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Abstract: Multilayer perceptron (MLP) has been demonstrated to implement feedforward control
of the piezoelectric actuator (PEA). To further improve the control accuracy of the neural network,
reduce the training time, and explore the possibility of online model updating, a novel recurrent
neural network named PEA-RNN is established in this paper. PEA-RNN is a three-input, one-
output neural network, including one gated recurrent unit (GRU) layer, seven linear layers, and
one residual connection in the linear layers. The experimental results show that the displacement
linearity error of piezoelectric ceramics reaches 8.96 µm in the open-loop condition. After using
PEA-RNN compensation, the maximum displacement error of piezoelectric ceramics is reduced to
0.465 µm at the operating frequency of 10 Hz, which proves that PEA-RNN can accurately compensate
piezoelectric ceramics’ dynamic hysteresis nonlinearity. At the same time, the training epochs of
PEA-RNN are only 5% of the MLP, and fewer training epochs provide the possibility to realize online
updates of the model in the future.

Keywords: piezoelectric ceramic actuator; hysteretic nonlinearity; recurrent neural network;
feedforward control

1. Introduction

The Shanghai Synchrotron Radiation Facility (SSRF), which operates nearly 5000 h
a year, has massive data resources, and the high availability of data brings enormous
opportunities for the application of artificial intelligence technology in the field of syn-
chrotron radiation. In recent years, SSRF has explored intelligent beamlines based on the
differential evolution algorithm and achieved initial success [1]. However, in the online
test, the researchers found that, after the introduction of the second crystal pitch axis of
the monochromator [2], the excellent individuals were inherited to the next generation
due to its poor motion repeatability, resulting in the intelligent algorithm not converging.
SSRF uses many PEAs to achieve micro displacements. However, due to the inherent
hysteresis nonlinearity and creep properties, and the defects of the control algorithm, the
motion accuracy is not high enough, and the motion repeatability is poor. Studies have
shown that, without considering the error caused by vibration, the uncertainty introduced
by piezoelectric ceramic hysteresis is generally 15–20%, and the creep error is 1–5% [3].

For a long time, the hysteresis nonlinearity and compensation technology of piezo-
electric ceramics have been research hotspots for scholars. The early classical feedfor-
ward control technology used mathematical methods to establish a fitting model of the
hysteresis loop and to obtain the relationship between the excitation voltage and the
actual output displacement by solving its inverse model. Physics-based models and
phenomenological models [4] were the main classifications of the hysteresis model in
the past. The micro-electromechanical models [5] are typical phenomenological models.
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Because this classification method is limited, the classifications of rate-independent hys-
teresis models and rate-dependent hysteresis models according to whether the input rate is
considered [6] are more reasonable. Rate-independent hysteresis models include the classic
Preisach model [7], the classic Maxwell model [8], and the polynomial model [9]. Fur-
thermore, rate-dependent hysteresis models include the Bouc–Wen mode [10,11] and the
micromechanical model [12,13]. Due to the complex nonlinear characteristics, although
scholars have proposed many mathematical models, there are certain limitations in the
description of the hysteresis loop by various models. Therefore, there has been no widely
accepted general model. More and more researchers have introduced other new piezoelec-
tric ceramic feedforward control methods, such as using the Radial basis function(RBF)
network [14] and neural network self-turning control [15].

MLP has been demonstrated to implement feedforward control of PEA. However,
MLP needs too many training epochs, and the control displacement error has jumps and
other shortcomings, as shown in Figure 1. Based on the control strategy realized by the MLP,
this paper further enriches the piezoelectric ceramic operation dataset and adopts a new
network structure(PEA-RNN) that conforms to data characteristics. Accurate displacement
output of piezoelectric ceramics is achieved with fewer training epochs. The test results
show that, under the operating frequency of 10 Hz, the precision of the controlled precision
is improved from 8.96 µm to 0.465 µm after using PEA-RNN compensation. The influence
of each network structure (mainly including MLP and residual connection) is verified
further to prove the rationality of the network structure.

(a) (b) (c)

Figure 1. Control flaws of MLP. (a) Sinusoidal error distribution. (b) Dampened sinusoidal error
distribution. (c) Amplified sinusoidal error distribution.

The rest of this paper is organized as follows: In Section 2, the performance of the
experimental platform is evaluated, and the control strategy is preliminarily determined,
then the related neural network structures are introduced. Next, the training and the
application of PEA-RNN are illustrated, and the effects of MLP and residual connections
are verified in Section 3. Finally, this paper is concluded in Section 4.

2. Performance Test and Related Structure
2.1. Piezoelectric Ceramic Hysteresis Loop
2.1.1. Experimental Platform

In this experiment, the digital piezoelectric actuator(E-709.CRG) [16] and the piezo
linear precision positioner (P-621.1CD) [17] of Physik Instrumente (PI) are used, as shown
in Figure 2. The signal amplifier is integrated into the actuator, and the capacitive sensor
is integrated into the positioner. After the actuator receives the command, it sends the
voltage to the positioner through the signal amplifier, reads back the current position of
the piezoelectric ceramic from the capacitive sensor, and communicates with the computer
through USB, as shown in Figure 3.



Sensors 2022, 22, 5387 3 of 18

Figure 2. Experimental platform diagram.
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Figure 3. Experimental platform communication diagram.

2.1.2. Primary and Secondary Hysteresis Loops

The hysteresis nonlinearity of piezoelectric ceramics is mainly manifested in input
voltage and output displacement curves. The voltage-rising curve does not coincide with
the voltage-dropping curve. Many factors affect this characteristic, not only related to the
current input voltage, but also related to the input history and the input frequency [18].

The test data were obtained by taking the step signal, the dampened sinusoidal
signal, and the amplified sinusoidal signal with a working frequency of 10 Hz as the
input. The primary hysteresis loop refers to the largest hysteresis loop formed by the
positioner during its entire travel. Furthermore, the secondary hysteresis loop refers to the
smaller hysteresis loop.

As shown in Figure 4, the primary hysteresis loop was linearly fitted, and the linear
relationship between the output displacement x and the input voltage V was obtained as

x = 0.978V + 0.294 (1)

Figure 4. Primary hysteresis loop linear analysis result graph.
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The maximum deviation of the voltage-rising curve (forward error) is 5.12 µm; the
maximum deviation of the voltage-dropping curve (backward error) is 8.96 µm.

The test results of the secondary hysteresis loop are shown in Figures 5 and 6, and the
maximum errors in the open loop are all about 6 µm.

Figure 5. Secondary hysteresis loop linear analysis result graph (dampened sinusoidal input signal).
(a) Dampened sinusoidal output. (b) Dampened sinusoidal curve comparision. (c) Dampened
sinusoidal error distribution.
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Figure 6. Secondary hysteresis loop linear analysis result graph (amplified sinusoidal input signal).
(a) Amplified sinusoidal output. (b) Amplified sinusoidal curve comparision. (c) Amplified sinusoidal
error distribution.

2.1.3. Hysteresis Loop Model

It can be found from the primary and the secondary hysteresis loops that the current
position of the positioner has a great relationship with the current output voltage, the last
position, and the last input voltage.

The state Φt of the piezoelectric ceramic at time t is uniquely represented by the input
voltage and output displacement at the current time.

Φt = ϕ(Vt, xt) (2)

where Vt is the input voltage at time t, and xt is the displacement at time t.
From the diagrams of the primary and the secondary hysteresis loops, it is not difficult

to see the relationship between the current state and the historical state, and there is
an obvious time series relationship between Φ1, . . . , Φt, which can be represented by a
conditional probability model.

P(Φ1, · · · , Φt) =
t

∏
T=1

P(ΦT | Φ1, · · · , ΦT−1) where P(Φ1 | Φ0) = P(Φ1) (3)

As the operating time of PEA increases, more and more piezoelectric ceramic states
need to be recorded and calculated, which will directly lead to an increasing control
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time and a continuous decrease in operating frequency. Therefore, consider introduc-
ing the Markov assumption, suppose that in the real situation, the rather long sequence
Φt−1, . . . , Φ1, may not be necessary for the current state Φt. Therefore, it is only necessary
to satisfy a certain length τ; using the observation sequence Φt−1, . . . , Φt−τ , the current
state can be predicted. According to the Markov assumption, (3) can be modified as

P(Φ1, · · · , Φt) =
t

∏
T=1

P(ΦT | ΦT−τ , · · · , ΦT−1) (4)

To meet the requirements of high response frequency, a simple first-order Markov
model is used, that is, τ = 1. (4) can be simplified as

P(Φ1, · · · , Φt) =
t

∏
T=1

P(ΦT | ΦT−1) where P(Φ1 | Φ0) = P(Φ1) (5)

Bringing (2) into the equation

xt = f (Vt, xt−1, Vt−1) (6)

Vt−1 is the input voltage at time t− 1, and xt−1 is the displacement at time t− 1.
After transformation, (7) is obtained:

Vt = f ′(xt, xt−1, Vt−1) (7)

Finally, modifying the parameters:

VR = f ′(xT, xt−1, Vt−1) (8)

For the piezoelectric ceramic positioner, from the given target position xT, the last
time input voltage Vt−1 and the last time displacement xt−1, the voltage applied to the
positioner VR is calculated by the function f ′.

Figure 7 is the principle structure diagram of the whole system. The task of this
paper is to design a feedforward control model of a recurrent neural network, perform
compensation calculation on the preset target position, and output the result through the
controller to apply it to piezoelectric ceramics to realize micro and precise displacement.

Deep Neural 
Network

(PEA-RNN)

Digital 
Piezoelectric

Actuator

Piezo Linear 
Precision 
Positioner

Last position Xt-1

Capacitance 
Sensor

Signal 
Processor

Last voltage Vt-1

Ideal input Xt Actual outputVR

Figure 7. Schematic diagram of feedforward control of PEA-RNN.

2.2. Network Structure
2.2.1. Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU)

In the model, considering the state of the last moment as a hidden variable for process-
ing, it is necessary to add a neural network structure that can describe the hidden variable,
which is the RNN [19].

As shown in Figure 8, for a single recurrent neuron, the input xt, at time t, needs to be
calculated in three steps to obtain the output ot (to simplify the description, the input layer
bias and the output layer bias are ignored). Firstly, the input layer weight wxh is multiplied;
secondly, the hidden layer output ht−1, at time t− 1, is multiplied by the weight whh, and
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then added to the first step result to obtain ht; thirdly, ht is multiplied by the output layer
weight whq, activated by the activation function, and the final output is ot.

o1 o2 ot-1 ot

h0

whh

wxh

x1

whq

...h1

x2 xt-1 xt

ht-2 ht-1 ht

wxh

whq

whh

Figure 8. Recurrent Neural Unit Computational Flowchart.

The first step is usually expressed together with the second step:

ht = wxhxt + whhht−1 (9)

The third step can be expressed as:

ot = σ
(

whqht

)
(10)

The hidden layer state h is continuously transmitted and used “recurrently”, which
coincides with the time sequence characteristic of the piezoelectric ceramic operating data.

The structure of the basic recurrent neural unit is simple, but for long sequence
problems, the training likely fails due to gradient disappearance or explosion. GRU is a
recurrent neural unit with better performance optimized for the shortcomings of the basic
one [19].

The calculation flow of the GRU is shown in Figure 9. GRU mainly includes the reset
gate and the update gate, which are vectors in the interval (0,1). The opening of the reset
gate controls how well the current input combines with the hidden state, while the opening
of the update gate controls the retention of the hidden state [20].

For a given time step t, assuming the input is a mini-batch Xt ∈ Rn×d (number of
samples: n, number of inputs: d), the hidden state of the previous time step is Ht−1 ∈ Rn×h

(number of hidden units: h). Then the reset gate Rt ∈ Rn×h and the update gate Zt ∈ Rn×h

are calculated as follows:

Rt = σ(XtWxr + Ht−1Whr + br) (11)

Zt = σ(XtWxz + Ht−1Whz + bz) (12)

where σ represents the sigmoid function, which is used to convert the input value to the
interval (0,1), the expression is

sigmoid(x) =
1

1 + e−x (13)
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Figure 9. GRU computational flow chart.

Next, the reset gate Rt is integrated with the regular hidden state update mechanism
to obtain candidate hidden states H̃t ∈ Rn×h at time step t

H̃t = tanh(XtWxh + (Rt �Ht−1)Whh +bh) (14)

where the symbol � is the Hadamard product operator. The role of the tanh function is to
convert the input value to the interval (−1,1); the specific expression is

tanh(x) =
1− e−2x

1 + e−2x (15)

The result of the calculation is the candidate because the operation of the update gate
still needs to be combined. The element multiplication of Rt and Ht−1 in (14) can reduce
the influence of past states. Whenever the terms in the reset gate Rt approach 1, restore a
normal recurrent neural network. For all terms close to 0 in Rt, the candidate hidden state
is the result of an MLP with Xt as input. Therefore, any pre-existing hidden state is reset to
default. Finally, the effect of the update gate Zt needs to be combined, which determines to
what extent the new hidden state Ht is the old state Ht−1, and the use of the new candidate
state H̃t quantity. The update gate Zt only needs an element-wise convex combination
between Ht−1 and H̃t to achieve this. This provides the final update formula for the gated
recurrent unit:

Ht = Zt �Ht−1 + (1− Zt) (16)

Whenever the update gate Zt approaches 1, only the old state is kept. At this point,
the information from Xt is essentially ignored, effectively skipping time step t in the
dependency chain. Conversely, as Zt approaches 0, the new hidden state Ht approaches
the candidate hidden state H̃t. These designs can help deal with the vanishing gradient
problem in recurrent neural networks and better capture the dependencies of sequences
with long time-step distances. For example, if the update gate is close to 1 for all time
steps of the entire subsequence, then regardless of the length of the sequence, the old
hidden state at the beginning time step will be easily preserved and passed on to the end of
the sequence.

In summary, GRU has the following two salient features: [19]

1. Reset gate helps capture short-term dependencies in the sequence;
2. Update gate helps capture long-term dependencies in the sequence.
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2.2.2. Multilayer Perceptron (MLP)

The structure of MLP is shown in Figure 10. This structure can improve the perfor-
mance of the network and realize dimensional transformation.

Figure 10. MLP structure diagram.

2.2.3. Residual Connection

Generally, increasing the number of layers can improve the neural network perfor-
mance, but it will correspondingly increase the computing time and the resources occupied
by the calculation. At the same time, the increase in the number of layers will also lead to
network degradation—that is, the weight matrix in the network will no longer be sensitive
to changes in the input in some dimensions, and the same output is obtained regardless of
the input. To optimize the MLP, the number of layers should be compressed as much as
possible without loss of performance or very little performance, so the residual connection
is introduced into MLP in the experiment.

Focus on the network portion: As shown in Figure 11, suppose the original input is
x, and the ideal map you want to train is f(x) (as input to the activation function above).
The part in the dashed box on the left needs to fit the mapping f(x) directly, while the
part in the dashed box on the right needs to fit the residual mapping f(x)-x. Residual
maps tend to be easier to optimize in reality. The right picture is the basic structure of
ResNet [21]—the residual block. Using the residual connection can break the symmetry of
the neural network, making the input propagate forward faster between layers, and more
conducive to constructing deep neural networks.

3. Training and Application of PEA-RNN
3.1. Network Training

The training process is shown in Figure 12. Firstly, initialize the weight value parame-
ters, scramble the dataset randomly, and divide it into a training dataset and a verification
dataset according to the ratio of 8:2. Then, take out the training data in groups, take the
current actual displacement, the last time voltage and the last time displacement as the
input of the neural network, set the initial state to all zeros, and calculate the voltage
prediction layer by layer through the forward propagation algorithm. After getting the
prediction, compare it with the current actual voltage and calculate the loss value (mean
square error, MSE). The neural network weight parameters are updated according to the
optimizer in the backpropagation algorithm. Whenever the loss value on the training
dataset decreases, the network is verified using the verification dataset. If the loss value is
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the minimum loss value on the verification dataset at this time, the current neural network
parameters are saved.

Activation function

Weight layer

Activation function

Weight layer

X

f(x)

Weight layer

Activation function

Weight layer

X

f(x)-x
+

Activation function

X

Figure 11. Residual connection structure diagram.

In the experiment, the loss function used is the MSE function, and the specific expres-
sion is:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (17)

where n represents the number of samples.
The optimizer uses the most commonly Adam [22], which can adaptively adjust the

learning rate α so that the training can converge faster. The parameter update formula is:

wt ← wt−1 − αt ·mt/(
√

vt + ε̂) (18)

In the formula, wt is the weight parameter to be updated; wt−1 is the weight parameter
at the last moment; αt is the learning rate, and mt is the first-order moment estimation value
of the gradient, which can adaptively adjust the speed of the learning rate change; vt is
the second-order moment estimate of the gradient, which can prevent the parameter from
falling into a local minimum; ε̂ = 10−8, which is used to prevent the divisor from being 0.
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Figure 12. Neural network training process flow chart.

The total dataset comprises the piezoelectric ceramic operating data, with 16,020 sets.
During the experiment, set the Batch Size to 32 and the learning rate to 0.01. After 5000 epochs
of training, a model that meets the accuracy requirements is obtained. The error decrease
on the validation dataset is shown in Figure 13.

numbers of prediction

lo
ss

 v
al

ue

Figure 13. RNN Prediction Error Curve.

3.2. Network Application
3.2.1. The Overall Structure of PEA-RNN

As shown in Figure 14 and Table 1, the designed deep neural network includes one
recurrent layer (hidden state dimension is 128) and seven linear layers. The ReLU function
is used as the activation function between the linear layers, and the second layer of the
linear layer connects with the fifth layer by Residual connection. The input layer contains
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three dimensions (current actual displacement, the last time voltage, and the last time
displacement), and the output layer is one-dimensional (input voltage prediction).

Figure 14. PEA-RNN Structure Diagram.

Table 1. RNN Specific Structure Parameters.

Layer Name Input
Dimension

Output
Dimension Bias Hidden State

Dimension

GRU layer 3 3 True 128
Linear 1 3 16 True /
Linear 2 16 32 True /
Linear 3 32 64 True /
Linear 4 64 128 True /
Linear 5 128 32 True /
Linear 6 32 4 True /
Linear 7 4 1 True /

According to the design, for the ideal input voltage Vk required to move to the target
displacement xk at time k, the operation process is as follows:

Step 1: The target displacement xk, the output displacement xk−1 and the input voltage
Vk−1 at time k− 1 directly form the input matrix X(k)(X(k) ∈ R1×3) of the neural network
at time k, and set the initial hidden state matrix H(k)

0 (H(k)
0 ∈ R1×128) to zero:

X(k) =
[

xk−1 Vk−1 xk
]

(19)

H0
k = 0 (20)

Step 2: GRU processes the input matrix sequentially and then outputs the correspond-
ing result and the hidden state matrix containing trend information.

H(k)
1 = Z(k)

0 �H(k)
0 +

(
1− Z(k)

0

)
� H̃(k)

0 (21)

H(k)
2 = Z(k)

1 �H(k)
1 +

(
1− Z(k)

1

)
� H̃(k)

1 (22)
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H(k)
3 = Z(k)

2 �H(k)
2 +

(
1− Z(k)

2

)
� H̃(k)

2 (23)

Step 3: The output result H(k)
3 of GRU reduces the dimension from 128 to 3 through a

linear layer, and obtains the operation result of the recurrent layer O(k)
RNN(O(k)

RNN ∈ R1×3).

Step 4: The operation result of the recurrent layer O(k)
RNN continues to be used as the

input of the MLP X(k)
MLP. After the calculation of the MLP, the dimension is reduced from 3

to 1, This result is the ideal input voltage Vk at time k.

X(k)
MLP = O(k)

RNN (24)

Vk = F
(

X(k)
MLP

)
(25)

where F(·) represents the complex nonlinear computation constructed by the MLP.
After the calculation of the recurrent layer and the MLP, the ideal input voltage Vk of

the piezoelectric driver is finally obtained.

Vk = f ′(xk, xk−1, Vk−1) (26)

3.2.2. Experimental Test

According to Figure 15, the validity of the model was verified on the experimental
platform (Figure 2). Set the target position on the PC to change with the linear motion
trajectory, sinusoidal motion trajectory, amplified sinusoidal motion trajectory, and damped
sinusoidal motion trajectory with a working frequency of 10 Hz. After PEA-RNN feed-
forward compensation, the prediction is sent to the controller to generate input voltage.
Finally, test the actual position of the positioner.

Figure 15. Linear motion control renderings. (a) Output. (b) Error.

The experimental results are shown in Figures 16–18. When set as the step signal, the
target position has a good linear relationship with the actual position, and the maximum
error value is 0.210 µm. When the target is set to a sinusoidal signal, the maximum
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error is 0.396 µm. When the target is set to a dampened sinusoidal signal, the maximum
error is 0.230 µm. The maximum error is 0.465 µm when the target is set to an amplified
sinusoidal signal.

Figure 16. Sinusoidal motion control renderings. (a) Curve comparision. (b) Error distribution.

Figure 17. Dampened Sinusoidal motion control renderings. (a) Curve comparision. (b) Error distribution.
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Figure 18. Amplified Sinusoidal motion control renderings. (a) Curve comparision. (b) Error distribution.

3.3. Ablation Experiment

To more clearly demonstrate the contribution of each structure in the PEA-RNN to the
model, two ablation experiments were performed to evaluate the effect of the MLP and the
residual connection, respectively.

3.3.1. The Impact of MLP

This experiment aims to verify the effect of MLP on the control accuracy of PEA-
RNN. The experimental method adopted is to directly delete the MLP in PEA-RNN, so
the new network has only one GRU layer. After the network is fully trained with the
same training strategy as the original, the output error of the piezoelectric ceramic is
tested under the condition that the input is a sinusoidal signal. The results are shown in
Figure 19. The maximum output error is 0.599 µm, an increase of 51.3% compared to the
original network.

After removing the MLP, the new network is a normal RNN, including a GRU layer.
The linear fitting ability of the network is reduced, the error distribution is also relatively
discrete, and the error at the starting point is significant. The MLP at the tail can enhance
the nonlinear expression ability of PEA-RNN so that the model can describe the hysteresis
nonlinearity of piezoelectric ceramics in appropriate detail.

3.3.2. The Impact of Residual Connection

This section evaluates its impact on model performance by removing the residual
connection in PEA-RNN alone, and the experimental test results are shown in Figure 20.
At the beginning of the piezoelectric ceramic displacement output, the error is too large,
indicating that the neural network has not completely fitted the original curve after the
same epochs of training, and the training error has not dropped to a relative minimum.
A part of the error value is around ±1 µm, which is far worse than the original network
control accuracy.
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Figure 19. PEA-RNN without MLP control errors. (a) Curve comparision. (b) Error distribution.

Figure 20. PEA-RNN without Residual Connection control errors. (a) Curve comparision. (b) Error distribution.

The role of the residual connection is to speed up the neural network training process.
At the same time, it is beneficial to build a deeper network, which can also increase the
nonlinear expression ability of the network.
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4. Conclusions

Based on the PyTorch framework, this paper builds a deep neural network model
named PEA-RNN, with one recurrent layer and seven linear layers. The ReLU function is
used as the activation function between the linear layers. The residual connection is used
between the second and fifth layers of the linear layers. The model’s design principle and
training process is given, and the model obtained by training is applied to the feedforward
compensation of the positioner.

The test results show that the maximum displacement error is reduced from 8.96 µm
to 0.465 µm under the control of PEA-RNN with the input of the 10 Hz operating frequency.
Through ablation experiments to verify the role of each structure in the PEA-RNN, MLP
can effectively enhance the nonlinear expression ability of the model, and the residual
connection can not only accelerate the training process but also enhance the nonlinear
expression of the model. These results show that PEA-RNN constructed in this paper can
accurately describe the dynamic hysteresis nonlinearity of piezoelectric ceramics, realize
the real-time intelligent beam line modulation system, and create the possibility for online
updating of the model.
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