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Abstract: When performing robotic automatic sorting and assembly operations of multi-category
hardware, there are some problems with the existing convolutional neural network visual recognition
algorithms, such as large computing power consumption, low recognition efficiency, and a high
rate of missed detection and false detection. A novel efficient convolutional neural algorithm for
multi-category aliasing hardware recognition is proposed in this paper. On the basis of SSD, the
novel algorithm uses Resnet-50 instead of VGG16 as the backbone feature extraction network, and
it integrates ECA-Net and Improved Spatial Attention Block (ISAB): two attention mechanisms to
improve the ability of learning and extract target features. Then, we pass the weighted features to
extra feature layers to build an improved SSD algorithm. At last, in order to compare the performance
difference between the novel algorithm and the existing algorithms, three kinds of hardware with
different sizes are chosen to constitute an aliasing scene that can simulate an industrial site, and
some comparative experiments have been completed finally. The experimental results show that
the novel algorithm has an mAP of 98.20% and FPS of 78, which are better than Faster R-CNN,
YOLOv4, YOLOXs, EfficientDet-D1, and original SSD in terms of comprehensive performance. The
novel algorithm proposed in this paper can improve the efficiency of robotic sorting and assembly of
multi-category hardware.

Keywords: convolutional neural networks; attention mechanisms; multi-category hardware; complex
aliasing scenes

1. Introduction

In the past few decades, industrial robots have been extensively applied in hardware
processing and manufacturing, which has improved the automation level of the industry [1].
However, the material sorting and feeding processes are still generally operated manually,
because multi-category materials are stacked together in the processing workshop and
the lighting conditions on site are always complicated, which makes the existing machine
vision detection algorithms unable to work properly. When these algorithms are used to
identify and locate hardware, the high misrecognition rate and poor positioning precision
will restrict the application of industrial robots in the metal workpieces processing industry.

Thanks to the rapid development of computer image recognition technology in the
past decades, convolutional neural network algorithms represented by Faster R-CNN [2],
EfficientDet [3], YOLO [4,5], etc. have become the main research method in face recognition
and target detection [6]. To improve the performance of visual inspection algorithms
in robotic autonomous sorting and assembly operations, many researchers have carried
out a series of studies. Brold et al. [7] proposed a method for synthesizing training data
using spatial scanning and virtualized parts. This method improves the reliability of
the data training process by combining deep learning and classical algorithms, and it
realizes the accurate and rapid identification of auto parts based on small-sample datasets.
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Based on the YOLOv3 model, Chen et al. [8] improved the detection performance of non-
ferrous metal targets based on small samples by optimizing the data enhancement method,
improving the focal loss function and the IOU threshold function. The experimental results
show that the recognition accuracy of the improved algorithm for aluminum scrap and
copper scrap has reached 95.3% and 91.4%, respectively, and the algorithm runs at a
speed of 18 FPS, which can meet the needs of real-time operation. Liu et al. [9] designed
PolanNet-2d for 2D workpiece detection and PolishNet-3d deep neural network for 3D
workpiece recognition, and they combined these two algorithms for polishing workpiece
recognition methods. The experimental results show that the method performs well in
the polishing workpiece recognition task. Yang et al. [10] designed a directional flipped
image data augmentation algorithm and a multi-layer feature fusion network to improve
YOLOv3 for the problems of the small amount of data and insufficient network feature
extraction. The experimental results show that under the complex industrial background,
the improved YOLOv3 network achieves strong robust real-time recognition of 0.8 cm
thick needles and KR22 bearing machine parts. In order to solve the problems of difficult
identification and classification of small-sample industrial mechanical parts, Li et al. [11]
established a convolutional neural network model based on the InceptionNet-V3 pre-
trained model through transfer learning. Through data expansion, adjusting the learning
rate, and optimizing the algorithm, the optimal model was determined, which improved
the recognition and classification performance of the algorithm for small-sample industrial
machine parts, and the test accuracy rate reached 99.74%.

However, in the actual production site of robotic autonomous sorting and assembly,
many types of spare parts with large differences in size are often piled up in a mess, and
the on-site lighting conditions are usually complex and changeable, which seriously affects
the recognition accuracy of existing visual inspection algorithms. In addition, although
more network parameters can improve the detection accuracy of the algorithm, it will
reduce the recognition efficiency of the algorithm and cannot meet the real-time detection
requirements of industrial sites.

Therefore, in order to improve the recognition performance of existing visual detection
algorithms, an efficient recognition algorithm for multi-category hardware in complex
aliasing scenes is proposed in this paper. Compared with the previous algorithms, the main
contributions and innovations of the new algorithm proposed in this paper are as follows:

1. Proposed ISAB Spatial Attention Block, which is an improved spatial attention mech-
anism for SAM (spatial attention module in CBAM), in order to weight the effective
features more efficiently for a very small increase in computational cost;

2. Using ECA-Net to connect ISAB in series to form a new attention mechanism, where
ECA-Net is a channel attention mechanism;

3. Using the Resnet-50 instead of VGG16 as the basic feature extraction network to
improve the performance of the backbone network, which not only can effectively
extract deep features of objects but also speed up the convergence of the model and
prevent exploding gradients when training the model;

4. Experimental results show that the algorithm proposed in this paper can perform
efficient (78 FPS) and accurate (98.20% mAP) real-time recognition of multi-category
hardware in complex overlapping scenes.

2. Original SSD Network Structure

Single Shot MultiBox Detector (SSD) [12] is a representative single-stage detector,
which consists of a VGG16-based backbone structure and extra feature layers. It combines
the advantages of Faster R-CNN and YOLO, and it has a great improvement in model
structure and operation speed. The network structure of the original SSD is shown in
Figure 1.
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Figure 1. Structure of SSD algorithm.

As shown in Figure 1, the backbone of SSD consists of the first five layers of convolu-
tional networks of VGG16, and extra feature layers contain five feature extraction layers
(Conv6, Conv7, Conv8, Conv9, and Conv10). Therefore, the entire network contains six
feature extraction layers finally. Each feature extraction layer needs to be passed to the
detector for frame regression and classification, and then, the non-maximum suppression
(NMS) algorithm is used to eliminate candidate recognition frames with low confidence to
achieve target recognition. The algorithm principle of NMS is shown as Equation (1).

si =

{
si, iou(M, bi) < Ni
0, iou(M, bi) ≥ Ni

(1)

where si represents the score of each recognition frame, M is the current recognition
frame with the highest score, bi is one of the remaining recognition frames, and Ni is the
set threshold.

It can be seen from the formula that when the Intersection over Union (IoU) is greater
than Ni, the score of the recognition frame is directly set to 0, which is equivalent to being
discarded, so that the recognition frame with the highest confidence is selected.

For the COCO and Pascal VOC datasets, although SSD has a high level of operation
speed and detection accuracy, compared with other networks (such as YOLOv4, YOLOX,
and EfficientDet), the lack of convolutional layers will lead to the problem of insufficient
target semantic feature extraction.

3. Proposing Novel Algorithm

The backbone network of the original SSD network (VGG16) has a deficiency of feature
extraction capability due to the small number of convolutional layers and the general loss
of feature information during the information transfer in the ensemble layer. In order to
improve the performance of the original SSD algorithm for multi-category parts feature
extraction, this paper proposes an improved SSD algorithm with the structure shown in
Figure 2. The first part is the backbone, which is composed of the first four feature layers of
Resnet-50. The second part is the novel attention mechanism proposed in this paper. The
third part is the extra feature layer, where the features weighted by the attention mechanism
are convoluted five times to obtain five extra layers of features. Finally, the output of the
backbone and the extra feature layers (Conv6, Conv7, Conv8, Conv9, and Conv10) are
sequentially transmitted into the detection network for regression and classification, and
the NMS algorithm filters out the highest scoring detection targets.
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Figure 2. Improved SSD algorithm architecture.

3.1. Replacing the Backbone Network

The backbone is used to extract the initial target features, and the inputs of the subse-
quent feature extraction layers and the target detection network are based on the features
extracted by the backbone. Therefore, the performance of the backbone network determines
the performance of the whole algorithm. Compared with VGG16 [13], ResNet [14] utilizes
the residual structure to make the network deeper, faster to converge, easier to optimize,
and less complex. It can effectively extract target features and better deal with network
degradation. Inspired by [15,16], we used the first four convolutional layer structures of
Resnet-50 (Conv1, Conv2, Conv3, Conv4) and adjusted the stride of Block1 of Conv4 (in
order to keep the output feature size consistent with the original SSD), thus forming a
Resnet-50-based backbone network with the structure shown in Figure 3, to replace VGG16
as the backbone network of the algorithm proposed in this paper.

Figure 3. The structure of the backbone (based on Resnet-50) proposed in this paper.

3.2. Integrating Attention Mechanism

The attention mechanism proposed in this paper is composed of two attention modules,
ECA-Net [17] and ISAB (Improved Spatial Attention Block). As shown in Figure 4, the
ECA-Net is a channel attention mechanism and ISAB is a spatial attention mechanism.
Referring to the connection between the channel attention mechanism and the spatial
attention mechanism of CBAM [18], the accuracy of target recognition can be improved.
The attention mechanism proposed in this paper adopts the serial connection mode of
ECA-Net before ISAB and after.
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Figure 4. The structure of the attention mechanism proposed in this paper.

3.2.1. ECA-Net

ECA-Net is an improved SE-Net [19] attention mechanism network. Compared with
SE-Net, ECA-Net removes the fully connected layer in SE-Net and directly uses one-
dimensional sparse convolution operation on the features after global average pooling to
optimize the fully connected layer operation while maintaining network performance. At
the same time, the number of parameters of ECA-Net is greatly reduced.

k = ψ(C) =
log2 C + 1

2
(2)

Sigmoid(x) =
1

e−x + 1
(3)

The implementation idea of ECA-Net is divided into the following three steps, as
shown in Figure 5:

1. The original feature map with the input size of H × W × C generates feature maps
with the size of 1 × 1 × C through global average pooling;

2. Calculate the adaptive convolution kernel size with Equation (2);
3. Calculate the activation value of the one-dimensional convolution output with sig-

moid Equation (3) and obtain the weight of each channel.

Figure 5. Structure of ECA-Net.

3.2.2. Improved Spatial Attention Block (ISAB)

Inspired by CBAM [18], this paper improves the SAM (Spatial Attention Module) of
CBAM to Improved Spatial Attention Block (ISAB), whose architecture is shown in Figure 6,
and the comparison between SAM (Spatial Attention Module in CBAM) and ISAB is shown
in Table 1. Compared with SAM, ISAB also performed Max Pooling and Agv Pooling on
the feature map χ̃ = (H, W, C) output by ECA-Net, and it obtained χ̃1 and χ̃2 with the
dimensions (H, W, 1) of two feature maps. In order to obtain rich spatial features, χ̃1 and
χ̃2 are transposed to add two feature maps of size (W, H, 1) and obtain (χ̃1, χ̃2, χ̃T

1 , χ̃T
2 ) four

feature maps. We concatenate these feature maps into a feature map group FC and then use
the sigmoid function to obtain the weight of each feature point of the input feature layer.
Finally, we use the feature weight Fσ to multiply the original input feature maps χ̃ to obtain
the weighted feature of ISAB.
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Figure 6. Structure of Improved Spatial Attention Block.

Table 1. Comparison of SAM and ISAB.

SAM ISAB

Input χ̃ = (H, W, C) Input χ̃ = (H, W, C)
Max Pooling (χ̃) = χ̃1 Max Pooling (χ̃) = χ̃1
Agv Pooling (χ̃) = χ̃2 Agv Pooling (χ̃) = χ̃2

Concat (χ̃1, χ̃2) = FC
Transpose (χ̃1, χ̃2) = (χ̃T

1 , χ̃T
2 ) and

Concat (χ̃1, χ̃2, χ̃T
1 , χ̃T

2 ) = FC
Sigmoid (Conv(FC)) = Fσ Sigmoid (Conv(FC)) = Fσ

Output Fσ × χ̃ Output Fσ × χ̃

4. Design Experiment and Performance Metrics
4.1. Building the Dataset

In order to simulate the robotic autonomous sorting and assembly scene of multi-
category metal parts, three types of hardware with different sizes are chosen and aliased
together, and then, a dataset of multi-category hardware aliasing has been constructed by
some data augmentation methods. These three hardware (A, B, and C) included in this
dataset are shown in Figure 7a, simulating a cluttered stack of hardware datasets for an
industrial site, as shown in Figure 7b.

Figure 7. Dataset augmentation.
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To construct the original dataset, 300 images are captured with a resolution of 1280× 720,
and the shooting distance is set to 0.6–1.2 m, while the light source is the ordinary LED
white light. Each image contains 15–35 shielding metal parts. Subsequently, referring to the
paper [20], some dataset augmentation methods (including rotation, adjusted hue, changed
saturation, and brightness, as shown in Figure 8) are used to expand the dataset to 1500
and to improve the generalization ability of the trained network model finally.

Figure 8. The details of hardware included in the dataset.

4.2. Hyperparameter and Performance Metrics Settings

The experiment uses a Windows10 system, CUDA11.1, CUDNN8.0.5, Pytorch1.8 deep
learning framework. The hardware configuration is an Intel(R) Core i5-11400 CPU@2.60
GHz processor, 16 G memory, and the GPU is NVIDIA GeForce RTX 3060TI. The model
training parameters are listed in Table 2.

Table 2. Model training hyperparameter.

Hyperparameter Value

Input size 300 × 300
Learning rate 0.0005
Weight decay 0.0005

Batch size 4
Epochs 200

Momentum 0.9
Gamma 0.9

Optimizer Adam

Referring to the paper [21,22], by analyzing and comparing the framework structures
and operating mechanisms of existing visual detection algorithms, and considering both
the hardware costs and the deployment of models used in real industrial scenarios, the AP,
mAP, FPS, FLOPs, and GPU memory footprint are chosen as the performance evaluation
metrics of deep neural network algorithms in this paper. The specific introduction and
calculation formula of each metric are shown as follows:

• Precision is the identified sample, the ratio of true positives, as shown in Equation (4);

Precision =
TP

TP + FP
(4)

• Recall is the percentage that is correctly recognized as true positives in the test set, as
shown in Equation (5);

Recall =
TP

TP + FN
(5)
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where TP, FP, and FN are true positives, false positives, and false negatives, respectively.

• AP is the average for each category of precision, as shown in Equation (6);

AP = ∑n−1
i=1 (ri+1 − ri)Pinter (ri + 1)

Pinter (ri + 1) = maxr̃:r̃≥r̃i+1(P(r̃))
(6)

where P(r̃) is the measured precision at recall r̃.

• The mAP refers to the mean of all categories of AP, as shown in Equation (7).

mAP =
∑k

i=1 APi

k
(7)

• FPS is the number of images processed by the algorithm per second (the number of
images completed for recognition), as shown in Equation (8); the larger the value, the
faster the algorithm processes.

FPS =
1
T

(8)

where T is the time taken to process a frame.
In practice, FPS focuses more on describing the adaptability between the algorithm

and the deployed devices, which means that the FPS value of the same algorithm deployed
on different devices may be very different.

• FLOPs (Floating Point Operations) are the sum of the total computation of the entire
model, which depends on, but not entirely on, the complexity of algorithm structure.

• GPU memory footprint is the amount of memory used by the dedicated GPU for
model operations.

5. Experimental Results and Analysis
5.1. Heatmaps Analysis

In order to visualize the capability of the algorithm in terms of target feature informa-
tion extraction with different backbone networks and the addition of attention mechanisms,
this paper uses Grad-CAM [23] to generate algorithm learning heatmaps to visually repre-
sent the target feature regions extracted by the network. The specific results are shown in
Figure 9.

From the figure, it can be visualized that the original SSD algorithm (a) extracts the
target feature information region showing a scattered state and focuses on useless features
(background and image edges), leading to ignoring much of the target feature information.
After replacing VGG-16 with Resnet-50 as the backbone network (b), the ability to extract
features is significantly improved, but there are still a large number of redundant features.
After that, the features extracted from the backbone network are weighted and filtered by
using the existing attention mechanisms ECA-Net as well as SAM in the form of ECA-Net
and ECA-Net+SAM, respectively. The heatmap (c) shows that the addition of ECA-Net can
eliminate a large number of invalid features and improve the efficiency of feature extraction,
but there are some parts with too few learning regions. The heatmap (d) shows that adding
ECA-Net+SAM can involve more features and give higher weights than adding only ECA-
Net, but there is a misconception of giving higher weights to the background. Therefore, the
attention mechanism of ECA-Net+ISAB is proposed in this paper. It can be seen from the
heatmap (e) that the region learned by the model after adding ECA-Net+ISAB is gradually
concentrated in the part region and the redundant feature information is gradually reduced,
indicating that the neural network proposed in this paper can better concentrate on the
target learning region and reduce the interference of redundant feature information. The
final experiments demonstrated that Resnet-50 and the attention mechanism are helpful to
improve the learning ability of the SSD algorithm.
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Figure 9. Heatmap of network learning area before and after improvement. (The brighter areas in the
graph represent the higher weights assigned by the algorithm.)

5.2. Comparison of Recognition Performance

Subsequently, this paper compares the recognition performance of several exist-
ing representative deep neural network algorithms (Faster R-CNN, YOLOv4, YOLOXs,
EfficientDet-D1, SSD) and improved deep neural network algorithms based on SSD for a
typical multi-category metal parts aliasing scene. The experimental results are divided into
the recognition accuracy performance (Table 3) of the algorithm for each part, the overall
recognition performance of the algorithm (Table 4), and the actual recognition effectiveness
of the algorithm (Figure 10).

Since the actual industrial scenario is oriented to parts with multi-category and signifi-
cant dimensional differences, the balance of AP is extremely important. Comparing the
AP in Table 3, it is easy to see that the new algorithm proposed in this paper improves the
detection precision of A, B, and C parts compared to other SSD-based algorithms, especially
for small target class C. The AP of the proposed algorithm for multi-target parts detection
is already comparable to the YOLO series algorithms and exceeds that of the classical deep
neural network algorithm, Faster R-CNN. This improvement is obvious and shows the
effectiveness of the algorithm proposed in this paper.

The actual deployment of the algorithm in the application considers not only the
accuracy but also the efficiency of the algorithm operation and the cost of the algorithm
deployment in the device. It can be seen from Table 4 that replacing the backbone of
SSD from VGG-16 to Resnet-50 can significantly reduce the FLOPs and the GPU memory
footprint of the algorithm, the FLOPs are reduced from 30.59 to about 15.12, and the GPU
memory footprint is reduced from 3.6 to about 2.3 GB (all the value of GPU memory
footprints are measured at batch size = 4). Compared with other improved algorithms
based on SSD, the FLOPs of the algorithm proposed in this paper are increased by only
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an extremely limited amount, which is mainly caused by the convolutional operations
(such as these Conv layers shown in Figure 6) in the attention mechanism. In addition,
in the attention mechanism, when the feature is weighted by the sigmoid function, it
will be copied once in tensor format, and this operation will increase the GPU memory
footprint of an algorithm. In other words, each time the attention mechanism is added,
the GPU memory footprint of an algorithm will increase a little. Therefore, the algorithm
proposed in this paper and SSD+ResNet-50+ECA+SAM have the most amount of GPU
memory footprint, SSD+ResNet-50+ECA comes second, and SSD+ResNet-50 has the least.
So, according to the FLOPs and GPU memory footprint, we can conclude that the algorithm
proposed in this paper can improve the performance with almost no increase in complexity.

Table 3. Average precision (AP) comparison of different models.

Methods A/% B/% C/%

Faster R-CNN 98.34 98.54 90.79
YOLOv4 98.31 98.27 97.87
YOLOXs 98.00 97.18 98.07

EfficientDet-D1 98.12 97.41 99.55
Original SSD 98.24 97.95 88.66

SSD+ResNet-50 98.52 97.87 94.31
SSD+ResNet-50+ECA 98.43 96.63 96.43

SSD+ResNet-50+ECA+SAM 98.40 97.96 97.82
Ours 98.50 98.22 97.88

Table 4. Performance comparison of different models. (FLOPs and GPU memory footprint are
measured by torchstat-0.0.7 and NVIDIA-SMI-472.12, respectively.)

Methods mAP/% FPS FLOPs /GFLOPs GPU Memory
Footprint /GB

Faster R-CNN 95.89 18 184.99 6.6
YOLOv4 98.15 42 29.89 6.3
YOLOXs 97.75 62 13.32 2.0

EfficientDet-D1 98.36 20 11.21 3.2
Original SSD 94.95 91 30.59 3.6

SSD+ResNet-50 96.90 89 15.12 2.3
SSD+ResNet-50+ECA 97.83 81 15.12 + 0 2.4

SSD+ResNet-50+ECA+SAM 98.06 80 15.12 + 0.00025 2.5
Ours 98.20 78 15.12 + 0.00051 2.5

Figure 10 shows the recognition results of the nine algorithms. Comparing the de-
tection results in the figure, the detection algorithm proposed in this paper not only has
higher recognition accuracy and confidence for parts in complex and cluttered scenes
but also locates the parts more accurately and has better detection performance for small
objects. From (i), it can be seen that the ECA-Net+ISAB attention mechanism has a greater
improvement than ECA-Net in the overall recognition performance of the network. The
experimental results show that the algorithm proposed in this paper has superior overall
performance to the other algorithms.
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Figure 10. The actual results of six algorithms for metal parts recognition are shown. (The yellow
ellipse dotted line in the figure is the model’s misidentified or missed identification.)

6. Conclusions

In order to improve the multi-category aliasing targets recognition performance of
existing visual detection algorithms in the scene of industrial robotic autonomous sorting
and assembly, a novel algorithm, based on the original SSD network, is proposed in this
paper. First, it replaces VGG-16 in the original network with ResNet-50 with deeper network
layers and faster convergence. Subsequently, attention mechanisms such as ECA-Net and
ISAB are integrated to optimize the base SSD network base on ResNet-50 and improve
the multi-target recognition performance of the algorithm. By constructing an augmented
dataset and comparing the detection performance of Faster R-CNN, YOLOv4, YOLOXs,
EfficientDet-D1, original SSD, and improved SSD networks for metal parts in complex
cluttered scenes, the model proposed in this paper significantly improves the detection
performance of small-sized objects (AP increased from 88.66 to 97.88), improves the overall
detection performance (mAP is 98.20%), and maintains a high detection speed (the FPS
is 78).

The experimental results show that the multi-category target detection performance
of the algorithm proposed in this paper is close to YOLOv4 and EfficientDet-D1, but the
detection efficiency is much higher than both, which can better meet the requirements
of real-time operation in industrial sites. The research work in this paper can provide
a theoretical basis and reference for improving the autonomous sorting and assembly
capabilities of industrial robots for multiple types of metal parts.

Although the model proposed in this paper performs well in simulated industrial
scenarios, it has the following shortcomings or limitations. The existing problems will
continue to be researched in subsequent studies:

1. The training model requires a large amount of data, and the labeling of the dataset is
labor-intensive;

2. The attention mechanism proposed in this paper can eliminate redundant features,
but it also ignores some features of the target object;

3. Although the model proposed in this paper runs faster, it still needs to be lightly
embedded in industrial equipment;

4. The dataset for validating the algorithm consists only of metal parts, and there may
be limitations for the performance of non-metal parts;
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5. The attention mechanism proposed in this paper, ECA-Net+ISAB, is extremely depen-
dent on the feature capability of the backbone network, which may have limitations
for the optimization effect of lightweight and complex backbone networks.

Author Contributions: Conceptualization, Y.Z., Q.L. and J.L. (Jiancheng Liang); methodology, Y.Z.
and J.L. (Jiancheng Liang); software J.L. (Jiancheng Liang) and Q.W.; validation, W.Z., J.L. (Junmeng
Lin) and L.L.; formal analysis, Y.Z. and J.L. (Jiancheng Liang); investigation, W.Z.; resources, L.L.;
data curation, Q.W.; writing—original draft preparation, J.L. (Jiancheng Liang); writing—review
and editing, Y.Z. and J.L. (Jiancheng Liang); visualization, J.L. (Jiancheng Liang); project administra-
tion, Q.L.; funding acquisition, Q.L. All authors have read and agreed to the published version of
the manuscript.

Funding: Research supported by the Guangdong Province Key Field R&D Program Project: Grant
No. 2021B0101410002, 2020B0404030001; Foshan City Key Field Science and Technology Research
Project: Grant No.2020001006282, 2020001006509, 2020001006297; Natural Science Foundation of
Guangdong Province: Grant No. 2020B1515120070, 2021B1515120017; National Natural Science
Foundation of China: Grant No. 62106048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to the project requirements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aditya, U.S.; Singh, R.; Singh, K; Kalla, A. A survey on blockchain in robotics: Issues, opportunities, challenges and future

directions. J. Netw. Comput. Appl. 2021, 196, 103245. [CrossRef]
2. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

3. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787.

4. Bochkovskiy, A.; Wang, C.; Liao H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020 arXiv:2004.10934.
5. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021 arXiv:2107.08430
6. Zhou, F.; Jin, L.; Dong, J. Review of convolutional neural network. Chin. J. Comput. 2017, 40, 1229-1251.
7. Brold, A.; Teucke, M.; Rust, J.; Freitag, M. Recognition of car parts in automotive supply chains by combining synthetically

generated training data with classical and deep learning based image processing. Procedia CIRP 2020, 90, 377–382. [CrossRef]
8. Chen, S.; Hu, Z.; Wang, C.; Pang, Q.; Hua, L. Research on the process of small sample non-ferrous metal recognition and

separation based on deep learning. Waste Manag. 2021, 126, 266–273. [CrossRef] [PubMed]
9. Liu, F.; Wang, Z. PolishNet-2d and PolishNet-3d: Deep Learning-Based Workpiece Recognition. IEEE Access 2019, 7, 127042–127054.

[CrossRef]
10. Yang, J.; Li, S.; Gao, Z.; Wang, Z.; Liu, W. Real-time recognition method for 0.8 cm darning needles and kr22 bearings based on

convolution neural networks and data increase. Appl. Sci. 2018, 8, 1857. [CrossRef]
11. Li, Q.; Chen, G. Recognition of industrial machine parts based on transfer learning with convolutional neural network. PLoS

ONE 2021, 16, e0245735. [CrossRef] [PubMed]
12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
13. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
15. Sun X.; Gu, J; Huang, R. A modified SSD method for Electronic Components Fast Recognition. Optik 2019, 205, 163767. [CrossRef]
16. Sethi, S; Kathuria, M; Kaushik, T. Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread.

J. Biomed. Inform. 2021, 120, 103848. [CrossRef] [PubMed]
17. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 11531–11539.

18. Woo, S.; Park, J.; Lee, J. Y.; Kweon, I. S. CBAM: convolutional block attention module. In Proceedings of the Computer
Vision—ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018; pp. 3–19.

http://doi.org/10.1016/j.jnca.2021.103245
http://dx.doi.org/10.1016/j.procir.2020.03.142
http://dx.doi.org/10.1016/j.wasman.2021.03.019
http://www.ncbi.nlm.nih.gov/pubmed/33789215
http://dx.doi.org/10.1109/ACCESS.2019.2940411
http://dx.doi.org/10.3390/app8101857
http://dx.doi.org/10.1371/journal.pone.0245735
http://www.ncbi.nlm.nih.gov/pubmed/33507901
http://dx.doi.org/10.1016/j.ijleo.2019.163767
http://dx.doi.org/10.1016/j.jbi.2021.103848
http://www.ncbi.nlm.nih.gov/pubmed/34171485


Sensors 2022, 22, 5358 13 of 13

19. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

20. Huang, Z.; Yin, Z.; Ma, Y.; Fan, C.; Chai, A. Mobile phone component object detection algorithm based on improved SSD. Procedia
Comput. Sci. 2021, 183, 107–114. [CrossRef]

21. Padilla, R.; Netto, S. L.; Silva, E. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020
International Conference on Systems, Signals and Image Processing, Niter, Brazil, 1–3 July 2020; pp. 237–242.

22. Padilla, R.; Passos, W. L.; Dias, T.; Netto, S. L.; Silva, E. A Comparative Analysis of Object Detection Metrics with a Companion
Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]

23. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

http://dx.doi.org/10.1016/j.procs.2021.02.037
http://dx.doi.org/10.3390/electronics10030279

	Introduction
	Original SSD Network Structure
	Proposing Novel Algorithm
	Replacing the Backbone Network
	Integrating Attention Mechanism
	ECA-Net
	Improved Spatial Attention Block (ISAB)


	Design Experiment and Performance Metrics
	Building the Dataset
	Hyperparameter and Performance Metrics Settings

	Experimental Results and Analysis
	Heatmaps Analysis
	Comparison of Recognition Performance

	Conclusions
	References

