevention tools and
a cloud platform to obtain real-time data. One interesting point is that the simulation tools
can be used for core real-plant functions, but they can also include additional behavior and
functional models by the creation of Mock Units. Leng et al. [64] address the problem of
how to create a DT architecture capable of system reconfigurations. They propose using an
Open Architecture Standard Platform to change the system at the control level (for example,
to integrate a new software module), at the machine level (to add new fixtures) or at the
system level (for example, to change the layout configuration). Fan et al. [65] investigate
how to create an architecture to model multi-source heterogeneous information and how to
create 3D visualized human–machine interactions with the DT.

As shown previously, most of the proposals use their own DT architecture, which
makes it harder to integrate them with a system at different levels. For this reason,
Aheleroff et al. [66] propose a reference architecture for DT as a Service in Industry 4.0. It
is based on the Reference Architectural Model for Industry 4.0, also known as the RAMI
4.0 architecture. The RAMI 4.0 architecture provides a common understanding of indus-
trial use cases, which can be adopted as a model for almost all Industry 4.0 applications.
The architecture is mostly defined as a system and relationships to address the funda-
mental structure of elements, relationships, restrictions, and logical properties. It uses
a service-oriented architecture (SOA) that provides different services and breaks down
complex works into simple structured packages. As a result, the DT reference model
consists of four parts: a physical layer, a digital layer, a cyber layer, and communication
for data exchange among the three layers. The physical layer defines the real attributes,
such as objects, assets, products, personnel, equipment, facilities, systems, processes and



Sensors 2022, 22, 5396 13 of 30

environments. Sensors and actuators are the two main connected components in the physi-
cal layer. The digital layer is the recording of data in raw or different file formats, such as
Computer-Aided Design (CAD) or Computer-Aided Manufacturing (CAM). The digital
layer is dedicated to the creation of digital copies of physical things. The cyber layer
includes the cloud processing and storage for building a dynamic data model. It offers
scalable and distributed computing technologies such as AWS, Azure Databricks, Hadoop
and Google Analytics. The cyber layer also adds several competitive advantages, including
data privacy, transparency, scalability and individualization.

In line with this clould cyber layer, Alam et al. [67] analyze how to integrate clould
services into a DT architecture for CPS. They argue that integrating cloud technologies
in the CPS cyber layer ensures the scalability of storage, computation and cross-domain
communication capabilities. For that, they identify different degrees of hybrid computation–
interaction modes and designed the interaction of the controller using a Bayesian belief
network. They also include fuzzy rules to support reconfiguration capabilities.

4. Digital Twin Modeling

The core of a DT is the virtual models. For this reason, the most important step to
build a DT is to create high-fidelity virtual models to reproduce the geometry, physical
properties, behaviors and rules of the PO. In a DT, the physical real-time data may also be
required to update the virtual models and simulate the physical process and its evolution.
In this section, we present how to build a model for a DT. Figure 3 depicts the process.

Modeling

Behavior
Model

Structural
Model

Graph
Model

Physics-based
Data-based
Hybrid

2D,
3D

Tune and Validate Model

Model Integration

Tune and Validate Model
Integration

Figure 3. DT modeling process.

4.1. How to Model a Component

To create a DT, we need to model the physical reality using abstraction. In this section,
we analyze how POs are modeled to obtain their VO. The main approaches that can be
used for that are classified and summarized in Table 2.
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Table 2. Sample modeling techniques.

Behavior Model

Model Type Characteristics Examples

Control Models Based on control theory. They use the laws of
physics and compare simulated results with
known information, represented by
mathematical models.

An et al. [25], Bottani et al. [26],
Gonzalez et al. [28], Saad et al. [31],
Schellenberger et al. [33], Xu et al. [35],
Bartos et al. [39], Modoni et al. [42],
Moghadam et al. [43], Fedorko et al. [45],
Cortes et al. [49]

Data-Dependent Models Based on artificial intelligence. They use data
structures that retain all the variables describing
the reality at a level of abstraction.

Stan et al. [22], Wang et al. [23],
Huang et al. [30], Salvi et al. [32],
Sousa et al. [34], Xu et al. [36],
Barbi et al. [38], Booyse et al. [40]

Hybrid Control–Data
Models Combine control and data-dependent models to

obtain the advantages of both of them.
Angjeliu et al. [37], Bhatti et al. [41]

Other Models They use the relation of the components,
e.g., graph, communication, process, ontology
or knowledge-based models.

Bhatti et al. [24], Cainelli et al. [29],
Dai et al. [68], Pylianidis et al. [69],
Dong et al. [44], Li et al. [46], Liu et al. [47]

Structural Model

Model Type Characteristics Examples

Physical Model Represents physical properties and phenomena,
such as deformation, cracking and corrosion.

Post et al. [70], Mathupriya et al. [10]

Geometrical Model Reflects the geometry, shapes, sizes, positions,
assembling machine components, kinematics,
logic and interfaces of the real system.

Guo et al. [27], Sun et al. [48],
Waat et al. [50]

4.1.1. Behavioral Models

These kind of models are a specification of the system behavior based on the physical
process that the PO controls. As a result, these models refer to a mathematical or com-
putational description of how the variables of interest relate to each other, for example,
to understand how forces, acceleration, jerk, angular displacement, angular acceleration
and other phenomena interact in the physical process.

The main approaches to building behavioral models include using control or data-
based techniques. The control techniques consist of observing a physical phenomenon,
developing an understanding of it and expressing it in the form of mathematical equations.
Understanding physical process is hard and may not be possible in complex systems.
However, it provides tools to reason about the system behavior, which is useful to generalize
the models to similar problems and also to bound errors. On the contrary, the data-based
models work as a black box and do not provide these advantages. The positive points of
these approaches is that they are more flexible and can take into account new experimental
data. They may also be more suitable for complex systems where understanding the
physics is not possible, or even in systems where physics models cannot be applied, such
as 5G networks. The models obtained by data may be biased by the dataset and the errors
cannot be estimated [71].

Control Models—These are physics-based models, i.e., they use the laws of physics
and compare simulated results with known information, represented by mathematical
models [20,72]. Control is the core function of DTs built for CPS. It aims at maintaining the
system at an acceptable level of operation in response to disturbances. In CPS, the physical
processes provide information to the cyber components, and the cyber components control
the physical processes. In order to remain consistent, real-time data from the physical
process is collected using sensors. The data is communicated to the cyber components
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and it is used to compute the control output to send it back to the actuators to correct the
physical process.

A behavior model based on control theory can be obtained using transfer functions or
state-space modeling. This way, the reality is theoretically modeled using representations
that relate to each possible input signal and the corresponding output signal. Using this
technique, the design process starts with the differential equations that model the behavior
of the physical process being controlled. Then, the transfer function can be derived from the
differential equations of the process. The transfer functions and the state-space modeling
are equivalent representations, i.e., one can be derived from the other and vice versa [73].

The transfer function G(s) is the ratio of the Laplace transformation using the complex
variable s of the output Y(s) to that of the input U(s). It is represented, as shown in
Equation (1), by the division of two polynomials; the numerator is created by taking the
coefficients bi of the output differential equation and the denominator using the coefficients
ai of the input differential equation.

G(s) =
Y(s)
U(s)

=

m
∑

i=0
bism−i

n
∑

i=0
aisn−i

(1)

A transfer function with multiple inputs and multiple outputs is usually represented
in matrix form, which indicates the relationship of each input and each output of the system.
The state-space model expresses the differential equations in matrix form, as shown in
Equation (2):

xk+1 = Axk + Buk + wk
yk = Cxk + vk

(2)

where xk ∈ Rn is the vector of the state variables at the k-th time step, uk ∈ Rp is the control
signal and wk ∈ Rn is the process noise, which is assumed to be a zero-mean Gaussian
white noise with covariance Q, i.e., wk ∼ N(0, Q). Moreover, A ∈ Rn×n and B ∈ Rn×p

are, respectively, the state matrix and the input matrix. The value of the output vector
yk ∈ Rm represents the measurements produced by the sensors that are affected by a noise
vk, assumed as a zero-mean Gaussian white noise with covariance R, i.e., vk ∼ N(0, R),
and C ∈ Rm×n is the output matrix that maps the state xk to the system output.

DTs require replicating the states of the physical process within a CPS in functionally
equivalent virtual replicas to mirror the internal behavior of the system. To solve this issue,
Eckhart et al. [74] analyze how to passively replicate the program states of devices to
obtain a virtual representation of the CPS during its operation. They propose an approach
that identifies stimuli on the system’s specification and then replicates them in a virtual
environment. This way, the stimuli triggers state transitions and different data sources,
such as network traffic or system logs, can be used to identify the stimuli, replay it and
synchronize it between the DT and the PO. Similarly, Schellenberger et al. [33] propose
a DT to detect attacks in CPSs. In this case, the approach is based on Luenberger state
observers [75] to estimate the state of the system based on observations of its inputs, outputs
and a mathematical model that describes its dynamics, i.e., an observer is a continuous-time
dynamical system that takes as input the measured input and measured output of the plant
and produces an estimate of the state of the plant as output.

Data-Dependent Models—These are based on data structures that retain all the variables
describing the reality at the level of abstraction chosen. With the data supplied by the
PO, it is possible to build the VO with the help of Artificial Intelligence (AI) open-source
libraries such as TensorFlow [76], PyTorch [77] or OpenCV [78]. This approach is based on
the assumption that since data is a manifestation of both known and unknown physics; by
developing a data-driven model, one can account for the full physics [71].

To build this type of model, it is required to develop a four-stage process which
involves data generation, data collection, data pre-processing and data analysis through AI
algorithms. The data generation is strongly based on sensors that collect information from
the PO. Multiple tools for data collection also exist that can support real-time data collection,
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such as Apache Kafka [79]. After that, the system will have a huge amount of data. Hence,
it is required to pre-process it to ensure the quality and completeness. It is also necessary
to compress it and summarize it. The process requires evaluating the relations between
variables and detecting noise. This process of data engineering also includes cleaning the
data to correct or remove corrupt and inaccurate data. For that, operations such as filtering,
handling missing or erroneous values and removing redundant and duplicate information
are used. Furthermore, data integration, data transformation and data enrichment are
also parts of the data engineering process. Apache Spark [80] is one useful framework for
memory-based data processing. As a result of the operations, the pre-processing increases
data accuracy and saves computational cost.

Hybrid Control–Data Models—As explained previously, both control and data models
have advantages and disadvantages. The hybrid models try to obtain the strong points from
both design techniques [81]. The use of a control model ensures physical interpretability,
which is very useful, for example, in engineering systems. Machine learning models are
very well adapted to data and are suited to real-time applications [82].

For example, ref [83] proposes the integration of physics-based models with machine
learning to design a DT to predict structure damage. This strategy allows the use of an
interpretable model (physics-based) to build a fast DT (machine learning) that will be
connected to the PO to support real-time engineering decisions. In addition, ref [84] shows
how to build a hybrid DT model of a heater in a water process system. The work details
the steps for updating the physical model and process system using data-driven models of
the process equipment. This way, with the help of history data to teach ML models, the DT
can be continually improved over time. Chakraborty et al. [85,86] also propose a hybrid
control model for linear single-degree-of-freedom structural dynamic systems evolving in
two different operational time scales. The approach uses a physics-based model for data
processing and response predictions, and a data-driven machine learning model for the
time-evolution of the system parameters.

Other Modeling Techniques—Some modeling techniques do not use the physics of the
system but the relation of the components. For example, it is possible to use graph models
to represent communication models or knowledge-based models that require having an
expert to analyze the system and manually design a modelization of the characteristics and
behavior. Other methods include the one proposed by Dai et al. [68], who proposed an
ontology-based method to model as-fabricated parts. They argue that this methodology
provides a standardized process to create DTs. Through this modeling technique, engineers
may perform evaluation and optimization of machining processes. To create the DT,
the model encapsulates the physical data and information relationship with its external
environment. They use a model dependent on realism and it is based on the belief that all
we can know about reality consists of networks of concepts that explain observations by
connecting the concepts with rules to define models. The realism also suggests that we
cannot know the reality as it is, but only approximations of it represented by models. This
way, a rational information model can represent critical concepts and their relationships.
Additionally, Pylianidis et al. [69] propose creating DT models using simulation-assisted
ML algorithms. They use process-based models integrated with ML to adapt the resulting
model to the input data. The process-based model aggregates data to a lower resolution
to mimic real situations and develop the ML models using a fraction of the process-based
model inputs.

4.1.2. Structural Model

This model defines a structured description of the connection and assembly relations
among the structures that perform the functions and behaviors. The interrelation of the
structure is the foundation for the transferring and transformation of the material, energy,
information and motion behavior of the system. The structural model usually includes
topology definition, layout planning and buffer designing [13].
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A Physical Model enables simulating the physical properties and loads, analyzing
phenomena such as deformation, cracking and corrosion [10,70].

A Geometric Model reflects the geometry, shapes, sizes, positions and assembly of
machine components, the kinematics, the logic and the interfaces of the real system [87,88].
For instance, 3D modeling is one of the techniques used to represent system geometry.
It is the process of developing a mathematical representation of the surface of an object.
The 3D models can be constructed by a 3D scan of the object, or through specialized
software using equations, and are finally represented in terms of curves and surfaces [71].
Image-based methods also offer a good alternative to geometry measurements, compared
to scanning techniques. The image-based approaches permit reconstructing the geometry
using image processing algorithms based on digital photogrammetry. In addition, they can
be complemented with data that describe the internal structure of the object that can be
obtained by classical methods of inspection, thermal imaging or radar techniques, which
allow for investigating a physical structure in more depth [37]. Anbalagan et al. [89]
explain how to create Digital Geometry models using Computer-Aided Design (CAD).
They discuss CAD modeling and manufacturing simulation methodologies in a virtual
environment. The objective is to create geometric models useful for DT design.

4.2. How to Integrate the Component Models

DTs are the integration of complex interconnected models, i.e., different models are
integrated to create a more complete view of the system. The integration has to consider
different aspects, such as:

1. How different components interact with each other to create more complex systems.
This means that models interact with each other to represent the PO behavior. It
should be considered that decisions made by some models can modify or invalidate
the conclusions of other independent models. As a result, wrong or conflicting results
may exist if models do not share information and make coordinated decisions;

2. How the DT interacts with the physical world, i.e., a DT makes decisions that directly
or indirectly impact the physical process. It may be difficult to delimit the physical
impact a priori. For that, the digital components should propagate the decisions
using the physics laws of the PO to evaluate the effects of these decisions and the
inconsistencies that may arise.

In large and heterogeneous projects, the interactions and dependencies can produce
errors if they are not correctly modeled. This means that even when each model is indepen-
dently correct, their correctness within the whole system may depend on its relation with
other models. For this reasons, model integration is a complex and important part of the
DT building process. Table 3 summarizes model integration techniques.

Table 3. Sample model integration techniques.

Model Integration Technique

Integration Method Characteristics Examples

Hierarchical It builds complex systems by integrating smaller and
simpler components.

Tao et al. [90], Borth et al. [91]

Collaborative The different components interact and simulate a collaborative
behavior among several assets.

Autiosalo et al. [92], Cimino et al. [93],
Eramo et al. [94],
Zheng et al. [95]

Hierarchical Integration—This approach builds complex systems by integrating smaller
and simpler components. This way, unit models can be organized hierarchically to obtain
a model of the whole process and understand how the different pieces work together.
Complementary models can also be integrated horizontally to obtain a wider view of
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one component, for example, a control-theoretic model of the physical behavior and a
geometrical 3D model.

In this line, Tao et al. [90] propose a hierarchical integration where the unit level is the
smallest unit of the process, for example, a single piece of equipment (such as a machine
tool or robot arm), raw material, components with sensors or even environmental factors.

At the system level, multiple unit levels are interconnected and inter-operate to enable
a wider range of data flow and resource coordination. For example, a production line, a shop
floor, a factory or even a complex product (such as an aircraft) are examples of system-level
DTs. The virtual models of a system-level DT are formed through the integration and
collaboration of multiple unit-level models.

In a system of system-level DTs, there are cross-system interconnections, interop-
erability and collaborative optimizations between the system-level DTs. For instance,
a system of system-level DT may focus on enterprise or cross-enterprise integration to
provide commerce, supply chain and manufacturing cooperation [96]. It can also integrate
various stages of the product life cycle, such as design, production or remote maintenance.
Borth et al. [91] also work on the idea of a system of systems. They discuss integration
challenges as well as strategies and architectures to address the integration, for example,
the use of modular approaches based on causal thinking to structure the inner DT models or
the integration of reflection to integrate self-awareness in the DT regarding its performance.
They analyze the system-of-a-system-of-DTs perspective using, as an example, smart grids
and smart building applications.

Collaborative Integration—A collaborative information model defines how different
components interact and simulates the collaborative behavior among several assets [11].
In addition, decision-making models make the model capable of evaluating, reasoning
and validating. They consist of variable inputs, algorithms and a collection of constraints
and rules. They also include rules of constraints, associations and deductions. They store and
analyze the running status data and then make decisions using machine learning algorithms.

For example, Autiosalo et al. [92] propose an open-source git-based server software
to build DT webs, i.e., to build networks of DTs with a similar structures to that of the
World Wide Web. The DT Web is created with a combination of standards and technologies.
The objective is to allow DTs to be interlinked and exchange information in the same
way as their real-world POs. Cimino et al. [93] propose a paradigm called the Digital
Multiverse to comprehend DT interpretations at the data integration level and also by es-
tablishing and enforcing consistency rules. For that, they create relations that involve both
data, models and the different system life-cycle management methods. For example, they
define viewpoints based on roles such as plant designer, control engineer, data scientist,
maintenance manager and so forth. The models and data are bound together by relations,
so that no operation on any view on the different DTs’ perspectives can lead to inconsis-
tencies. They formally relate not only data to data, but also data to models and models
to models perspectives. Eramo et al. [94] propose a conceptual modeling framework to
integrate, synchronize and manage different models, data sources and their relations in DT.
The framework details the core parts of DTs and describes which parts need to be provided,
interconnected and integrated to achieve different DT utilizations. Sahlab et al. [97] pro-
pose using knowledge graphs to relate complex and dynamic digital models. They argue
that the inherent extensibility, adaptability and semantic expressiveness make knowledge
graphs suitable to manage models and enable reasoning to gain new insights. Zheng
et al. [95] propose a DT for smart manufacturing using three models, a digital model,
a computational model and a graph-based model. The tri-model works concurrently to
simulate real-world physical and digital behaviors and characteristics. The digital model
is a structural representation of the system, for example, using numeric values such as
dimensions, equations and their relations to control the geometry. Their computation
model is a behavior model that includes the laws of physics that govern the PO. Finally,
the graph-based model establishes the relationships among physical systems and within
them, considering both the structured information of the objects and the unstructured data
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from the context. This way, they create a multi-physics model that captures the system
behavior, the effect on the structure and geometry and its interaction with the environment.

5. Digital Twin Development

The next step in the DT building process is to implement it. In this section, we review
protocols, tools and standards to develop and synchronize the PO and its VO.

5.1. Communication Protocols and Data Synchronization

The network is vital for communicating the PO and its VO. The connection allows
for collecting real-time data and also exchanging control commands. The PO and its VO
exchange data bidirectionally, i.e., data collected from the PO is used to update the states
maintained in the virtual representation. Moreover, data from the virtual representation
goes back to the physical system. As a result, the insights and decisions generated in the
virtual representation provide feedback to the physical system. In general, the PO-to-VO
communication requires three steps [20]: (1) collect the relevant information, including the
direct measuring of the physical reality; (2) interpret the data to a form that is consistent
with the level of abstraction—this may include several steps, such as data processing, data
curation and data conversion; and (3) use the data to update the states of the system. This
may require information fusion, i.e., the use of data from multiple sources.

For this reason, we analyze how different research proposals connect both components
and manage the data exchange.

Each component of the system requires a special type of connection. For example,
the sensor and actuators are limited-resource devices that send data at a specific frequency
or when new events happen. Hence, low-power consumption protocols, such as 6LoWPAN,
Bluetooth, ZigBee or LoraWAN, are more adapted to them. However, for data exchange, it
may be necessary to use protocols such as MQTT, CoAP or AMQP. The data from numerous
sensors is collected by a gateway that aggregates the information, which is sent to the DT.
Connections between sensors and gateways can take place using multiple technologies
depending on the type of physical system. Many commercial solutions have focused on
providing solutions to communicate IoT devices and enable data exchange and processing—
for example, Amazon Web Services (AWS), Microsoft Azure IoT Suite, SAP cloud platform,
Salesforce IoT, Oracle IoT, Cisco IoT Solutions, IBM BlueMix cloud and Bosch IoT [71].

Synchronization and consistency issues limit the number of possible VOs connected
to a PO. However, in case of multiple VOs, the communication between both components
can be implemented using a Publish–Subscribe technique, where the PO is considered the
information publisher and the VOs subscribe to receive the information. This communi-
cation pattern is also useful to communicate only interesting events, instead of periodic
updates. Protocols such as MQTT and platforms such as Apache Kafka support this kind
of communication.

The data connection in critical DT applications is required to be in real time. As a result,
latency is a critical factor for the user experience and the system functions. For example,
in robotic surgery, the action of a surgeon should be performed in real-time with no
latency. Otherwise, the result will be inaccurate. To reduce the communication latency,
there are three main approaches [98]. The first one is to deploy high-speed network
links using, for example, optical fiber cabling for wired connections or 5G technology for
wireless connections. The 4G networks decrease their performance as more devices share
the limited radio-frequency spectrum. However, 5G technology has a wider frequency
range to accommodate more devices that require communication at higher frequencies [71].
The second option is to use data compression to reduce the amount of data to be transmitted.
This can be implemented with compression techniques, data filtering and also AI algorithms
that process, clean and aggregate the data before sending it. The last option is to move the
calculation and data processing near the physical process, for example, using edge or fog
computing capabilities to support the processing requirements of the DT. This way, it is
possible to process the information faster than in a full cloud-based analysis.
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Other aspects to consider is that the connection should be bidirectional and both
components must keep consistent data. Hence, a means for keeping both components
updated and the interfaces to exchange this type of connection should be designed. For that,
Platenius-Mohr et al. [99] analyze the communication requirements that a DT should
meet, such as supporting different formats, including a variety of source and information
models and the semi-automatic definition of syntax and semantics, among others. They also
present an approach to improve the current lack of interoperability between DTs of different
companies that require information exchange. To do so, they transform the information to
other formats using a customizable mapping model. The mapping model is customized
and interpreted on demand. The solution enables file- and API-based information exchange
in a bidirectional way. Jiang et al. [100] propose a framework to integrate and improve
the data exchange between the PO and the VO. It focuses on the device acquisition layer
and the remote system, which can be composed of multiple partial DTs logically built with
different functions. They also create a collaboration between edge and cloud resources
to improve the cooperation of different components and data fusion. Barbieri et al. [101]
propose a methodology to enable real-time coupling between the DT and the controllers
in a physical plant. They propose a formal modeling language and a design pattern to
generate a standard interface for the communication between PLCs and digital models
within a DT architecture to facilitate the exchange of information. Li et al. [102] include
QoS consideration in the communication and system modeling. They propose a framework
combining semantic resource modeling with real-time industrial object transmission to
improve the performance of DT. They consider the interoperability, scalability and time
delay as QoS factors.

Finally, we must consider the security of the DT interconnection. In this direction,
Feng et al. [103] discuss the security problems of wireless communication in a DT and
analyze how to secure the communication channel between the PO and VO. They propose
an approach to reduce interference attacks in the communication network. They use
Attribute-Based Encryption to meet the security and overhead requirements and they use
an access control policy to encrypt a random key, as well as a symmetric encryption scheme
to hide it.

5.2. Experimental Platforms and Tools

Existing frameworks can accelerate the DT development process. For this reason,
in this Section, we review the existing efforts to provide tools to implement DTs as well as
the proposed experimental testbed to test the DT approaches.

Development Platforms—Some initiatives have developed platforms to build, test and
benchmark DTs. For example, Bonney et al. [104] present an open-source, modular,
and system-independent framework to build DTs using Flask Python. The platform uses
HTML web pages as the interface between the DT simulations and the user. The tool
can deploy the DT with multiple accessibility options to accommodate a wide variety
of intended uses. It can also be itegrated with third-party simulation tools and can be
configured with model data, such as geometry and material assignments, among others.
Borghesi et al. [105] propose a reference architecture for DTs in IoT platforms. They analyze
the requirements for the management of industrial DT scenarios and different use cases
that are implemented in the DT platform. The architecture allows an implementation
using diverse technologies to fit the application use cases, technical requirements and be
integrated with existing systems. In [106], Bolender et al. present a modeling framework
for self-adaptive manufacturing. It supports modeling domain-specific cases, describing
rules for case similarity and case-based reasoning within a modular DT. They propose au-
tomatically configuring DTs based on modeling tools to improve the manufacturing times,
reduce wastage and contribute to better sustainable manufacturing. For that, the modeling
framework provides multiple interrelated modeling languages and integrates them into
our model-driven architecture for DTs. Eclipse Ditto [107] is an open-source framework for
IoT DT software implementation. It mirrors physical devices, provides services around the
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devices and keeps the PO and VO components in synchronization. FIWARE [108] is a mid-
dleware for managing data in a DT. It is a framework of open-source components, known
as Generic Enablers (GEs), for facilitating the development and implementation of smart
solutions. Commercial solutions to develop DTs also exist, such as the ANSYS Twin Builder,
iTwin Bentley, Siemens, MapleSim, General Electric and Oracle Digital Twin platforms.

Experimental Testbeds—Previous research has proposed testbeds to test new approaches.
For example, Kamath et al. [109] propose an open-source testbed for building Industrial
System DTs using Eclipse Ditto. It includes real-time data acquisition, virtual representation,
analytics and visualization.

Albo et al. [110] present a framework with modular software to build a 3-DOF robot
DT. It uses CoDeSys [111] to implement Programmable Logic Controller (PLC) logic and a
Human–Machine Interface (HMI) for controlling the system. The robot node is controlled
using a programmable script compatible with several programming languages such as Java,
C, Python and MATLAB. MATLAB and Simulink [112] are used to model the multidomain
physical behavior. They verify signal properties and simulate device logic. They also
send data to the PLC to control the motion of the robot kinematic model. Webots [113]
enables importing CAD models, either as pure geometrical shapes or as formats containing
additional information, such as the kinematic relation between solid bodies with material
properties. The modular setup enables isolated development work across the different
levels of control, from the PLC logic down to the kinematic properties of the digital
model, focusing on a single point of change and reduced interconnected constraints. The
implementation can be used in other domains since model-based libraries within Simulink
can provide solutions to other type of behavior models using, for example, Simscapes Fluid,
Driveline, or Multibody.

Eckhart et al. [114] proposed a framework to create and execute DTs. The approach
automatically generates a virtual environment from the specification and matches their
POs. They include two main modes of operation. First, a simulation mode that operates
independently of the physical environment to monitor and explore a virtual clone without
risk, and second, a replication mode, replaying events from the physical environment for
visualization and analysis. The framework also has multiple modules that can be activated
on demand, such as monitoring, security analysis and intrusion detection. This framework
was proposed with the objective to improve CPS security properties. For this reason, it is
possible to activate diverse security and safety rules to be automatically monitored by the
DT. In addition, security testers can attack the system security using the virtual replica of
the production setup.

6. Discussion

Other review surveys have been proposed in the related literature. Some of them focus
on analyzing the DT definition and its uses. The term Digital Twin has been interpreted
differently by different authors. Wagg et al. [6] survey the history of DTs, their definition
and their objectives; the main focus of the paper is on DT applications, but they also
discuss how to create a model using physics and how to verify it analyzing a case study.
Barricelli et al. [7] also focus on the three following questions: what are the definitions of
DTs published in the literature? What are the main characteristics that a DT should present?
What are the DT domains of application? Lu et al. [115] also review the connotations of
DTs, application scenarios and applicable standards. Hribernik et al. [116] survey the
required properties and requirements of a DT. Then, they propose a roadmap towards the
creation of autonomous, context-aware and adaptive DTs.

With a focus on manufacturing industry, Cimino et al. [117] review which are the
applications of DT. They present the automation pyramid in CPS systems and the existing
application for DT. Finally, they explain how they build a DT for energy consumption
monitoring using Matlab and Simulink. Davila Delgado et al. [118] survey how DTs are
structured in manufacturing and how they function. They analyze the difference between
DTs, cyber–physical systems (CPS), and building information modeling (BIM). They review



Sensors 2022, 22, 5396 22 of 30

how conceptual models, system architectures, and data models work. Their main contribu-
tion is the structural and functional descriptions of DTs in manufacturing. These two last
points are analyzed in our survey and they are included as part of our methodology for
designing and building DT systems. Regarding the DT definition, properties and uses, we
present a short introductory context, but this is not the main focus of our research due to
other works in the literature having already analyzed it.

Other studies also how DTs may be applied for specific uses, for example,
Eckhart et al. [51] survey how DTs can be used to improve the security of CPS. Malik et al. [119]
explore the opportunities of using a DT to address the complexity of collaborative robots
and human–robot interactions. Leng et al. [13] analyze DTs for manufacturing systems
and how industrial systems have evolved from Industry 1.0 to the new Industry 4.0,
which uses DTs. For that, they analyze how the design steps and supporting technolo-
gies have evolved over time. Lo et al. [54] review DTs created to improve the product
design and development process. Henrichs et al. [120] review DT applications in the
food industry. They analyze how DTs can be used to solve problems, such as how to
feed a growing population, how to avoid food loss and waste and how to improve the
existing inefficient production systems. Kantaros et al. [121] review current trends and
limitations in 3D printing and the implementation of DTs for additive manufacturing.
DTs can also help to improve the fabrication process of 3D-printed objects. As a result
of their review, they point out that the progress of DTs is still limited by the lack of DT
developing methods, which is the main subject of our review. Wu et al. [122] review DT
applications for ultra-precision machining to improve the performance and build processes
of highly accurate technology components. Semenkov et al. [123] analyze how DTs can
assess Cyber–Physical Systems and provide a precise evaluation of the system design
and characteristics. Steindl et al. [124] analyze architectures and frameworks to develop a
technology-independent Generic DT Architecture aligned with the Reference Architecture
Model Industry 4.0 (RAMI 4.0). Neethirajan et al. [125] review the application of DTs in
the livestock farming sector to improve large-scale precision livestock farming practices,
machinery and equipment usage and the health and well-being of a wide variety of farm
animals. All these aforementioned works survey interesting DT application scenarios.
In our work, we tried to provide some more focused but realistic uses of the DT approach
in order to extract a concrete methodology to conduct the building process of DTs.

In a similar vein, other literature reviews analyze the interaction and integration of DTs
with complementary technologies. For example, Rathore et al. [126] survey the role of new
enabling technologies such as AI and Big Data in DTs. They aim at determining the relation-
ship between AI, ML, big data, IoT and DTs, as well as the tools required for the creation
of AI-enabled DT and the criteria to build successful DT-based systems. Perno et al. [127]
also survey enabling technologies of DTs and the existing barriers or limitations that they
create to continue developing DT. These topics are out of the scope of this paper. Finally,
Schroeder et al. [128] analyze how to build a DT architecture. They also present a case
study of a system with four valves that operate automatically. Similarly, Minerva et al. [16]
also review DT properties, architectural models and supporting technologies. In this paper,
one of the methodology steps is to build the system architecture; we analyze some of the
main proposals but do not focus too deeply on this point.

In all the aforementioned literature reviews, the difference between digital models,
digital shadows and DTs creates ambiguity, and they are sometimes used as synonyms (cf.,
Section 2 and definitions therein). The main issue is that arriving at a fully bidirectional
connection between the PO and the VO is not easy. In fact, DTs require real-time interactions
to achieve their best potential. How to bring all the data together, despite latency, storage
limitations and data format boundaries is a challenge that needs to be evaluated during the
building process.

Digital models are a key component of DTs. However, to obtain all the benefits of the
DT’s feedback and PO management enhancement, it is required to have a holistic view
of the system and its interconnectivity. Indeed, building DTs is currently a complicated
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task. It requires the integration of diverse technologies, the interaction of different systems
and the development of complex models. All the technologies, the vast amount of data
generated and the required activities in the design, modeling, and development phases (cf.,
Sections 3–5) show that DTs are difficult and expensive to create. There are many advan-
tages and potential applications of DTs (cf., Section 3.1), and industries are considering how
to change their businesses to adapt to future tendencies and how their business models are
relevant for the entire life cycle of their asset. In this context, the adoption of DT approaches
requires a more efficient and easier building process.

The evolution of DT-required technologies, such as AI, 3D modeling, cloud computing,
IoT and big data, will help to achieve these tasks easier, for example, with techniques to
capture the real properties of the physical world and translate them into the digital world,
as is the case of laser scanning methods to build 3D models from real objects. Hence,
defining and improving the techniques and tools to design and create a DT with less effort
and in a faster manner are essential to the development of this promising technology.

In terms of perspectives for future research, as a result of the work initiated in this
review, there are several directions for improvement. This creates a great opportunity for
researchers to find solutions to address such limitations and reduce the number of open
problems. We summarize next some of the research gaps, limitations and trends to provide
further discussion and suggestions to improve the development and adoption of DTs.
Sume further (but challenging) ideas are described next.

7. Open Challenges

In the following, we summarize some research gaps, limitations and trends to provide
further discussion and suggestions to improve the development and adoption of DTs.

Models—A DT requires models with complex structures and behavior to reflect the
real-time operations and dynamic behavior of POs. Most of the research on DTs focuses
on how to model the system. However, there are still some open issues. Firstly, a DT
integrates a number of different models and processes which require verification and
validation individually and as a comprehensive system. How to prove that the model
is accurate and correct with respect to the real copy has not been explored enough. In
addition, modeling the digital copy is complex and requires a large amount of data. Hence,
the existing modeling techniques may be hard to apply to old systems, such as industrial
factories. The process to build a DT is easier if IoT technology and big data are already
available in the system. Another issue is that complementary and context models need to
be integrated in combination with other models of system behavior. This provides a more
precise model of the real system and its interaction. An analysis of how to connect and
create collaborations between individual models is still required.

Integration of DT information into the system control—The innovative aspect of DTs with
respect to simulations is the bidirectional information exchange between the PO and the
VO. However, in most of the proposed DT applications, the connection is unidirectional
or they do not mention how they connect the DT to the control system of the PO. In a
typical system, the control system makes decisions to manage the behavior of the PO and
to determine how to merge the models from the control system, and the DT information
may not be trivial. It is also needed to specify how the control system will evaluate and
predict the new commands decided with the DT external information.

Secure DT Design—It is necessary to further analyze how to build a secure DT. Most of
the existing modeling approaches are based on AI techniques, either to create the initial
model or to make the physics-based model evolve over time. AI techniques assume
benign data. As a result, they are vulnerable to malicious modifications of the the training
data (i.e., poisoning attacks) or test data (i.e., evasion attacks) [129,130]. DTs require
correct and reliable information. Hence, such attacks can have a great impact on the
created models and, in consequence, on the decision the DT sends to the physical process.
However, physics models have similar vulnerabilities [131,132]. Data injection attacks
can make the controllers lose visibility of the process control or even calculate incorrect
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commands by intercepting the network communications and sending malicious data.
Hence, even when the model is accurate and correct, how to protect the system from attacks
against the modeling techniques or the data used to generate them is also unknown. Some
authors [133,134] have proposed countermeasures to face AI attacks. However, if these
algorithms are incorporated in critical infrastructures, further analyses should be required
to evaluate if they are efficient and useful for DTs. Even when there are no attacks, the DT
software may not be reliable enough to handle autonomous control systems, as showed by
Lin et al. [135]. They provide a risk assessment for DTs in autonomous control systems,
in particular in nuclear power plants. They argument their concerns about whether the
information from a DT is credible to support decisions of high consequence and analyze
uncertainties that may put the system at risk. For example, failures and un-analyzed events
can have consequences on plant response.

To solve the potential cybersecurity problems, some authors propose using Distributed
Ledger Technologies (DLT), such as blockchain, to prevent the mentioned attacks. For ex-
ample, Lee et al. [136] propose developing an integrated DT and blockchain framework
for traceable data communication. The blockchain authenticates and makes all data trans-
actions traceable, adding confidence to the data. Mandolla et al. [137] also use blockchain
to secure the data generated through an end-to-end manufacturing process in the aircraft
industry. The DT represents the manufacturing suplay chain and they show the potential of
DLT for addressing each of the components of the system. These solutions are promising,
and a further analysis of performance and benefits will be beneficial to improve trust in
DTs applied to critical systems.

DT Data Analysis—The PO and VO may generate a huge quantity of data. However,
it is important to ensure the data are not of inferior quality. The data needs to be, firstly,
sorted and cleaned to ensure this before using them in the AI algorithms. Then, the data
needs also to be stored and secured. The data fusion and analysis with incomplete or
inconsistent data is also needed. The system should be scalable to ensure that the necessary
storage and processing capacity is available. In addition, it may be hard to visualize and
interact with the DT since it may be difficult to know which data will be useful. How to
efficiently process, analyze and store large volumes of data in a DT is still an open challenge
to ensure the required performance and scalability. In this line, it is important to determine
which data are enough and relevant to the DT’s function to reduce the generated data while
preserving the important information.

Implementation Tools—The development of DT tools is vital to make the building pro-
cess faster and to improve the re-usability of standard DT solutions. Modular approaches
may help in the construction of flexible solutions by facilitating new applications. Common
tools and protocols will also help to integrate the DTs of different providers.

During the analysis of the literature, we found few contributions regarding model
evaluation, DT testing and the tuning and calibration of the solution. Further contributions
about methodologies, approaches and also tools to verify and validate will help to improve
the truthiness and reliability of the DT information and decisions.

Standardization—The definition of standards and communication protocols will ensure
the interoperability of DTs with their physical object and also among different DTs, as
mentioned in the previous point. The development of the interoperability standards is
important for the evolution and adoption of the applications. Reference models, architec-
tures and protocols are also necessary to work towards a full integration of DTs within an
ecosystem of diverse systems and DTs.

DT Connection—A DT may require to connect a huge number of heterogeneous com-
ponents using a low-latency connection. The ability to collect, aggregate and exchange data
with different components and suppliers represent, today, many interoperability challenges,
especially if the synchronization has real-time constraints or proprietary interfaces. It may
also be hard to integrate data from legacy machines. Another factor to consider is the
possibility of heterogeneous networks with diverse devices that may be hard to integrate.
As a result, the interoperability to allow different assets to work together also needs to be
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considered as part of a large architecture. The DT environment is usually large distributed
networks. How to handle these kinds of networks, model them and scale them is also an
issue to be analyzed. The data synchronization between the PO and VO must be a secure
connection, as discussed previously. It should ensure a highly available synchronization
with integrity and confidentiality protection.

8. Conclusions

Digital Twins (DTs) open new possibilities to optimize, monitor, simulate, predict,
diagnose and control the behavior of physical process. They provide information to create
new business models and decision support systems and optimize operation. We have
presented a review of the recent literature with a specific focus on DT construction. We
have covered and summarized the methodological approaches to build DTs published
in the recent scientific literature. Based on such results, we have analyzed the needed
steps to methodologically build a DT, covering phases such as design, modeling and
implementation.

We have addressed the following research questions: (1) how to model physical objects
into the virtual objects underlying the DT concept; (2) how to structure the architecture of
the DT; (3) how to synchronize real-time data between both physical and virtual compo-
nents of the DT; and (4) what are the main challenges in developing DTs. We have also
discussed the differences of our work with respect to related work, as well as open issues
and future research lines to address the challenges that still exist in this research field. Thus,
we have covered critical challenges and evolution trends in the field.

We have also concluded that the growth of DTs will be based on complementary
technologies, such as AI, IoT and big data analysis. Network connectivity will also be of
high importance, since it enables the data transfer from the physical object to be processed
by the virtual counterpart. We consider that further work must target the construction of
secure DTs, exploring feasible ways of hardening the protection of sensed data in order to
create reliable systems that can be suited to critical processes. Works toward standardization
must also cover current limits in the integration of DTs and their potential uses to create
more complex simulation systems.
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