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Abstract: In this letter, we propose a nonlinear Magnetoelastic Energy (ME) with a material parameter
related to electron interactions. An attenuating term is contained in the formula of the proposed
nonlinear ME, which can predict the variation in the anisotropic magneto-crystalline constants
induced by external stress more accurately than the classical linear ME. The domain wall velocity
under stress and magnetic field can be predicted accurately based on the nonlinear ME. The proposed
nonlinear ME model is concise and easy to use. It is important in sensor analysis and production,
magneto-acoustic coupling motivation, magnetoelastic excitation, etc.

Keywords: nonlinear magnetoelastic energy; magneto-crystalline constants; domain wall velocity

1. Introduction

Magnetoelastic Energy (ME) is essential in the guidance of magneto-acoustic coupling
motivation [1–4], sensor production [5–8], and magnetoelastic excitation [9–11]. Classical
Magnetoelastic Energy (ME) is a linear stress function that needs to be improved when
predicting some specific aspects. However, many experiments indicate that the ME exhibits
nonlinearity with increasing stress. The classical linear ME density can be expressed
as Eme = −3/2 λs0σ cos θσ [12], where λs0 is the saturation magnetostriction coefficient
without stress, σ is the stress, and θσ is the angle between the stress and magnetization. The
Hamiltonian of the linear ME under displacement field u(r) is generally expressed as [2,13]:

Hme =
1
s2 ∑

∫
V

Bαβsα(r)sβ(r)εαβ(r)dr, (1)

where r = (x, y, z), α, β = x, y, z; s is the saturation spin density; V is the volume; εαβ(r) is the
linear strain component which can be expressed as εαβ(r) =

[
∂uβ(r)/∂rα + ∂uα(r)/∂rβ

]
/2;

Bαβ is the magnetoelastic anisotropic constant; Ref. [2] and the Einstein summation convention
is assumed.

Magnetization results from the electron’s spin, which is related to the lattice
parameters [1,12]. The magneto-elastic coupling effects are mainly relevant to the exchange
field, spin-orbit coupling, etc. [12,13]. According to Refs. [14,15], the primary mechanism of
the interactions between atoms (A and B) and electrons (a and b) are schematically plotted
in Figure 1, where rAa, rBb, rAB, and rab are position vectors. The red diamonds and green
circles are the impacts of electrons a and b. The electrons’ interactions are the primary
influence factors of magnetization. It can be seen that the interactions of the electrons are
related to the position vectors between electrons rab. The expectation of electrons’ distance
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|rab| is also the function of Ψ. In addition, Ψ is the function of the nucleus position vector
rAB. Thus, |rab| can be expressed as:

|rab| =
∫

Ψ∗A(rAB)Ψ∗B(rAB)|rab|ΨA(rAB)ΨB(rAB)dr, (2)

where * means taking the conjugate.

Figure 1. Primary mechanism of the interactions between atoms (A and B) and electrons (a and b).

The above is mainly the primary mechanism of the magnetoelastic effect [2,13]. ME
is nonlinearly related to the nucleus distance. However, the classical linear ME includes
only linear terms of Taylor’s series [16–18]. The linear ME can describe the magnetoe-
lastic behaviors under small deformation [1,2]. However, it becomes more ineffective
in representing nonlinear behaviors with increasing deformation. Furthermore, if the
higher-order nonlinear terms are taken to describe the nonlinear behaviors, the number of
expansion coefficients to be determined increases rapidly, which is inconvenient to use. As
far as we know, the constructive nonlinear ME is rarely reported, which is essential in the
magnetoelastic behaviors under larger deformation.

In this letter, we construct a nonlinear ME with the material parameter to better and
more conveniently describe nonlinear magnetoelastic behaviors. Then, the validity of
the model was verified, and the model was applied in the prediction of the domain wall
velocity under stress and a magnetic field, which is important in sensor production.

2. Model Construction

The derivation of the ME’s density is mainly divided into three steps [16–18]. Firstly,
the ME is expanded to the form of magneto-crystalline anisotropy energy in Taylor’s series,
and the first-order terms are taken as the ME approximately. Secondly, the expansion
coefficients are solved under the equilibrium status without stress. Finally, the ME is
obtained under the stress field.

In this letter, we construct a new function basis to expand ME by considering the
following facts: (1) the new function basis should be complete and orthogonal; (2) the
higher-order terms of ME should tend to be zero and be negligible; (3) material parameters
should be included in the new function basis to describe different magnetoelasticity for
various materials; (4) the increasing rate of ME is related to deformation [19,20]; and
(5) ME increases more slowly with the increasing deformation [19,20].
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Based on the above analysis, a series of new function bases with material parame-
ters

[
1, xe−|ϑx|, x2e−|ϑx|2 , . . . xne−|ϑx|n

]
are chosen instead of the polynomial function basis[

1, x, x2, . . . xn], where x = εij is the strain component that is generally less than 1, and ϑ is

the nonlinear material parameter related to the electron interactions. e−|ϑεij | plays slight
attenuating effects under larger strain (e.g., ε > 10−2), and ϑεij is generally less than 10 by
the nature of function xe−|ϑx|. Thus, it is reasonable to assume that ϑ < 103 in general. In
addition, it is noted that xne−|ϑx|n is closer to 0 as fast as xn. Thus, the magneto-crystalline
anisotropy energy density can be expressed as [12,13]:

Ek = E0
k + ∑

i≥j

 ∂Ek

∂
(

εije
−|ϑεij |

)
εije

−|ϑεij | + . . . , (3)

The first term (E0
k ) on the right-hand side of the above equation is the magneto-

crystalline anisotropy energy density without stress. The remaining terms are the ME
density (denoted by Eme), which can be viewed as the variation in the magneto-crystalline
anisotropy energy density under stress. Generally, εij � 1, and therefore, the second

and higher-order terms are neglected. The expansion coefficients ∂Ek/∂
(

εije
−|ϑεij |

)
are

related to the direction cosine (α1, α2, α3) of the magnetization vector. For the cubic crystal
symmetry, the following equations are reasonable [13,16,18]:

∂Ek

∂
(
εiie−|ϑεii |

) = B1α2
i , i = 1, 2, 3, (4)

∂Ek

∂
(

εije
−|ϑεij |

) = B2αiαj, i, j = 1, 2, 3 & i > j, (5)

where B1 and B2 are the magnetoelastic coupling coefficients to be determined.
Therefore, the nonlinear ME density can be expressed as:

Eme = B1

1,2,3

∑
i

α2
i εiie−|ϑεii | + B2

1,2,3

∑
i>j

αiαjεije
−|ϑεij |. (6)

B1 and B2 can be solved based on the equilibrium conditions without external stress.
Here, the free energy density (E) in the ferromagnetic crystal includes magneto-crystalline
anisotropy energy density, ME density, and elastic energy density [16,18]. Only the magne-
tostrictive strain (denoted by ελ

ij) exits in ferromagnetic materials when no external stress is
applied [12,13]. Thus, E can be expressed as:

E = K1

(
α2

1α2
2 + α2

2α2
3 + α2

3α2
1

)
+ B1

1,2,3

∑
i

α2
i ελ

iie
−|ϑελ

ii | + B2

1,2,3

∑
i>j

αiαjε
λ
ije
−|ϑελ

ij |

+
1
2

c11

1,2,3

∑
i

(
ελ

ii

)2
+

1
2

c44

1,2,3

∑
i>j

(
ελ

ij

)2
+ c12

1,2,3

∑
i>j

ελ
iiε

λ
jj, (7)

where c11, c12, and c44 are elastic constants, and K1 is the magneto-crystalline anisotropy
constant. The first term on the right-hand side of the above equation is the magneto-crystalline
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anisotropy energy density E0
k . The sum of the last three items is the elastic energy density Eel

for a cubic crystal. Then, B1 and B2 can be solved based on the equilibrium conditions:

∂E
∂(εii)

= B1α2
i e−|ϑελ

ii |
(
1−

∣∣ϑελ
ii

∣∣)+ c11ελ
ii + c12

(
ελ

jj + ελ
kk

)
= 0,

i, j, k = 1, 2, 3 & k 6= j 6= i,
(8)

∂E
∂(εij)

= B2αiαje
−|ϑελ

ij |
(

1−
∣∣∣ϑελ

ij

∣∣∣)+ c44ελ
ij = 0,

i, j = 1, 2, 3 & i > j.
(9)

Equations (8) and (9) are complicated to solve directly. However, the magnetostriction
of non-giant magnetostrictive material is generally about 10−5 [21] and ϑ < 103 based on

the above analysis. Therefore, ϑελ
ij is near 0, and e−|ϑελ

ij | ∼= 1. Thus, the term B1α2
i e−|ϑελ

ij |
∣∣∣ϑελ

ij

∣∣∣
in the above equations can be ignored. Then, Equations (8) and (9) can be simplified as:

B1α2
i + c11ελ

ii + c12

(
ελ

jj + ελ
kk

)
= 0, i, j, k = 1, 2, 3 & k 6= j 6= i, (10)

B2αiαj + c44ελ
ij = 0, i, j = 1, 2, 3 & i > j. (11)

The magnetostrictive strains ελ
ii and ελ

ij can be solved as:

ελ
ii =

B1
[
c12 − α2

i (c11 + 2c12)
]

(c11 − c12)(c11 + 2c12)
, i = 1, 2, 3 (12)

ελ
ij = −

B2αiαj

c44
, i 6= j (13)

The micro-statistical method [22] is applied to construct the relationship between the
coefficients B1/2 and saturation magnetostriction λs, which can be measured by experi-
ments. The following equations can be obtained for cubic crystals:

λs[100] = − B1

(c11 − c12)

(
1−

∫ 2π

0
dϕ

∫ π

0

1
4π

cos2 θ sin θdθ

)
, (14)

λs[111] = − B2

c44

(
1
3
−
∫ 2π

0

1
4π

sin ϕ cos ϕdϕ
∫ π

0
sin θdθ

)
, (15)

where λs[100] and λs[111] are the saturation magnetostrictions without stress along [100]
and [111], respectively. Then, B1 and B2 are solved as:

B1 = −3
2

λs[100](c11 − c12), (16)

B2 = −3λs[111]c44. (17)

Considering a simple case, the external stress tensor can be expressed as σij = σγij, where
γij is the direction cosine of the stress. The stress energy density Eσ = ∑

i≥j
σijεij should be

added in the free energy density E. Thus, the equilibrium conditions, Equations (8) and (9),
change to:

∂E
∂(εii)

= B1α2
i e−|ϑεii |(1− |ϑεii|) + c11εii + c12

(
ε jj + εkk

)
− σγ2

i = 0, .
i, j, k = 1, 2, 3 & k 6= j 6= i,

(18)

∂E
∂(εij)

= B2αiαje−|ϑεii |
(
1−

∣∣ϑεij
∣∣)+ c44εij − σγiγj = 0,

i, j = 1, 2, 3 & i > j.
(19)



Sensors 2022, 22, 5371 5 of 9

Generally, the magnetostriction is less than 10−5. Thus, B1 and B2 are far less than elastic
constants. e−|ϑεij| is less than 1, and |ϑεii|e−|ϑεij| is less than e−1. As discussed above, the first
terms on the right-hand side are far less than the second terms in Equations (18) and (19).
Therefore, the first terms on the right-hand side can be ignored. The strain components are
solved as:

εii =
σ
[
c12 − γ2

i (c11 + 2c12)
]

(c11 − c12)(c11 + 2c12)
, (20)

εij =
σγiγj

c44
, i 6= j. (21)

With the substitution of the magnetoelastic coupling coefficients (B1 and B2) and
the direction-dependent terms of strain components into Equation (6), the nonlinear ME
density, Eme, is obtained as:

Eme = −
3
2

λs[100]σ
1,2,3

∑
i

α2
i γ2

i e
−|

ϑσγ2
i

(c11−c12)
| − 3λs[111]σ

1,2,3

∑
i>j

αiαjγiγje
−|

ϑσγiγj
c44
|. (22)

For an isotropic material, λs[100] = λs[111] = λs0, then Equation (22) can be written as:

Eme = λs0σ

(
−3

2

1,2,3

∑
i

α2
i γ2

i e
−|

ϑσγ2
i

(c11−c12)
| − 3

1,2,3

∑
i>j

αiαjγiγje
−|

ϑσγiγj
c44
|
)

. (23)

Under the uniaxial stress (γi = 1, γj = γk = 0, i 6= j 6= k), Equation (23) can be written as:

Eme = −
3
2

λs0σ cos θσe
−| ϑσ

(c11−c12)
|
, (24)

where θσ is the angle between the stress and the magnetization.
The Hamiltonian of the nonlinear ME under displacement field u(r) can be applied in

nanoscale fields. It can be expressed as:

Hme =
1
s2 ∑

∫
V

Bαβe−|ϑεαβ(r)|sα(r)sβ(r)εαβ(r)dr. (25)

3. Model Verification

The variations in the magneto-crystalline anisotropy constant of CoFeB induced by
ME with the stress applied along the x and y directions are given in Figure 2 [19]. The
measurement was taken in a uniaxial in-plane anisotropy of the CoFeB/PVDF system. The
magneto-crystalline anisotropy energy can be expressed by E0

k = KU
(
α2

1 + α2
2
)
, where KU

is the magneto-crystalline anisotropy constant [23]. Considering both magnetization and
stress along the x direction (α1 = γ1 = 1, α2 = α3 = γ2 = γ3 = 0) or along the y direction
(α2 = γ2 = 1, α1 = α3 = γ1 = γ3 = 0), we have Ek = E0

k + Eme = KU + Eme/ cos θσ.
Then, Eme/ cos θσ can be considered as the variation of KU which is denoted as ∆KU , i.e.,
∆KU = Eme/ cos θσ. Figure 2a presents the angular dependence of the normalized remanent
magnetization (Mr/Ms), where Mr is the remanent magnetization, and Ms is the saturation
magnetization. It shows a uniaxial anisotropy, and the easy axis is along the y direction.
It should be reasonable to assume that the values of ϑ are different in different directions
when the distribution of magnetic particles varies according to the physical meaning of
ϑ. Therefore, the values of ϑ for CoFeB along with x and y are taken as ϑx = 45 and
ϑy = 52, respectively. The film can be regarded as a two-dimensional material different from
the three-dimensional material. Then, a reduction factor of one-half should be included
approximately in the ME’s density [24–27]. The saturation magnetostriction of CoFeB along
both the x and y directions is taken as λs0 =31 ppm [20]. The relationship between the strain
and stress of CoFeB is εx/y = σx/y

(
1− ν2)/G [19,20], where G (~162 GPa [19,20]) is the

elastic modulus, and ν (~0.3 [19,20]) is the Poisson’s ratio of CoFeB. Thus, ∆KU calculated
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by the linear ME density and nonlinear ME density along the x and y directions, are
given by:

∆ KUx/y = −3
4

λs0σ (Linear ME) (26)

∆ KUx/y = −3
4

λs0σe−|
ϑx/ yσ(1−ν2)

G | (Nonlinear ME) (27)

Figure 2. Comparison of the magnetic anisotropy constant variations in CoFeB by experiments [19]
(Reproduced with permission from APPL. PHYS. LETT. 111(14), 142403 (2017). Copyright 2021
American Institute of Physics): (a) the definition of easy (x) and hard (y) magnetization directions,
calculations by linear and proposed nonlinear ME (ME) along with x (b) and y (c) directions.

It is observed in Figure 2b,c that the measured ∆Ku along the x and y directions [19]
(black lines with the square points) increases with the increasing stress. However, the rate
of increase decreases, which is more obvious along the y direction than along the x direction.
∆Ku (blue lines with the triangular points) in Figure 2b,c predicted by the linear ME density
exhibits linear growth along the x and y directions with the increasing stress. When the
stress is small, the results predicted by the linear ME density are close to the experimental
results in Ref. [19]. However, the predicted errors become larger with the increasing stress.
In other words, the prediction for some specific aspects based on the linear ME needs to be
improved. In addition, there was a problem predicting the anisotropy along the x and y
directions based on the linear ME density. The ∆Ku predicted by the proposed nonlinear
ME (red lines with the circular points) in Figure 2b,c exhibits nonlinear growth along the x
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and y directions. It can predict the anisotropy as well. The predicted errors by nonlinear
ME remain small with the increasing stress.

The ME can be regarded as the variation in magneto-crystalline energy under
stress [12,13]. The magneto-crystalline constant is the magneto-crystalline energy den-
sity, with the angle’s cosine being 1. It is demonstrated that the increasing trends of
magneto-crystalline constants are nonlinear, see the experimental results in Figure 2b,c [19].
This phenomenon results from the interaction between magnetic particles that decay with
the increasing distance between particles [12]. Compared with the linear ME density
ELinear

me = −3/2λs0σ cos θσ [12], the proposed nonlinear ME density contains exponential
terms and material parameters. It makes the nonlinear ME more capable of describing the
decaying growth trend and the variations between materials of different magnetoelastic
behaviors under larger deformation.

4. Model Application

The proposed nonlinear ME density can be used widely. According to the previous
description, magnetic anisotropy is related to magneto-elastic energy. We predicted the
effect of magnetic anisotropy induced by stress on the domain wall (DW) dynamics for
Co-rich microwires based on the nonlinear ME density. The velocity of DW propagates
along with the wire is known to be [28,29]:

v = S(H − H0) (28)

where H is the axial magnetic field, H0 is the critical propagation field, and S is the DW
mobility given by:

S = 2µ0Ms/β (29)

where β is the viscous damping coefficient [28,29]. Moreover, β ≈ Ms[K/(A/a)]1/2, where
Ms is the saturation magnetization, A is the exchange stiffness constant, a is the distance
between magnetic particles, and K = K0 + Kme is the magnetic ansitropy. Here, K0 is
the magnetic anisotropy without stress, and Kme = −3/2 λs0σe−|ϑσ/G| is the magnetic
anisotropy induced by stress based on the proposed nonlinear ME.

As is known [28,29], the domain wall velocity is related to the interaction between
magnetic particles, which decays with the increasing distance between particles. The
viscous damping coefficient β decreases as the increasing stress within a certain range.
The measured DW velocity on the magnetic field under stress is shown as the scatter
points [28] in Figure 3. The calculated results based on the linear ME are shown as the
lines in Figure 3a. It is shown that the domain wall velocity decreases with the increasing
stress. It is obvious that β increases with the increasing stress. Then, S decreases, as can
be seen from Equation (28). Thus, the calculated domain wall velocity based on the linear
ME decreases with the increasing stress. It is different from the experimental results. The
calculated results based on the proposed nonlinear ME are shown as the lines in Figure 3b. It
is demonstrated that the DW velocity increases with the stress and the increasing magnetic
field within the limited measurement range. The experimental and calculated results are in
good agreement. The nonlinear magnetoelastic energy density can describe the nonlinear
behaviors to a certain extent.
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Figure 3. The predictions of DW velocity on magnetic field measured for Co69.2Fe4.1B11.8Si13.8C1.1

microwires [28] under different tensile stresses based on the linear ME. (Reproduced with permission
from IEEE Transactions on Magnetics 50, 1–4 (2014). Copyright 2022 IEEE) (a) and the proposed non-
linear ME (b). The following parameters are used in the calculation: K0 = 8 J/m3, A/a = 1800 J/m,
λs0 = 1× 10−7, H0 = 35 A/m, ϑ/G = 3.1× 10−8 Pa−1, and v = 0.3.

5. Concluding Remarks

In this letter, the nonlinear magnetoelastic energy is constructed by expanding mag-
netoelastic energy based on magneto-crystalline anisotropy energy by applying a new
function basis with material parameters. It can describe the different materials’ nonlinear
magnetoelastic behaviors. The coefficients are determined by saturation magnetostriction,
which can be measured in experiments. The proposed nonlinear magnetoelastic energy
can better predict the experimental results of the magneto-crystalline anisotropy constant
variation and anisotropy under the stress field than the classical linear magnetoelastic
energy. Based on the nonlinear magnetoelastic energy, the domain wall velocity under
stress and the magnetic field can be predicted accurately. The Hamiltonian of the nonlinear
ME applied in nanoscale fields is obtained. It has promising applications in a wider range
of fields, e.g., sensor production, magneto-acoustic coupling motivation, magnetic memory
method testing, magnetoelastic excitation, etc.
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