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Abstract: Data augmentation is an established technique in computer vision to foster the generaliza-
tion of training and to deal with low data volume. Most data augmentation and computer vision
research are focused on everyday images such as traffic data. The application of computer vision
techniques in domains like marine sciences has shown to be not that straightforward in the past
due to special characteristics, such as very low data volume and class imbalance, because of costly
manual annotation by human domain experts, and general low species abundances. However, the
data volume acquired today with moving platforms to collect large image collections from remote
marine habitats, like the deep benthos, for marine biodiversity assessment and monitoring makes the
use of computer vision automatic detection and classification inevitable. In this work, we investigate
the effect of data augmentation in the context of taxonomic classification in underwater, i.e., benthic
images. First, we show that established data augmentation methods (i.e., geometric and photometric
transformations) perform differently in marine image collections compared to established image
collections like the Cityscapes dataset, showing everyday traffic images. Some of the methods even
decrease the learning performance when applied to marine image collections. Second, we propose
new data augmentation combination policies motivated by our observations and compare their effect
to those proposed by the AutoAugment algorithm and can show that the proposed augmentation
policy outperforms the AutoAugment results for marine image collections. We conclude that in the
case of small marine image datasets, background knowledge, and heuristics should sometimes be
applied to design an effective data augmentation method.

Keywords: marine objects classification; underwater computer vision; deep learning; data augmentation

1. Introduction

Underwater imaging with autonomous or remotely operated vehicles such as AUV
(autonomous underwater vehicles [1]) or ROV (remotely operated vehicles [2]) allows
visual assessments of large remote marine habitats through large image collections with
102–104 images collected in one dive. One of the main purposes of these image collections
is to provide valuable information about the biodiversity in marine life. To detect and
classify species or morphotypes in these images, machine learning, has been proposed with
some early promising results in the last decade obtained with pre-deep learning methods
such as support vector machines (SVM) [3–5] or, more recently, using convolutional neural
networks (CNN) [6–19]. The application of CNN for taxonomic classification problems in
this marine image domain features some characteristics that separate this field of research
from the majority of CNN applications in the context of human civilization (like traffic
image classification/identification, quality control, observation, manufacturing). First,
the process of image collection is very expensive as it involves costs for ship cruises,
ROV/AUV hardware, operator personnel, advanced planning, maneuvering, and special
camera equipment. Second, the number of domain experts that are required for collecting
taxonomic labels to build training and test data is limited. In addition, the task of taxonomic
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classification in the images is very difficult as the domain experts usually have only one
single image of an organism, in contrast to the traditional approach of collecting samples
from the seafloor and intense visual inspection of the specimen in the laboratory. Another
problem is that due to the natural structure of food webs and communities, some species
are rather rare by nature and appear in just a few images and some species can be observed
in hundreds of images, which leads to a strong class imbalance. Similar problems can
be observed in aerial images collected for environmental monitoring. As a consequence,
the field of marine image classification may sometimes require individual approaches to
pattern recognition problems shaped by the characteristics listed above.

Data augmentation (DA) is a standard approach to overcome training problems caused
by limitations in training data and over-fitting. In the case of image classification, the image
augmentation algorithms can be broadly classified as deep learning approaches, for exam-
ple, adversarial training [20], neural style transfer [21], feature space augmentation [22,23],
generative adversarial networks (GAN) [24,25], meta-learning (AutoAugment [26], Smart
Augmentation [27]), and basic image manipulation augmentations, for instance, geometric
transformations (horizontal flipping, vertical flipping, random rotation, shearing), color
space transformations (contrast modulation, brightness adjustment, hue variety), random
erasing, mixing images [28,29], and kernel filters [30]. Deep learning approaches and basic
image manipulation augmentations do not form a mutually exclusive dichotomy. In this
work, we are mainly curious about the effectiveness of the most broadly used and readily
available basic image manipulation operations in marine images. However, there is little
literature available on methodological approaches to (i) select one or more data augmenta-
tion method(s) for a given image domain, or (ii) employ (or improve) the effect of DA in
the marine image domain in particular. While single individual successful applications of
DA have been reported already [14,17,19,31] also some examples have been reported on
unsuccessful DA applications leading to decreasing performance [31–33].

Recently, a small number of concepts have been proposed for combinations of DA
methods. Shorten and Khoshgoftaar [33] describes that it is important to consider the
‘safety’ of augmentation, and this is somewhat domain-dependent, providing a challenge
for developing generalizable augmentation policies. Cubuk et al. have met the challenge of
developing generalizable augmentation policies in their work, proposing the AutoAugment
algorithm [26] to search for augmentation policies from a dataset automatically. Based
on this work, Fast AutoAugment [34] optimized the search strategy, which speeds up
the search time. One study was conducted by Shijie et al. [35], which compared the
performance evaluation of some DA methods and their combinations on the CIFAR-10
and ImageNet datasets. They found four individual methods generally perform better
than others, and some appropriate combinations of methods are slightly more effective
than the individuals. However, although all these approaches provide highly valuable
new methods, a domain-specific investigation of DA effectiveness is missing, especially
for special domains like medical imaging, aerial images, digital microscopy, or -like in this
case- benthic marine images.

As already explained, the marine imaging domain challenges deep learning applica-
tions with a permanent lack of annotated data. On the other hand, marine benthic images
often are recorded with a downward-looking camera (sometimes referred to as “ortho-
images”) that feature a higher degree of regularity (for instance, regarding illumination or
camera—object distance). This can also increase the potential of machine learning-based
classifications in benthic images when compared to everyday benchmark image data in
computer vision documenting, for instance, different aspects of human activities (e.g.,
traffic scenes, social activities). Such images somehow constitute the mainstream in CNN
application domains and show lesser irregularities in this regard due to changing weather,
light condition, camera distance to the object, etc. Thus, we hypothesize that marine images
may show special characteristics regarding the effectiveness of particular DA methods.
These characteristics need to be thoroughly investigated as DA can be considered one of
the most promising tools to overcome problems in missing or unbalanced training data in
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marine imaging. To show the effect of different DA methods in the context of deep learning
classification in marine images, we first report results from exhaustive comparative experi-
ments using single DA methods. Based on our findings, we propose different combinations
of augmentation methods, referred to as augmentation policies, and can show a significant
improvement for our marine-domain datasets.

2. Materials and Methods
2.1. Data Sets

To show the effect of different DA approaches, we conduct experiments with two
marine-domain datasets. The Porcupine Abyssal Plane (PAP) which is in the northwest
Atlantic Ocean, to the southwest of the United Kingdom [36–38] and the Clarion Clipperton
Zone (CCZ) which is located in the Pacific Ocean and is known for its rich deposits of
manganese nodules [39]. They are collected with AUVs in several 1000 m depths and show
deep-sea benthos with different species. In addition to these two marine-domain datasets,
we conduct a series of data augmentation experiments on the Cityscapes dataset [40],
referred to as CSD, collected from annotated traffic videos in urban street scenes.

2.1.1. PAP

In this work, we choose the following four categories (see Figure 1) to form ΓPAP for
our experiments to ensure that a more trustworthy number of test samples are left.

(a) (b) (c) (d)

Figure 1. ΓPAP dataset. (a) Ophiuroidea; (b) Cnidaria; (c) Amperima; (d) Foraminifera. Reproduced
with permission from Henry Ruhl.

Figure 2 reveals the structure of the ΓPAP dataset. For each class we randomly sample
300 images from ΓPAP as Γtrain

PAP , 200 images as Γvalidation
PAP , and the rest as Γtest

PAP. ΓPAP =
Γtrain

PAP ∩ Γvalidation
PAP ∩ Γtest

PAP. Additionally, as shown in Figure 3 we sample 50, 100, and
200 images randomly from Γtrain

PAP as Γtrain50

PAP , Γtrain100

PAP , Γtrain200

PAP , respectively, to investigate the
effect of train set size on DA performance. Sample sizes of each class are shown in Table 1.

Figure 2. Dataset structure. The datasets were randomly subdivided into train, validation, and
test set.
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Figure 3. Construction of the training sets. Experiments were conducted using training sets of
different sizes to investigate the influence of training set size on the impact of augmentation.

Table 1. Sample sizes of each category per subset in the ΓPAP dataset.

ΓPAP Ophiuroidea Cnidaria Amperima Foraminifera

Γtrain50

PAP 50 50 50 50

Γtrain100

PAP 100 100 100 100

Γtrain200

PAP 200 200 200 200

Γtrain
PAP 300 300 300 300

Γvalidation
PAP 200 200 200 200

Γtest
PAP 8883 8861 5202 2132

2.1.2. CCZ

Similarly, we choose the two most abundant categories (shown in Figure 4) to form
the ΓCCZ dataset for the experiments in this work. Sample sizes of each class in the ΓCCZ
dataset are shown in Table 2.

Table 2. Sample sizes of category per subset in the ΓCCZ dataset.

ΓCCZ Sponge Coral

Γtrain50

CCZ 50 50

Γtrain100

CCZ 100 100

Γtrain
CCZ 150 150

Γvalidation
CCZ 150 150

Γtest
CCZ 1236 700
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(a) (b)

Figure 4. ΓCCZ dataset. (a) Sponge; (b) Coral.

2.1.3. CSD

We choose two classes (see Figure 5) from the vehicle group of the CSD to generate
the dataset ΓCSD (shown in Table 3) for our experiments in this work.

(a) (b)

Figure 5. ΓCSD dataset. (a) Car; (b) Bicycle.

Table 3. Sample sizes of each category per subset in the ΓCSD dataset.

ΓCSD Car Bicycle

Γtrain50

CSD 50 50

Γtrain100

CSD 100 100

Γtrain
CSD 150 150

Γvalidation
CSD 200 200

Γtest
CSD 24,371 3208

2.2. Model and Evaluation Criteria

In this work, we use a MobileNet-v2 which is pre-trained on the ImageNet [41] to
investigate several augmentation policies. Image data are resized to 224 px × 224 px
and normalized based on the ImageNet dataset. We use Adam as the optimizer in our
experiments and set a learning rate of 1 × 10−4 accompanied by a step decay with a step
size of 1 and a gamma of 0.1. The loss function used in this work is cross-entropy loss.
For each epoch, we perform a train and a validation phase, and compute the prediction
accuracy Acce,j =

ne,j
Ne,j

, where ne,j and Ne,j stand for the number of correct predictions

and the total number of samples in phase j ∈ {train, validation} of epoch e, respectively.
In the test phase, since the sample sizes of each class in the test set are not consistent,
we compute the prediction accuracy Acck = nk

Nk
for each class, where nk and Nk stand

for the number of correct predictions for class k and the sample sizes of class k in the
test set, respectively. In each experiment we record two trained-models corresponding
to the highest Acce,train and the highest Acce,validation in all epochs and apply them to the
test set separately. The two inference results are averaged to obtain the average accuracy

AAk = 1
2 (Acc

Acchighest
e,train

k + Acc
Acchighest

e,validation
k ) for each class. As the last step, we compute the
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mean average accuracy mAA = 1
K ∑k AAk with K the number of classes as the prediction

accuracy in the test phase. The flowchart of our work is shown in Figure 6.

Figure 6. Flowchart of the work. Each DA method was applied to each train data and an individual
model was trained and optimized using the validation data. The accuracy of the individually trained
model was evaluated using the test data.

2.3. Methods

In this work, we investigate the data augmentations implemented in torchvision of
PyTorch during the training progress. We describe the data augmentation in the way that
a training image Xi is given defined by Xi = f (xi) with xi as the original image with
index i and f () as the transformation function executing the augmentation method. In this
work we apply RandomRotation fRR(xi, d) to rotate the image randomly within the angle
range represented by d, RandomVerticalFlip fRVF(xi, p) to vertically flip the given image
randomly with a given probability p, RandomHorizontalFlip fRHF(xi, p) to horizontally
flip the given image randomly with a given probability p, RandomAffine fRA(xi, t, s) to
randomly affine transformation translate and shear of the image keeping center invariant
according to the parameters t and s. Color transformations fCT(xi, b, c, s, h) is used to
randomly change the brightness, contrast, saturation, and hue of an image according to the
values of parameters b, c, s, h, respectively.

We investigate the performance of DA methods on ΓPAP and ΓCCZ, determining the
four best-performing ones. We propose six DA combination policies and apply them to
ΓPAP, ΓCCZ and ΓCSD. To avoid randomness affecting the results during the experiments,
we set a seed for fixing the following random number generators: CUDA, NumPy, Python,
PyTorch, and cudnn.

3. Results

The experimental results are represented by the change of mAA of applying DA and
without applying DA. We generate a heatmap for each experiment based on the change of
mAA, with blue indicating positive increments and orange indicating decrease. The darker
the color, the greater the change.

3.1. Experiment A: Performance of Data Augmentations on ΓPAP

We apply a series of DA methods and parameters to Γtrain50

PAP , Γtrain100

PAP , and Γtrain200

PAP to
observe the performance of different DA and different parameters. The seed is fixed to 350
in all experiments to exclude the interference of the seed with the experiment. The results
of Γtrain50

PAP and Γtrain200

PAP are shown in Tables 4 and 5, and the results of Γtrain100

PAP are shown in
Appendix A.
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Table 4. Performance of DA methods on Γtrain50

PAP . The impact of DA methods and parameters on
classification performance for Γtrain50

PAP is revealed. The displayed percentage values describe the
increase/decrease of mAA in percent. The value is color-coded from blue (increase in accuracy) over
white (no effect) to orange (decrease in accuracy).

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 3.82% 0.1 2.79% 0.1 1.97% 0.1 0.92% 0.1 2.68% 0.1 1.65%
2° 5.11% 0.2 3.95% 0.2 2.85% 0.2 1.35% 0.2 3.15% 0.2 1.93%
3° 5.69% 0.3 4.38% 0.3 3.34% 0.3 1.96% 0.3 3.24% 0.3 1.95%
4° 5.89% 0.4 4.40% 0.4 3.71% 0.4 2.18% 0.4 3.51% 0.4 1.99%
5° 6.11% 0.5 4.90% 0.5 4.15% 0.5 2.46% 0.5 3.57% 0.5 2.11%
6° 6.01% 0.6 5.35% 0.6 4.53% 0.6 2.81% 0.6 3.66% 0.6 2.14%
7° 6.03% 0.7 5.61% 0.7 4.66% 0.7 3.11% 0.7 3.57% 0.7 2.11%
8° 6.30% 0.8 5.64% 0.8 5.19% 0.8 3.06% 0.8 3.31% 0.8 1.80%
9° 6.10% 0.9 6.24% 0.9 5.59% 0.9 2.97% 0.9 3.12% 0.9 1.56%

10° 6.01% 1 6.82% 1 6.22% 1 2.95% 1 0.34% 1 –1.16%
20° 6.85% 1.1 6.25% 1.3 6.33% 1.5 3.27%
30° 6.97% 1.2 6.87% 1.5 5.87% 2 3.29%

Shear

40° 6.71% 1.3 6.75% 1.8 6.18% 3 4.08% 5° 4.05%
50° 6.96% 1.4 7.01% 2 6.29% 4 4.67% 10° 3.92%
60° 7.41% 1.5 7.22% 2.5 5.86% 5 4.97% 20° 4.34%
70° 7.17% 1.6 6.56% 3 7.13% 6 5.43% 30° 4.93%
80° 7.39% 1.7 6.95% 3.5 7.00% 7 5.49% 40° 5.48%
90° 7.61% 1.8 7.01% 4 6.88% 8 5.72% (0°, 0°, −5°, 5°) 4.20%
100° 8.02% 1.9 7.11% 4.5 6.59% 9 5.83% (0°, 0°, −10°, 10°) 5.38%
110° 7.84% 2 7.74% 5 7.70% 10 5.99% (0°, 0°, −20°, 20°) 6.20%
120° 7.70% (0°, 0°, −30°, 30°) 6.06%
130° 7.69%

Hue Translate
(0°, 0°, −40°, 40°) 6.47%

140° 7.76% 0.1 4.17% (0.1, 0.1) 5.59% (−5°, 5°, −5°, 5°) 5.89%
150° 7.31% 0.2 5.13% (0.2, 0.2) 4.72% (−10°, 10°, −10°, 10°) 5.75%
160° 7.47% 0.3 4.86% (0.3, 0.3) 4.21% (−20°, 20°, −20°, 20°) 6.22%
170° 7.11% 0.4 4.52% (0.4, 0.4) 2.53% (−30°, 30°, −30°, 30°) 6.68%
180° 7.55% 0.5 4.70% (0.5, 0.5) 1.40% (−40°, 40°, −40°, 40°) 6.58%

Table 4 reveals the performance of different DA methods and parameters when applied
on Γtrain50

PAP with setting seed to 350. From this heatmap, we can see that almost all of the DA
methods and parameters used in our experiments perform well. The best-performing DA
methods and parameters on Γtrain50

PAP are RandomRotation with a parameter of 100°, Contrast
with a parameter of 5, Brightness with a parameter of 2, and Shear with a parameter of
(−30°, 30°, −30°, 30°). By applying these four, a significant improvement can be achieved
on Γtrain50

PAP .
When increasing the number of training images to 200 per class, we can see from

Table 5 that the effect of DA on the improvement of average accuracy further diminishes.
The best-performing four DA methods are still the same and the best-performing parame-
ters of RandomRotation, Brightness, Contrast, and Shear are 170°, 1.9, 4.5, (−40°, 40°, −40°,
40°), respectively.
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Table 5. Performance of DA methods on Γtrain200

PAP . The DA methods and parameters impact on Γtrain200

PAP
classification performance is shown. The displayed percentage values describe the increase/decrease
of mAA in percent. The value is color-coded from blue (increase in accuracy) over white (no effect) to
orange (decrease in accuracy).

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 1.30% 0.1 1.19% 0.1 0.69% 0.1 0.25% 0.1 0.94% 0.1 0.77%
2° 1.55% 0.2 1.22% 0.2 1.41% 0.2 0.34% 0.2 0.81% 0.2 0.92%
3° 2.18% 0.3 1.38% 0.3 1.41% 0.3 0.42% 0.3 1.01% 0.3 0.80%
4° 2.11% 0.4 1.70% 0.4 1.48% 0.4 0.57% 0.4 0.86% 0.4 0.88%
5° 2.01% 0.5 1.75% 0.5 1.56% 0.5 0.74% 0.5 1.31% 0.5 0.79%
6° 1.94% 0.6 1.85% 0.6 1.76% 0.6 1.11% 0.6 0.89% 0.6 0.82%
7° 2.08% 0.7 2.13% 0.7 1.95% 0.7 1.24% 0.7 0.77% 0.7 0.74%
8° 1.55% 0.8 2.15% 0.8 2.12% 0.8 0.38% 0.8 0.56% 0.8 0.70%
9° 2.18% 0.9 2.59% 0.9 1.82% 0.9 1.09% 0.9 0.78% 0.9 0.62%

10° 2.15% 1 2.57% 1 2.05% 1 1.27% 1 −0.43% 1 −0.43%
20° 2.14% 1.1 2.34% 1.3 1.84% 1.5 0.81%
30° 2.53% 1.2 2.43% 1.5 2.15% 2 1.49%

Shear

40° 2.17% 1.3 2.34% 1.8 2.32% 3 1.75% 5° 1.70%
50° 2.62% 1.4 2.35% 2 1.81% 4 1.72% 10° 1.85%
60° 2.74% 1.5 2.06% 2.5 1.94% 5 1.80% 20° 1.78%
70° 2.86% 1.6 2.43% 3 2.15% 6 1.85% 30° 1.53%
80° 2.45% 1.7 2.35% 3.5 2.26% 7 1.86% 40° 2.13%
90° 3.06% 1.8 2.47% 4 2.19% 8 1.61% (0°, 0°, −5°, 5°) 1.63%
100° 3.17% 1.9 2.52% 4.5 2.40% 9 1.76% (0°, 0°, −10°, 10°) 2.34%
110° 3.09% 2 2.39% 5 2.28% 10 1.72% (0°, 0°, −20°, 20°) 1.72%
120° 3.25% (0°, 0°, −30°, 30°) 2.06%
130° 2.96%

Hue Translate
(0°, 0°, −40°, 40°) 2.33%

140° 3.14% 0.1 1.45% (0.1, 0.1) 2.00% (−5°, 5°, −5°, 5°) 2.20%
150° 3.27% 0.2 1.61% (0.2, 0.2) 1.67% (−10°, 10°, −10°, 10°) 2.22%
160° 3.08% 0.3 1.94% (0.3, 0.3) 1.57% (−20°, 20°, −20°, 20°) 2.40%
170° 3.29% 0.4 1.73% (0.4, 0.4) 0.69% (−30°, 30°, −30°, 30°) 2.29%
180° 3.23% 0.5 1.72% (0.5, 0.5) 0.21% (−40°, 40°, −40°, 40°) 2.40%

In Experiment A, we use Γvalidation
PAP and Γtest

PAP as validation set and test set. The four best-
performing DA methods are RandomRotation, Brightness, Contrast, and Shear, regardless
of whether the training set is Γtrain50

PAP , Γtrain100

PAP , or Γtrain200

PAP . As the size of training samples
increases, the best-performing parameters of the DA vary. The increment of mAA shows
an almost proportional trend to the magnitude of the parameters of RandomRotation,
Brightness, Contrast, and Saturation. The performance of Shear reveals that the parameters
that introduce more deformation can yield a better augmentation effect. However, it can be
shearing in one direction at a bigger angle, or shearing in two directions at one angle.

We also conduct experiments on Γtrain50

PAP when setting the seed to 3500, finding that the
heatmap shows a similar trend to that with the seed set to 350. The results are shown in
Appendix B.

3.2. Experiment B: Performance of Data Augmentations on ΓCCZ

In Experiment B, we apply the same DA methods and parameters to ΓCCZ to verify
whether the observations we obtained in Experiment A can be seen on another marine-
domain dataset as well. The experimental results with setting seed to 350 are shown in
Tables 6 and 7, and the results of Γtrain50

CCZ with setting seed to 3500 are shown in Appendix B.
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Table 6. Performance of DA methods on Γtrain50

CCZ . The impact of different DA methods and parameters
on Γtrain50

CCZ classification performance is displayed. The displayed percentage values describe the
increase/decrease of mAA in percent. The value is color-coded from blue (increase in accuracy) over
white (no effect) to orange (decrease in accuracy).

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 3.07% 0.1 1.86% 0.1 2.12% 0.1 0.77% 0.1 2.93% 0.1 2.27%
2° 4.13% 0.2 2.77% 0.2 2.40% 0.2 1.20% 0.2 3.05% 0.2 2.67%
3° 3.99% 0.3 3.18% 0.3 3.08% 0.3 1.26% 0.3 3.24% 0.3 2.60%
4° 4.39% 0.4 4.03% 0.4 4.01% 0.4 1.66% 0.4 3.01% 0.4 2.53%
5° 4.91% 0.5 4.26% 0.5 4.32% 0.5 1.82% 0.5 2.80% 0.5 2.60%
6° 4.98% 0.6 4.50% 0.6 4.88% 0.6 1.37% 0.6 3.04% 0.6 2.85%
7° 5.00% 0.7 4.94% 0.7 4.91% 0.7 1.76% 0.7 3.01% 0.7 2.78%
8° 5.12% 0.8 4.51% 0.8 5.36% 0.8 2.07% 0.8 3.15% 0.8 2.65%
9° 4.97% 0.9 4.44% 0.9 4.77% 0.9 2.08% 0.9 2.63% 0.9 2.31%

10° 5.31% 1 5.32% 1 4.97% 1 2.29% 1 −0.93% 1 −0.99%
20° 5.70% 1.1 5.35% 1.3 4.86% 1.5 2.21%
30° 5.54% 1.2 5.19% 1.5 5.06% 2 1.27%

Shear

40° 6.35% 1.3 5.10% 1.8 5.03% 3 1.67% 5° 2.70%
50° 6.11% 1.4 5.43% 2 5.15% 4 1.42% 10° 3.39%
60° 5.81% 1.5 5.16% 2.5 5.39% 5 2.09% 20° 4.95%
70° 6.17% 1.6 4.71% 3 4.95% 6 2.20% 30° 5.55%
80° 6.48% 1.7 5.53% 3.5 4.56% 7 2.03% 40° 5.44%
90° 6.69% 1.8 5.09% 4 4.88% 8 2.43% (0°, 0°, −5°, 5°) 4.71%
100° 6.31% 1.9 5.54% 4.5 5.30% 9 2.19% (0°, 0°, −10°, 10°) 5.16%
110° 6.57% 2 5.28% 5 5.16% 10 1.85% (0°, 0°, −20°, 20°) 4.95%
120° 6.85% (0°, 0°, −30°, 30°) 5.23%
130° 6.66%

Hue Translate
(0°, 0°, −40°, 40°) 5.51%

140° 6.31% 0.1 3.18% (0.1, 0.1) 4.98% (−5°, 5°, −5°, 5°) 5.55%
150° 7.14% 0.2 3.96% (0.2, 0.2) 4.19% (−10°, 10°, −10°, 10°) 5.60%
160° 6.95% 0.3 3.98% (0.3, 0.3) 3.76% (−20°, 20°, −20°, 20°) 5.64%
170° 6.80% 0.4 3.48% (0.4, 0.4) 3.09% (−30°, 30°, −30°, 30°) 5.91%
180° 6.73% 0.5 2.95% (0.5, 0.5) −0.15% (−40°, 40°, −40°, 40°) 6.11%

The heatmap shown in Table 6 presents the performance of different DA methods and
parameters when applied on Γtrain50

CCZ with setting seed to 350. We can find that the best-
performing DA methods on Γtrain50

CCZ are the same as the observations from Experiment A,
which are RandomRotation, Brightness, Contrast, and Shear. On Γtrain50

CCZ , RandomRotation
shows the best results with parameter 150°. Brightness, Contrast, and Shear work best with
parameters 1.9, 4.5, and (−40°, 40°, −40°, 40°), respectively.

Table 7 shows the performance of different DA methods and parameters when applied
on Γtrain100

CCZ with setting seed to 350. We increase the number of training data from 50 even
to 100 per class. The effect of DA methods, except for Saturation, becomes weaker or has a
negative effect as the number of training samples is increased, which is the same as shown
in Table 5. The four most effective DA methods are still RandomRotation, Brightness,
Contrast, and Shear, whose best-performing parameters are 170°, 2, 5, and 40°, respectively.
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Table 7. Performance of DA methods on Γtrain100

CCZ . The effect of different DA methods and different

parameters on Γtrain100

CCZ classification mAA improvement is shown. The displayed percentage values
describe the increase/decrease of mAA in percent. The value is color-coded from blue (increase in
accuracy) over white (no effect) to orange (decrease in accuracy).

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 1.84% 0.1 0.73% 0.1 0.53% 0.1 0.32% 0.1 1.50% 0.1 0.92%
2° 2.01% 0.2 1.40% 0.2 0.91% 0.2 0.40% 0.2 1.29% 0.2 0.92%
3° 1.81% 0.3 1.59% 0.3 1.18% 0.3 0.60% 0.3 1.26% 0.3 0.99%
4° 2.02% 0.4 1.74% 0.4 1.76% 0.4 1.06% 0.4 1.25% 0.4 1.26%
5° 2.18% 0.5 1.73% 0.5 1.72% 0.5 1.32% 0.5 1.10% 0.5 1.14%
6° 1.82% 0.6 1.65% 0.6 1.87% 0.6 1.29% 0.6 1.17% 0.6 1.24%
7° 1.80% 0.7 2.47% 0.7 2.34% 0.7 1.48% 0.7 0.95% 0.7 1.20%
8° 2.12% 0.8 1.93% 0.8 2.52% 0.8 1.56% 0.8 0.84% 0.8 0.90%
9° 2.26% 0.9 2.13% 0.9 2.55% 0.9 1.91% 0.9 0.73% 0.9 0.87%

10° 2.39% 1 2.57% 1 3.08% 1 2.05% 1 −1.07% 1 −0.19%
20° 2.71% 1.1 2.22% 1.3 3.33% 1.5 2.46%
30° 3.19% 1.2 2.83% 1.5 3.22% 2 2.46%

Shear

40° 2.45% 1.3 2.41% 1.8 3.32% 3 2.40% 5° 1.36%
50° 2.60% 1.4 2.49% 2 3.00% 4 2.35% 10° 1.59%
60° 2.18% 1.5 2.66% 2.5 3.10% 5 2.13% 20° 1.96%
70° 3.09% 1.6 2.87% 3 3.03% 6 1.88% 30° 2.37%
80° 3.16% 1.7 2.90% 3.5 3.13% 7 1.53% 40° 2.99%
90° 3.76% 1.8 2.43% 4 3.10% 8 1.73% (0°, 0°, −5°, 5°) 1.88%
100° 3.57% 1.9 2.54% 4.5 3.19% 9 2.00% (0°, 0°, −10°, 10°) 1.66%
110° 3.68% 2 3.14% 5 3.33% 10 2.18% (0°, 0°, −20°, 20°) 1.85%
120° 3.66% (0°, 0°, −30°, 30°) 2.32%
130° 3.56%

Hue Translate
(0°, 0°, −40°, 40°) 2.75%

140° 3.32% 0.1 1.40% (0.1, 0.1) 1.63% (−5°, 5°, −5°, 5°) 2.02%
150° 3.17% 0.2 1.68% (0.2, 0.2) 1.44% (−10°, 10°, −10°, 10°) 2.14%
160° 3.74% 0.3 1.69% (0.3, 0.3) 1.02% (−20°, 20°, −20°, 20°) 2.30%
170° 3.93% 0.4 1.57% (0.4, 0.4) −0.66% (−30°, 30°, −30°, 30°) 2.16%
180° 3.64% 0.5 1.62% (0.5, 0.5) −0.90% (−40°, 40°, −40°, 40°) 2.11%

Experiment B investigates the effect of different DA methods and different parameters
on ΓCCZ with different training set sizes and shows similar results to the observations on
ΓPAP. We find that RandomRotation, Contrast, Brightness, and Shear are always the four
best-performing DA methods on both ΓPAP and ΓCCZ marine-domain dataset. The effect of
RandomRotation, Brightness, and Contrast becomes more significant as the parameters
increase. Similarly, as the amount of training data is increased, almost all DA methods’
effects are diminished.

3.3. Experiment C: Performance of Data Augmentations on ΓCSD

We conduct research on ΓCSD that is different from the marine domain to demonstrate
that the effect of DA is domain-dependent. The seed is set to 350 in Experiment C, and the
experimental results of Γtrain50

CSD and Γtrain150

CSD are shown in Tables 8 and 9. The results of
Γtrain100

CSD are shown in Appendix A.
Table 8 illustrates the effect of different DA methods and different parameters on the

average accuracy improvement of Γtrain50

CSD . From this heatmap, we can see that RandomRo-
tation no longer works as well as it did on the marine-domain datasets, and only when the
parameters are small does it improve the average accuracy a little. Similarly, Shear with
parameters of big degrees decreases the mAA. In addition, RandomVerticalFlip is also no
longer suitable for this dataset.
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Table 8. Performance of DA methods on Γtrain50

CSD . The impact of different DA methods and parameters
on Γtrain50

CSD classification performance, which is very different from the impact on Γtrain
PAP and Γtrain

CCZ,
is displayed. The displayed percentage values describe the increase/decrease of mAA in percent.
The value is color-coded from blue (increase in accuracy) over white (no effect) to orange (decrease in
accuracy).

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° −0.08% 0.1 −0.12% 0.1 −0.09% 0.1 0.07% 0.1 −1.95% 0.1 0.59%
2° 0.32% 0.2 0.06% 0.2 −0.14% 0.2 0.17% 0.2 −1.43% 0.2 0.46%
3° 0.63% 0.3 0.12% 0.3 −0.06% 0.3 0.42% 0.3 −1.52% 0.3 0.63%
4° 0.39% 0.4 −0.16% 0.4 −0.08% 0.4 0.63% 0.4 −1.39% 0.4 0.68%
5° 0.30% 0.5 −0.04% 0.5 −0.16% 0.5 0.62% 0.5 −1.69% 0.5 0.59%
6° 0.52% 0.6 0.27% 0.6 −0.06% 0.6 0.69% 0.6 −1.82% 0.6 0.57%
7° 0.42% 0.7 0.20% 0.7 0.18% 0.7 0.61% 0.7 −2.07% 0.7 0.56%
8° 0.34% 0.8 0.17% 0.8 −0.35% 0.8 0.77% 0.8 −2.49% 0.8 0.51%
9° 0.31% 0.9 −0.18% 0.9 −0.08% 0.9 0.75% 0.9 −2.80% 0.9 0.37%

10° 0.19% 1 −0.19% 1 −0.56% 1 0.90% 1 −8.53% 1 −0.30%
20° −0.67% 1.1 −0.60% 1.3 −0.67% 1.5 1.18%
30° −0.98% 1.2 −0.67% 1.5 −0.25% 2 1.33%

Shear

40° −1.61% 1.3 −0.33% 1.8 0.02% 3 1.36% 5° −0.14%
50° −0.47% 1.4 0.19% 2 −0.25% 4 1.30% 10° 0.25%
60° −0.88% 1.5 0.07% 2.5 −0.33% 5 1.22% 20° −0.06%
70° −1.87% 1.6 −0.40% 3 −0.08% 6 1.16% 30° −0.42%
80° −2.67% 1.7 0.03% 3.5 0.22% 7 1.26% 40° −0.25%
90° −2.35% 1.8 0.11% 4 0.04% 8 1.30% (0°, 0°, −5°, 5°) 0.92%
100° −2.79% 1.9 0.57% 4.5 0.59% 9 1.15% (0°, 0°, −10°, 10°) 0.89%
110° −2.57% 2 0.40% 5 1.13% 10 1.25% (0°, 0°, −20°, 20°) 0.31%
120° −2.94% (0°, 0°, −30°, 30°) 0.19%
130° −3.85%

Hue Translate
(0°, 0°, −40°, 40°) −0.10%

140° −3.81% 0.1 0.53% (0.1, 0.1) −0.38% (−5°, 5°, −5°, 5°) 0.37%
150° −3.89% 0.2 0.27% (0.2, 0.2) −0.14% (−10°, 10°, −10°, 10°) 0.55%
160° −4.80% 0.3 0.16% (0.3, 0.3) −0.57% (−20°, 20°, −20°, 20°) 0.14%
170° −4.31% 0.4 −0.01% (0.4, 0.4) −2.02% (−30°, 30°, −30°, 30°) −0.37%
180° −4.28% 0.5 0.10% (0.5, 0.5) −2.46% (−40°, 40°, −40°, 40°) −1.18%

When training samples are supplemented to 150 per class, we can see from Table 9
that RandomRotation with a parameter of big degrees and RandomVerticalFlip still have
a negative impact. The effect of Brightness, Contrast, and Saturation on Γtrain150

CSD performs
well with the value of parameters increasing, which is similar to that on Γtrain50

PAP and Γtrain50

CCZ .
Experiment C investigated the performance of different DA methods and parame-

ters on ΓCSD with different training set sizes. Overall, Saturation shows an effect almost
proportional to the value of parameters on all three datasets. The performance of Con-
trast and Brightness improve with increasing training data size. RandomRotation can
slightly increase mAA with parameters smaller than 10°, but have increasingly negative
effects on mAA as the parameters become larger. RandomHorizontalFlip and Hue can
slightly improve mAA, while RandomVerticalFlip and Translate almost always reduce
mAA. The effect of Shear is no longer as shown in Experiment A and Experiment B,
showing a negative effect at large deformation angles.

To compare the different DA methods’ impact on the three different datasets more
intuitively, the percentage change of classification mAA is plotted for different parameters,
which are shown in Figures 7 and 8 and Appendix C. In each plot, the x-axis represents
parameters, the y-axis represents the change of mAA, and circles, stars, triangle stand for
ΓPAP, ΓCCZ, and ΓCSD, respectively.
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Table 9. Performance of DA methods on Γtrain150

CSD . The heatmap shows the DA methods and param-

eters impact on Γtrain150

CSD classification performance. The displayed percentage values describe the
increase/decrease of mAA in percent. The value is color-coded from blue (increase in accuracy) over
white (no effect) to orange (decrease in accuracy).

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 0.35% 0.1 0.23% 0.1 0.25% 0.1 0.13% 0.1 −1.22% 0.1 0.26%
2° 0.55% 0.2 0.40% 0.2 0.46% 0.2 0.24% 0.2 −1.37% 0.2 0.53%
3° 0.74% 0.3 0.34% 0.3 0.55% 0.3 0.23% 0.3 −1.78% 0.3 0.50%
4° 0.09% 0.4 0.62% 0.4 0.53% 0.4 0.29% 0.4 −1.82% 0.4 0.44%
5° 0.55% 0.5 0.73% 0.5 0.62% 0.5 0.21% 0.5 −2.21% 0.5 0.37%
6° 0.75% 0.6 0.91% 0.6 0.37% 0.6 0.29% 0.6 −2.31% 0.6 0.65%
7° 0.83% 0.7 0.51% 0.7 0.90% 0.7 0.42% 0.7 −2.33% 0.7 0.47%
8° 0.55% 0.8 0.86% 0.8 0.59% 0.8 0.49% 0.8 −2.33% 0.8 0.32%
9° 0.84% 0.9 0.86% 0.9 0.18% 0.9 0.48% 0.9 −1.64% 0.9 0.57%

10° −0.21% 1 0.81% 1 1.07% 1 0.49% 1 −8.28% 1 0.48%
20° 0.32% 1.1 0.91% 1.3 0.35% 1.5 0.70%
30° 0.31% 1.2 1.18% 1.5 1.37% 2 0.81%

Shear

40° −0.16% 1.3 1.33% 1.8 0.87% 3 0.82% 5° 0.28%
50° −0.18% 1.4 1.11% 2 1.00% 4 0.94% 10° 0.78%
60° −0.14% 1.5 1.24% 2.5 0.83% 5 1.02% 20° 0.50%
70° −0.08% 1.6 1.33% 3 0.93% 6 1.09% 30° 0.17%
80° −0.64% 1.7 0.56% 3.5 0.75% 7 1.27% 40° −0.11%
90° −2.72% 1.8 0.96% 4 1.40% 8 1.31% (0°, 0°, −5°, 5°) 0.56%
100° −2.48% 1.9 0.96% 4.5 0.73% 9 1.31% (0°, 0°, −10°, 10°) −0.18%
110° −3.08% 2 1.26% 5 1.08% 10 1.11% (0°, 0°, −20°, 20°) 0.32%
120° −2.34% (0°, 0°, −30°, 30°) 0.31%
130° −2.49%

Hue Translate
(0°, 0°, −40°, 40°) −0.27%

140° −3.21% 0.1 0.60% (0.1, 0.1) 0.13% (−5°, 5°, −5°, 5°) 0.87%
150° −3.02% 0.2 0.54% (0.2, 0.2) −1.52% (−10°, 10°, −10°, 10°) 0.91%
160° −2.56% 0.3 0.56% (0.3, 0.3) −0.62% (−20°, 20°, −20°, 20°) −0.72%
170° −3.26% 0.4 0.61% (0.4, 0.4) −1.47% (−30°, 30°, −30°, 30°) −0.14%
180° −4.57% 0.5 0.48% (0.5, 0.5) −0.79% (−40°, 40°, −40°, 40°) −0.06%

Figure 7. Cont.
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Figure 7. Impacts comparison of Rotation and Shear. The figure reveals the impacts of the different
parameters of Rotation and Shear onΓPAP, ΓCCZ, and ΓCSD classification performance improvement.

Figure 8. Cont.
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Figure 8. Impacts comparison of Brightness, Contrast and Saturation. The impacts of Brightness,
Contrast and Saturation on improving the classification performance on ΓPAP, ΓCCZ, and ΓCSD are
plotted in the figure.

3.4. Experiment D: Data Augmentation Policies

According to the above experimental results, the four best-performing DA methods
on both ΓPAP and ΓCCZ datasets are RandomRotation, Contrast, Brightness, and Shear.
In most cases, the best performances are shown when the parameter of RandomRotation is
around 150°, the parameters of Contrast and Brightness are around 2 and 5, respectively,
and the parameters of Shear are those that produce larger deformations (we experiment
with the parameters 40). To verify the effect of the combination of these DA methods,
we proposed DA combination policies in Table 10, where the function of RBC_1 indicates
that RandomRotation 150°, Brightness 1.9, and Contrast 5 are applied to the training
images successively.

Table 10. DA combination policies.

DA Policy Function of Each Policy

RBC_1 Xi = fCT( fRR(xi, d = 150°), b = 1.9, c = 5)

RBC_2 Xi = fCT( fRR(xi, d = 150°), b = 2, c = 5)

RBC_3 Xi = fCT( fRR(xi, d = 140°), b = 2, c = 5)

RBC_4 Xi = fCT( fRR(xi, d = 140°), b = 1.9, c = 5)

RBC_5 Xi = fCT( fRR(xi, d = 140°), b = 2, c = 4.5)

RBCS Xi = fRA( fCT( fRR(xi, d = 150°), b = 2, c = 5), s = 40°)

The performance of our policies on ΓPAP, ΓCCZ, and ΓCSD are shown in Table 11,
where AA_IP and AA_CP represent ImageNet policy and CIFAR-10 policy proposed by
AutoAugment [26], respectively. It shows that all our policies trained on Γtrain50

PAP , Γtrain100

PAP ,
Γtrain200

PAP , Γtrain
PAP , and Γtrain50

CCZ can outperform AA_IP and AA_CP policies which are proposed
by AutoAugment [26]. RBC_3, RBC_5, and RBCS trained on Γtrain100

CCZ and Γtrain
CCZ can also

outperform AA_IP and AA_CP. In contrast to the effect of our policies on ΓPAP and ΓCCZ,
these policies have a negative effect on the ΓCSD dataset. Here the AutoAugment policies
outperform our policies.
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Table 11. Performance of policies applied on ΓPAP and ΓCCZ. The best performing policy is high-
lighted in yellow.

AA_IP AA_CP RBC_1 RBC_2 RBC_3 RBC_4 RBC_5 RBCS

Γtrain50

PAP +9.59% +9.43% +10.63% +10.45% +10.49% +10.38% +10.86% +10.57%

Γtrain100

PAP +5.48% +5.07% +6.32% +6.35% +6.26% +6.07% +5.86% +6.14%

Γtrain200

PAP +3.19% +2.89% +3.73% +3.66% +3.72% +3.80% +3.61% +3.66%

Γtrain
PAP +2.48% +2.66% +2.76% +2.84% +2.80% +2.91% +2.83% +2.88%

Γtrain50

CCZ +6.23% +5.06% +6.78% +6.77% +6.73% +7.31% +7.05% +7.10%

Γtrain100

CCZ +4.26% +3.81% +4.52% +4.08% +4.68% +4.21% +4.74% +4.58%

Γtrain
CCZ +2.41% +2.04% +2.39% +2.52% +2.50% +2.37% +2.58% +2.46%

Γtrain50

CSD +0.94% +0.92% −1.47% −1.73% −1.54% −0.81% −0.82% −2.67%

Γtrain100

CSD +2.57% +1.06% −2.61% −1.95% −1.99% −2.12% −1.80% −1.53%

Γtrain
CSD +1.17% +1.44% −1.02% −1.76% −1.31% −2.12% −1.08% −1.65%

4. Discussion

In this paper, we could show a clear domain dependence for the application of aug-
mentation. While experiments A and B applying augmentation to marine data show similar
results, experiment C applied to the more established everyday traffic data shows different
trends. The same observation applies to experiment D when comparing auto augmentation
policies fit on everyday data (ImageNet and CIFAR-10) on the one hand with our manual
combination policies on the other hand. Here the AutoAugment policies work best on the
traffic data while leading to results inferior to the policies proposed by our experiments
(RBC_∗). From Experiment A (marine), we can find that the effect of DA diminishes as the
number of samples in the training set increases. This is because the additional training
images allow the model to learn more features, which also indicates that DA is an effective
way to address the lack of training data. The results of Experiment A and Experiment B
(marine) indicate that for the marine domain, with increasing training sample size and dif-
ferent parameter choices, some DA methods show the possibility of decreasing mAA (e.g.,
flip, translate), but RandomRotation, Brightness, Contrast, and Shear always show good
results. This may be due to the natural variation regarding the orientation and position of
the underwater target objects relative to the camera. Besides, the light during underwater
data acquisition has a significant effect on the image data. Overall, experiments A and B
show similar trends. However, due to the insufficient sample size of Γtest

CCZ, the results of
Experiment B are not as reliable as those of Experiment A.

In Experiment C (traffic), the effect of RandomRotation, RandomVerticalFlip, and Shear
have a significantly different effect than in Experiment A and Experiment B, by often even
decreasing the performance. This is likely caused by the fact that a VerticalFlip or a Rotation
at a large angle is unrealistic under the urban traffic domain. We can find that on the ΓCSD
dataset, the color transformations perform better than the geometric transformations.

From Table 11, we can see that the performance of our policies can reach or outperform
that of transferring the policies proposed by AutoAugment [26] to marine data. However,
our policies have a negative effect on the traffic dataset. As can be seen in Tables 4 and 5,
and the experimental result of Γtrain100

PAP in Appendix A, the maximum increments of mAA
are 8.02%, 5.61%, and 3.29% on Γtrain50

PAP , Γtrain100

PAP , and Γtrain200

PAP datasets, respectively. After ap-
plying our policies, the increments of mAA in the Γtrain

PAP dataset all exceed the maximum
increments of applying a single DA method, while AA-IP and AA-CP are not as effective as
the best single DA method on Γtrain100

PAP and Γtrain200

PAP . A similar performance can be observed
on ΓCCZ. It indicates that for our marine-domain data , RandomRotation works very well.
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However, they have the opposite effect on traffic-domain dataset ΓCSD, revealing that DA
methods have a strong domain dependency.

5. Conclusions

We have shown that in our work, we could observe a clear difference in the effects
of DA applied to our domain-specific marine dataset or the more established everyday
urban traffic dataset. Therefore we propose to use DA with lower expectations, especially
when applied to image domains that differ from the mainstream image domains CNNs
are applied to. As we can show good results with a customized DA policy, we conclude
that DA can definitely be the tool of choice, especially for small training sets, but increased
efforts are required to make data augmentation more adaptive and domain aware.
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Appendix A. Performance of DA Methods on Γtrain100

PAP and Γtrain100

CSD

Table A1. Performance of DA methods on Γtrain100

PAP . This table indicates the augment effect of different
DA methods and parameters applied on Γtrain100

PAP when setting seed to 350. The displayed percentage
values describe the increase/decrease of mAA in percent. The value is color-coded from blue (increase
in accuracy) over white (no effect) to orange (decrease in accuracy). The four DA methods with
the best effect are still RandomRotation, Brightness, Contrast, and Shear. These four methods can
obtain their best enhancement effect on Γtrain100

PAP with parameters 160°, 2, 5, and (−20°, 20°, −20°, 20°),
respectively. The trend of the effect of different parameters is similar to that of Γtrain50

PAP , but with fewer
increments for the average accuracy.

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 2.64% 0.1 2.86% 0.1 2.27% 0.1 1.72% 0.1 2.76% 0.1 1.90%
2° 3.37% 0.2 2.82% 0.2 2.10% 0.2 2.73% 0.2 2.31% 0.2 2.10%
3° 3.40% 0.3 3.57% 0.3 3.17% 0.3 2.70% 0.3 2.52% 0.3 1.89%
4° 3.37% 0.4 3.34% 0.4 2.70% 0.4 2.32% 0.4 2.83% 0.4 2.45%
5° 3.34% 0.5 4.02% 0.5 3.23% 0.5 2.41% 0.5 1.98% 0.5 2.11%
6° 3.79% 0.6 4.22% 0.6 4.02% 0.6 2.92% 0.6 2.52% 0.6 2.17%
7° 3.13% 0.7 4.43% 0.7 3.46% 0.7 2.00% 0.7 2.37% 0.7 2.24%
8° 3.73% 0.8 4.03% 0.8 3.51% 0.8 2.75% 0.8 2.07% 0.8 2.44%
9° 2.96% 0.9 4.11% 0.9 4.84% 0.9 3.15% 0.9 2.21% 0.9 1.54%

10° 2.98% 1 4.65% 1 4.45% 1 3.16% 1 1.14% 1 0.09%
20° 3.66% 1.1 4.69% 1.3 4.33% 1.5 3.68%
30° 4.06% 1.2 4.17% 1.5 4.54% 2 2.97%

Shear

40° 4.71% 1.3 4.41% 1.8 4.48% 3 3.48% 5° 2.01%
50° 4.94% 1.4 4.91% 2 4.65% 4 3.62% 10° 3.30%
60° 5.21% 1.5 4.91% 2.5 4.37% 5 3.58% 20° 3.45%
70° 4.83% 1.6 4.74% 3 4.50% 6 4.03% 30° 4.14%
80° 4.49% 1.7 5.08% 3.5 4.11% 7 4.05% 40° 3.26%
90° 5.07% 1.8 4.79% 4 4.50% 8 4.17% (0°, 0°, −5°, 5°) 2.91%
100° 5.00% 1.9 4.38% 4.5 4.88% 9 3.39% (0°, 0°, −10°, 10°) 3.31%
110° 5.37% 2 5.08% 5 5.40% 10 3.94% (0°, 0°, −20°, 20°) 3.37%
120° 4.72% (0°, 0°, −30°, 30°) 3.20%
130° 4.92%

Hue Translate
(0°, 0°, −40°, 40°) 4.27%

140° 4.80% 0.1 3.00% (0.1, 0.1) 3.23% (−5°, 5°, −5°, 5°) 2.77%
150° 4.76% 0.2 3.38% (0.2, 0.2) 3.06% (−10°, 10°, −10°, 10°) 3.81%
160° 5.61% 0.3 2.98% (0.3, 0.3) 2.16% (−20°, 20°, −20°, 20°) 4.54%
170° 5.43% 0.4 2.63% (0.4, 0.4) 2.19% (−30°, 30°, −30°, 30°) 4.03%
180° 5.17% 0.5 3.12% (0.5, 0.5) −0.17% (−40°, 40°, −40°, 40°) 4.45%

Table A2. Performance of DA methods on Γtrain100

CSD . This heatmap shows the results when we
increase the training set samples to 100 per class. The displayed percentage values describe the
increase/decrease of mAA in percent. The value is color-coded from blue (increase in accuracy)
over white (no effect) to orange (decrease in accuracy). We can see that RandomRotation and
RandomVerticalFlip have a negative impact. Saturation with a parameter of 9 and Brightness with a
parameter of 1.7 are the two most effective DA methods and parameters.

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 0.14% 0.1 0.13% 0.1 0.10% 0.1 0.09% 0.1 −1.16% 0.1 0.24%
2° 0.15% 0.2 0.23% 0.2 0.05% 0.2 0.08% 0.2 −1.42% 0.2 0.41%
3° 0.23% 0.3 0.23% 0.3 0.08% 0.3 0.18% 0.3 −1.56% 0.3 0.50%
4° 0.05% 0.4 0.31% 0.4 0.16% 0.4 0.15% 0.4 −2.02% 0.4 0.42%
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Table A2. Cont.

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
5° 0.38% 0.5 0.26% 0.5 0.22% 0.5 0.26% 0.5 −1.95% 0.5 0.50%
6° 0.51% 0.6 0.27% 0.6 0.25% 0.6 0.07% 0.6 −2.13% 0.6 0.47%
7° 0.50% 0.7 −0.08% 0.7 −0.23% 0.7 0.08% 0.7 −2.53% 0.7 0.34%
8° 0.65% 0.8 0.03% 0.8 −1.36% 0.8 0.30% 0.8 −2.43% 0.8 0.20%
9° 0.55% 0.9 0.60% 0.9 0.13% 0.9 0.21% 0.9 −2.10% 0.9 0.24%

10° −0.01% 1 0.66% 1 0.19% 1 0.24% 1 −7.55% 1 0.27%
20° −0.01% 1.1 0.88% 1.3 0.41% 1.5 0.37%
30° −0.17% 1.2 0.71% 1.5 0.50% 2 0.53%

Shear

40° −0.20% 1.3 0.45% 1.8 0.45% 3 0.63% 5° 0.36%
50° 0.10% 1.4 0.29% 2 0.62% 4 1.02% 10° 0.44%
60° −0.45% 1.5 0.75% 2.5 0.70% 5 1.27% 20° 0.11%
70° −0.56% 1.6 0.70% 3 0.52% 6 1.14% 30° −0.03%
80° −3.18% 1.7 0.95% 3.5 −0.31% 7 1.24% 40° 0.01%
90° −2.44% 1.8 0.57% 4 0.31% 8 1.30% (0°, 0°, −5°, 5°) 0.29%
100° −2.68% 1.9 0.58% 4.5 0.83% 9 1.41% (0°, 0°, −10°, 10°) 0.33%
110° −2.11% 2 0.32% 5 −0.36% 10 1.35% (0°, 0°, −20°, 20°) 0.28%
120° −2.34% (0°, 0°, −30°, 30°) 0.48%
130° −1.83%

Hue Translate
(0°, 0°, −40°, 40°) 0.56%

140° −3.11% 0.1 0.50% (0.1, 0.1) −0.16% (−5°, 5°, −5°, 5°) 0.53%
150° −3.36% 0.2 0.57% (0.2, 0.2) −0.44% (−10°, 10°, −10°, 10°) 0.37%
160° −3.38% 0.3 0.69% (0.3, 0.3) −0.34% (−20°, 20°, −20°, 20°) 0.50%
170° −3.22% 0.4 0.52% (0.4, 0.4) −2.34% (−30°, 30°, −30°, 30°) 0.35%
180° −3.12% 0.5 0.52% (0.5, 0.5) −2.76% (−40°, 40°, −40°, 40°) −0.21%

Appendix B. Performance of DA Methods on Γtrain50

PAP and Γtrain50

CCZ with Setting Seed
to 3500

Table A3. Performance of DA methods on Γtrain50

PAP with setting seed to 3500. This heatmap shows
the effect of different DA methods and parameters on the average accuracy improvement of Γtrain50

PAP
when setting seed to 3500. The displayed percentage values describe the increase/decrease of mAA
in percent. The value is color-coded from blue (increase in accuracy) over white (no effect) to orange
(decrease in accuracy). DA methods show a similar trend to that at seed is 350.

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 3.26% 0.1 1.76% 0.1 1.06% 0.1 0.75% 0.1 2.26% 0.1 1.60%
2° 4.34% 0.2 2.57% 0.2 1.52% 0.2 0.88% 0.2 2.64% 0.2 1.75%
3° 4.96% 0.3 3.19% 0.3 2.12% 0.3 1.32% 0.3 2.87% 0.3 2.00%
4° 5.21% 0.4 3.16% 0.4 1.24% 0.4 1.63% 0.4 2.91% 0.4 2.08%
5° 5.45% 0.5 3.59% 0.5 2.98% 0.5 1.63% 0.5 2.99% 0.5 1.97%
6° 5.58% 0.6 3.94% 0.6 3.29% 0.6 1.94% 0.6 2.79% 0.6 1.93%
7° 5.65% 0.7 4.16% 0.7 3.61% 0.7 2.16% 0.7 2.72% 0.7 1.88%
8° 5.68% 0.8 4.70% 0.8 4.01% 0.8 2.11% 0.8 2.74% 0.8 1.67%
9° 5.75% 0.9 5.30% 0.9 4.43% 0.9 2.51% 0.9 2.55% 0.9 1.21%
10° 5.58% 1 5.76% 1 4.84% 1 2.48% 1 −0.51% 1 −0.36%
20° 5.61% 1.1 5.34% 1.3 4.83% 1.5 2.69%
30° 5.81% 1.2 5.34% 1.5 4.83% 2 3.00%

Shear

40° 6.10% 1.3 6.17% 1.8 4.77% 3 3.17% 5° 3.36%
50° 6.25% 1.4 5.97% 2 5.12% 4 3.50% 10° 3.68%
60° 6.25% 1.5 6.10% 2.5 5.78% 5 4.02% 20° 4.30%
70° 6.71% 1.6 5.92% 3 5.49% 6 4.20% 30° 5.79%
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Table A3. Cont.

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
80° 7.21% 1.7 6.06% 3.5 5.80% 7 4.25% 40° 5.65%
90° 7.31% 1.8 5.66% 4 5.75% 8 4.22% (0°, 0°, −5°, 5°) 4.17%
100° 7.59% 1.9 6.13% 4.5 5.12% 9 4.48% (0°, 0°, −10°, 10°) 4.60%
110° 7.45% 2 6.34% 5 6.70% 10 4.53% (0°, 0°, −20°, 20°) 4.98%
120° 7.21% (0°, 0°, −30°, 30°) 5.59%
130° 7.24%

Hue Translate
(0°, 0°, −40°, 40°) 5.98%

140° 7.10% 0.1 3.01% (0.1, 0.1) 5.50% (−5°, 5°, −5°, 5°) 5.32%
150° 7.53% 0.2 3.91% (0.2, 0.2) 4.20% (−10°, 10°, −10°, 10°) 5.07%
160° 7.28% 0.3 3.83% (0.3, 0.3) 3.31% (−20°, 20°, −20°, 20°) 5.52%
170° 7.42% 0.4 3.75% (0.4, 0.4) 1.54% (−30°, 30°, −30°, 30°) 6.32%
180° 6.94% 0.5 3.47% (0.5, 0.5) −3.24% (−40°, 40°, −40°, 40°) 5.41%

Table A4. Performance of DA methods on Γtrain50

CCZ with setting seed to 3500. The displayed percentage
values describe the increase/decrease of mAA in percent. The value is color-coded from blue (increase
in accuracy) over white (no effect) to orange (decrease in accuracy). This heatmap shows the effect
of different DA methods and different parameters on the average accuracy improvement of Γtrain50

CCZ
when setting seed to 3500. As with the experimental results on Γtrain50

PAP , the performance of DA is
similar under different seeds.

Random Rotation Brightness Contrast Saturation
Random

VerticalFlip
Random

HorizontalFlip
1° 4.14% 0.1 2.76% 0.1 2.45% 0.1 1.51% 0.1 3.61% 0.1 2.72%
2° 4.11% 0.2 3.18% 0.2 3.23% 0.2 1.62% 0.2 3.20% 0.2 3.02%
3° 4.60% 0.3 4.03% 0.3 3.23% 0.3 1.21% 0.3 3.23% 0.3 3.10%
4° 4.56% 0.4 4.08% 0.4 3.93% 0.4 2.08% 0.4 3.10% 0.4 3.28%
5° 4.53% 0.5 4.49% 0.5 4.25% 0.5 2.10% 0.5 3.14% 0.5 3.04%
6° 4.51% 0.6 4.75% 0.6 4.42% 0.6 2.12% 0.6 3.11% 0.6 3.12%
7° 4.43% 0.7 4.35% 0.7 4.59% 0.7 2.34% 0.7 2.90% 0.7 3.23%
8° 4.69% 0.8 4.47% 0.8 4.66% 0.8 2.00% 0.8 2.57% 0.8 3.10%
9° 4.97% 0.9 4.86% 0.9 4.79% 0.9 2.11% 0.9 2.32% 0.9 2.81%

10° 4.61% 1 4.58% 1 3.44% 1 2.22% 1 −1.51% 1 0.16%
20° 5.28% 1.1 4.45% 1.3 5.09% 1.5 2.73%
30° 5.16% 1.2 4.83% 1.5 4.50% 2 2.71%

Shear

40° 5.22% 1.3 5.08% 1.8 4.85% 3 2.83% 5° 4.18%
50° 5.44% 1.4 4.86% 2 5.29% 4 2.93% 10° 4.38%
60° 5.58% 1.5 5.33% 2.5 5.64% 5 2.93% 20° 4.56%
70° 5.76% 1.6 5.20% 3 5.75% 6 3.09% 30° 4.95%
80° 5.50% 1.7 4.93% 3.5 5.21% 7 2.78% 40° 5.21%
90° 6.19% 1.8 4.86% 4 5.82% 8 2.52% (0°, 0°, −5°, 5°) 4.13%
100° 6.31% 1.9 4.89% 4.5 5.38% 9 2.60% (0°, 0°, −10°, 10°) 4.49%
110° 6.27% 2 4.81% 5 5.48% 10 2.41% (0°, 0°, −20°, 20°) 4.22%
120° 5.73% (0°, 0°, −30°, 30°) 5.00%
130° 5.82%

Hue Translate
(0°, 0°, −40°, 40°) 4.77%

140° 6.08% 0.1 2.59% (0.1, 0.1) 4.30% (−5°, 5°, −5°, 5°) 4.98%
150° 5.97% 0.2 2.77% (0.2, 0.2) 4.07% (−10°, 10°, −10°, 10°) 4.97%
160° 6.07% 0.3 2.79% (0.3, 0.3) 3.54% (−20°, 20°, −20°, 20°) 5.29%
170° 5.98% 0.4 3.35% (0.4, 0.4) 1.94% (−30°, 30°, −30°, 30°) 4.84%
180° 6.22% 0.5 3.12% (0.5, 0.5) −1.62% (−40°, 40°, −40°, 40°) 4.72%
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Appendix C. Impacts Comparison of Flip, Translate, and Hue

Figure A1. Impacts comparison of Random Horizontal Flip and Random Vertical Flip. The figure
reveals the impacts of the different parameters of Random Horizontal Flip and Random Vertical Flip
on ΓPAP, ΓCCZ and ΓCSD classification mAA improvement.
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Figure A2. Impacts comparison of Translate and Hue. The figure shows the performance of the
different parameters of Translate and Hue on the three datasets.
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