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Abstract: This paper presents a study on the electromagnetic effects of a main fuel control system
under the action of a strong electromagnetic pulse. It assesses the electromagnetic sensitivity of a
speed sensor and a linear variable differential transformer (LVDT) sensor. This assessment focuses
on the control system’s electromagnetic effects and the sensors’ coupling signals. The effects and
signals were determined using radiation and pulse current injection tests. Analysis of the signal at
the system power port shows that it is the same as those for the two test methods. Based on analysis
of the working mechanism and terminal signals of the sensors, the electromagnetic sensitivity of
the system is different under the different electromagnetic pulse conditions. The electromagnetic
sensitivity characteristics of the sensors were verified, and the electromagnetic effects of the main
fuel regulation control system were analyzed. Meanwhile, the degree of sensor coupling mechanism
caused by the electromagnetic coupling effects of the main fuel regulation control system under
strong electromagnetic pulses were studied. These findings have clear practical implications for
electromagnetic pulse protection of aero-engine control systems.

Keywords: main fuel regulation control system; pulse current injection; speed sensor; linear variable
differential transformer

1. Introduction

Electronic devices and circuits are prone to generate a large pulse current that is more
than 1 A or a high voltage which is more than 100 V under the impact of an electromagnetic
pulse [1], resulting in erroneous control system instructions and incorrect operation of the
actuator, affecting the realization of its function. This is because the control unit controls the
actuator through switching devices, which mainly include solenoid valves, relays, power
diodes, and field-effect transistors. The electromagnetic pulse burns the power switch,
disturbing the normal motor rotation and switch action, causing the electromagnetic effect
of the actuator. Electromagnetic pulse energy destroys integrated chips and semiconductor
devices, resulting in the loss of data transmission, restarting equipment, and even burning
integrated circuits, resulting in permanent damage to equipment [2]. In the current military
and civilian fields, the power used by numerous radars, communication equipment, signal
base stations, and other radiation equipment has increased. The electromagnetic pulses
generated by natural electromagnetic sources such as lightning and electrostatic discharge
have also increased, and the electromagnetic environment in the limited area where an
electronic system is located becomes complex. There is no doubt that the degree of electrifi-
cation of electronic systems is proportional to their sensitivity in complex electromagnetic
environments. The higher the degree of electrification of the device, the more sensitive it
will be [3–5].

Familiar electromagnetic pulses include lightning electromagnetic pulses (LEMPs),
electro-static discharge (ESD), and high-altitude nuclear electromagnetic pulse (HEMP).
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These pulses have the characteristics of a steep front, high peak value, and wide frequency
band, as shown in Figure 1. The electromagnetic pulse is coupled into a control system,
resulting in logical errors in a system’s processing and even damage to the hardware
of the controller [6]. However, the existing research on the sensitivity of aero-engine
main fuel regulation control systems under the action of strong electromagnetic pulses is
limited, and more research is required to support their quantitative analysis. Usually, the
ability of equipment under test (EUT) to inevitably degrade performance under various
electromagnetic interference conditions is called sensitivity, i.e., equipment or system
performance degradation occurs when intentional electromagnetic interference occurs.
Based on the theory of electromagnetic field, the characteristics of the electromagnetic
environment are simulated to realize the equivalent substitution of the real environment and
ensure the reliability of the test. In addition, the electromagnetic effects of the equipment
under laboratory conditions are the same as in real-world scenarios.
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With respect to the problem of strong electromagnetic pulse sensitivity of electronic
control systems, two methods are normally used for analysis and study. The numerical
calculation method establishes the electrical model of the control system to study and
analyze it. However, due to the complexity of the structure and the nonlinearity of the
control strategy for the main fuel regulation control system, it is often problematic to
accurately complete the electronic model. Through the test method, the electromagnetic
sensitivity effect of the control system can be observed intuitively; however, the test
conditions are highly desirable. In general, the numerical calculation method can greatly
improve the efficiency of analysis, but the accuracy depends on precise parameter modeling.
The experimental test method can directly test the electromagnetic sensitivity of the system,
but it needs to build an experimental platform. Compared with the numerical calculation
method, the experimental method can better simulate the electromagnetic characteristics of
the control system in a real electromagnetic environment.

There are two common sensitivity test methods: the radiation test method and the
injection test method. The radiation test method tests the electromagnetic pulse effect
of EUT through the radiation antenna and tests its coupling path under the action of a
force electromagnetic pulse, which provides a reference for injection tests and protection
verification. Because the radiation test needs to apply a high source excitation voltage at
the radiation antenna end, the test process must ensure sufficient safety distance. Usually,
test personnel stay in the anechoic chamber to monitor and record the results. At the
same time, the radiation source needs to be discharged after each test. G. Lubkowski
studied the response of UAV sensor systems under the attack of strong electromagnetic
pulses [7]. The main electromagnetic effect caused by the pulses is interference with the
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engine’s control signal. The speed of the UAV motors shows rapid variations, caused
by the disturbance effects observed in the UAV accelerometer. Longying Guo studied
the electromagnetic pulse effect of a vehicle engine outside the cabin and established an
accurate electromagnetic pulse test system [8]. The pulsed coupling signals in fuel injection
are the main reason for outboard engine breakdown. The injection test method conducts
electromagnetic pulse effect tests on EUT through direct or indirect injection methods to
test the sensitivity of the equipment. Based on the radiation test method, the main fuel
regulation control system is tested by the pulse current injection method, which solves the
problem of a long-distance interconnected line not reaching the maximal threat state in
the limited space of an anechoic chamber and verifies the interference law of the control
system under the action of a strong electromagnetic pulse [9–11]. Zhou researched the
main electromagnetic pulse coupling path of the main fuel regulation control system is the
cable [12].

Reference [6] analyzed the electromagnetic sensitivity of the UAV sensors system
utilizing the radiation test. The electromagnetic sensitivity of the engine was studied by the
radiation test method, and the interference of electromagnetic pulse on the engine injection
system was obtained [8]. Reference [13] shows that the data link system, as the hardcore
unmanned aerial vehicle, is susceptible to strong electromagnetic pulse interference. Front
door coupling is the main coupling path for the interference to unmanned aerial vehicles’
main remote control data link. Reference [14] indicates that the engine control system
is susceptible to the electromagnetic pulse, making the control signal confused, and it
can even result in the suspension of work. Reference [15] studied the electromagnetic
disturbance of mobile system memory I/O buffer by the injection test method; it helps
improve immunity over a certain frequency range. There is less research literature on
the degrees of sensors’ coupling mechanisms by electromagnetic coupling effects of the
main fuel control system under a strong electromagnetic pulse. Accordingly, that will be
researched in this paper.

Many studies have researched the influence of the structure and external electromag-
netic environment interference on the sensor [16–18], but these studies are all analyses of
sensors and have certain limitations. Since sensors are often applied to control systems,
the separate analysis of sensors is not particularly important. In addition, when a strong
electromagnetic pulse enters the electronic equipment through the sensor, the control sys-
tem will not fully produce an electromagnetic effect. In this paper, regarding the sensitivity
effect on an aero-engine digital control system under the action of a strong electromagnetic
pulse, the electromagnetic pulse radiation test and the pulse current injection test method
are used to solve the above problems. After an electromagnetic pulse enters the sensitive
device, it can make the electromagnetic coupling effect of the aero-engine digital control
system. It provides a basis for the protection design of the control system.

In this section, coupling research between electromagnetic pulses and electronic sys-
tems in recent years has been briefly described. In Section 2, the electromagnetic pulse
sensitivity test of the aero-engine digital controller is carried out by an electromagnetic
pulse radiation test and pulse current injection test, and the corresponding signal of the
controller is obtained. Section 3 analyzes the test results to obtain the electromagnetic
coupling effect of the control system. Section 4 summarizes the paper.

2. Experiment

In this paper, two test methods were used to investigate the sensitivity effect on the
main fuel regulation control system of aero-engines under the action of a strong electro-
magnetic pulse, and the sensitivity effect was determined.

The radiation test places the main fuel regulation control system in the electromagnetic
pulse radiation field to study the interference and damage under electromagnetic pulse
radiation. The high-altitude nuclear electromagnetic pulse (HEMP) can be approximated
as a plane wave near the ground. In this study, we used a transverse electromagnetic (TEM)
chamber to test the control system, to simulate the high-altitude nuclear electromagnetic ef-
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fect on near-ground facilities or equipment. The electromagnetic pulse radiation sensitivity
effect test was carried out on the system according to the MIL-STD-461F RS105: Radiated
Susceptibility, Transient Electromagnetic Field, or EMP (Electromagnetic Pulse) [19]. The
RS105 test method describes a transient electromagnetic pulse of up to 50 kV/m, a double
exponential waveform with a rise time in the nanosecond range, which is applied to the
EUT at least 5 times. The pulse signal is shown in Figure 2. The mathematical expression of
the pulse signal is shown in (1), where E and E0 are electric field strengths; k, α, and β are
waveform factor, attenuation coefficient, and phase shift coefficient of HEMP. The layout
of the main fuel control system in the radiation test is shown in Figure 3. During the test,
the printed circuit board (PCB) port signal of the controller was monitored, including the
coupling signal of speed, displacement, and power port, as shown in Figure 4.

E = E0k(e−αt − e−βt), (1)
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Through the time and frequency domain analysis of the monitoring port signals, the
peak value and resonant frequency of the coupling signal of the aero-engine’s main fuel
regulation control system—under the action of a strong electromagnetic pulse—can be
determined. At the same time, the radiation test results can provide a basis for the pulse
current injection test.

The injection test injects a voltage or current signal into the main fuel regulation
control system to test its sensitivity. The electromagnetic sensitivity of the control system
was obtained by selecting different injection frequencies to inject pulse current signals into
the signal cables and power lines that are attached to the control system connector. Based
on the monitored results of the controller port in the radiation test, the coupling voltage
and current signal at the main fuel controller’s internal port, under the action of a strong
electromagnetic pulse, is essentially a damping attenuation signal. Therefore, the damping
sinusoidal current signal can be injected to simulate the electromagnetic effect of radiation
from a strong electromagnetic pulse.

During the pulse current injection test, the coupling voltage signals of the speed sensor
and LVDT sensor port were monitored. By adjusting the output level of the pulse signal
source, the measured peak current was recorded, and the performance of the system was
monitored. A pulse current signal at 100 MHz is shown in Figure 4. In the experiment, the
frequencies selected for the injected signal were 10 kHz, 100 kHz, 1 MHz, 10 MHz, 30 MHz,
and 100 MHz. According to the damping sinusoidal pulse current conduction sensitivity
test in MIL-STD-461F CS116 for the control system [14], this produces the sensitivity effect
of the system under a strong electromagnetic pulse. The mathematical expression of the
pulse signal is shown in (2), where I and Im are injection current strength, and f and σ are
the frequency and damping coefficient of the injecting current signal. When the frequency
of the pulse current signal changes, the period and the center frequency of the pulse signal
change. The period of the time the domain signal is the reciprocal of frequency, and the
center frequency of the frequency domain signal is the pulse current signal frequency. A
pulse current signal at 100 MHz is shown in Figure 5. In the experiment, the frequencies
selected for the injected signal were 10 kHz, 100 kHz, 1 MHz, 10 MHz, 30 MHz, and
100 MHz. According to the damping sinusoidal pulse current conduction sensitivity test in
MIL-STD-461F CS116 for the control system [19], this produces the sensitivity effect of the
system under a strong electromagnetic pulse. The layout of the main fuel control system in
the injection test is shown in Figure 6.

I = Im sin(2πft) e−σt, (2)
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By monitoring the signals and phenomena, the sensitivity thresholds of the sensors
could be obtained, which provided a reference for electromagnetic pulse protection. The
parameters of (1) and (2) are listed in Table 1.

Table 1. Parameters for Equation.

Symbol Quantity Value

E Electric field strength 10,000 to 50,000 V/m
k Waveform factor 1.3
α Attenuation coefficient 4 × 107 s−1

β Phase shift coefficient 6 × 108 s−1

I Injection current strength 5 A; 10 A
f The frequency of the injecting current 10 kHz to 100 MHz
σ Damping coefficient Based on the frequency

By comparing the signal of the controller under the two test methods, the two are
equivalent to the controller terminal under the electromagnetic pulse effect test. When
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the pulse current is injected into the main fuel regulation control system, the coupling
effect of the system can be obtained by monitoring the differential mode voltage of the
controller PCB ports, as well as monitoring the sensitivity phenomenon and sensitivity
threshold of the control system, which provides support for electromagnetic protection and
reinforcement of the system.

3. Results and Analysis

In this study, the coupling signals of the power port of the main fuel regulation control
system were selected for comparison, and the radiation and injection test results were
analyzed to prove the electromagnetic equivalence of the two test methods to the controller.
By comparing the coupling signals of the speed sensor and the linear variable differential
transformer sensor under the action of a strong electromagnetic pulse, the differences
and commonalities of the sensors in the process of electromagnetic energy coupling were
analyzed, and the electromagnetic susceptibility of sensors with different signal acquisition
forms was identified.

3.1. Radiation Experiment Result

During the radiation test, the speed port and the power port of the main fuel regulation
controller were monitored to obtain the coupling voltage and current signals of the system
under the action of a strong electromagnetic pulse. By analyzing the voltage and current
signals, the sensitive frequency points of the system were acquired.

The differential mode voltage signals of the speed port of the controller under different
intensity vertical polarization electric fields are shown in Figures 7 and 8, where Figure 7
shows the time domain signal of the differential mode voltage, and Figure 8 shows the
frequency domain signal of the differential mode voltage. For the radiation test, the electric
field intensity, the monitoring port voltage signal, and the main coupling frequency are
listed in Table 2. The coupling frequency refers to the main resonant frequency of the
monitoring port voltage signal. It is also the signal frequency corresponding to the resonant
peak of the signal in Figure 8.
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Figure 8. The frequency domain signal of the speed voltage: (a) Electric field strength is 10 kV/m;
(b) Electric field strength is 20 kV/m.

Table 2. Speed Sensor Coupling Voltage Signal.

Electric Field Intensity Voltage Peak Coupling Frequencies

10 kV/m 126 V 20 MHz and 70 MHz
20 kV/m 210 V 20 MHz, 30 MHz, 70 MHz and 160 MHz

3.2. Pulse Current Injection Experiment Result

During the pulse current injection experiment, the voltage signals of the speed, dis-
placement, and power port of the main fuel regulation controller were monitored to obtain
the coupling signal of the system under the action of a strong electromagnetic pulse. By
analyzing the voltage signal, the sensitivity threshold of the sensors was obtained. When
a 10 MHz pulse current was injected into the LVDT connection beam, the LVDT port
monitoring voltage of the controller is shown in Figure 9.
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Figure 9. LVDT port monitoring voltage in 10 MHz current injection.

The main sensitivity phenomenon of the control system is the abnormal motion of
the linear motor and the fluctuation of the DC motor. At the same time, the push rod of
the linear motor is in a process from contraction to extension to normal, and the position
signal appears abnormal. The speed of the DC motor changes from high speed to low
speed or even stops, which is considerably larger than its normal fluctuation range. With
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the repeated injection of pulse current, the sensitivity phenomenon appears repeatedly.
The displacement of the push rod of the linear motor and the speed of the DC motor
repeatedly change.

To compare and analyze the electromagnetic pulse coupling of sensors, this paper
analyzed the sensitivity of the LVDT sensor in the pulse current injection test. When the
sensitivity phenomenon occurs, the differential mode voltage between the LVDT detection
ports was 53.6 V. According to the control strategy of the main fuel regulation control
system, the speed of the DC motor will increase, resulting in a change in the simulated
engine speed collected by the speed sensor. In addition, the amplitude of the voltage signal
increases. Simultaneously, to control the change in the engine speed, the system controls
the output level of the linear motor, reduces the opening of the fuel pump valve needle,
and reduces the amount of simulated fuel. Thus, the position of the simulated fuel pump
valve needle changes, the displacement of the linear motor is shortened, the amplitude of
the voltage signal collected by the LVDT is reduced so that the rotation speed of the DC
motor is reduced, and the closed-loop control of the speed and displacement is completed,
as shown in Figure 10. Through the analysis of the test results, the sensitivity threshold of
the main fuel regulation control system under the action of a strong electromagnetic pulse
was obtained.
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3.3. The Sensor Susceptibility Law

Usually, due to the different sources and mechanisms of electromagnetic pulses, the
current distribution produced by radiation tests and pulse current injection tests on the test
equipment is completely different. However, for the same controller terminal, if the input
current of the monitoring port is equal, the two test methods can be considered equivalent.
In this paper, the power port of the main fuel regulation control system was selected as the
target. The electromagnetic sensitivity equivalence of the controller under two excitation
modes was obtained by monitoring the current signal in the power port of the controller, as
shown in Figure 11. The monitoring signal of the power port of the controller is shown in
Figure 12.
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Figure 12. Power port signal: (a) In the radiation; (b) In current injection tests.

In Figure 12, the current amplitudes of the radiation test and current injection test
are 2 A and 2.17 A. The duration of the signals is 1.5 × 10−7 s and 1.7 × 10−7 s. The peak
value of the signals decays by 90% at 1.3 × 10−7 s and 1.5 × 10−7 s. By comparing the
current signals of the power monitoring port of the controller in the figure, it can be seen
that the two test methods are equivalent to the electromagnetic sensitivity test results of
the controller for the main fuel regulation control system.

To explore the electromagnetic sensitivity characteristics of the speed sensor and
LVDT sensor of the controller under the action of a strong electromagnetic pulse, pulse
current injection tests were carried out on the two sensors based on the radiation test.
The speed sensor controller terminal coupling voltage signal at the frequency domain is
shown in Figures 7 and 8. Based on the same current distribution of the controller terminal,
pulse current signals of different frequencies are selected for injection into the system, and
the voltage signal of the LVDT sensor port is monitored. The LVDT controller terminal
coupling voltage signal at the frequency domain is shown in Figure 13. When we select
the frequencies of the current signal at 10 kHz to 1 MHz to inject, the voltage signal of the
LVDT sensor port is very small. The signal will not exhibit a distinct resonant frequency; it
has no impact on the subsequent analysis of the sensors, so it is not shown in Figure 13.
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Figure 13. LVDT sensor terminal coupling voltage signal in the pulse current injection (PCI) test.

The resonance frequency points of the terminal coupling signal in the speed sensor
under different external excitations are basically consistent, and the main coupling fre-
quencies are 20 MHz, 30 MHz, 70 MHz, and 160 MHz. The difference is that the coupling
energy is different at each frequency. In the injection test, the monitoring signal of the
controller terminal was analyzed, and the main coupling frequencies of the LVDT sensor
under different external excitations were 6.5 MHz, 20 MHz, and 70 MHz.

A pulse current of 30 MHz was selected and injected into the connection beam of the
speed sensor and the LVDT sensor to monitor the coupling voltage signal of the speed
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port and LVDT port of the controller, as shown in Figure 14. There is a large difference
in the amplitude of the coupling signal collected by the two sensors under the impact of
an electromagnetic pulse. To further examine the electromagnetic sensitivity of the two
types of sensors under the action of a strong electromagnetic pulse, this study conducted
multifrequency pulse current injection tests on the rotational speed sensor and the LVDT
connection beam to monitor the amplitude of the coupling signal of the controller at 10
kHz, 100 kHz, 1 MHz, 10 MHz, 30 MHz, and 100 MHz. The curves were numerically fitted
through six points, as shown in Figure 15.
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Compared with the curves in Figures 7, 8, 13 and 15, the speed sensor and LVDT
sensor differ concerning their sensitive frequency bands and their sensitivity threshold
for the electromagnetic pulse. Referring to the sensitivity phenomenon in the test process,
the LVDT sensitive band was 1 MHz to 10 MHz, and the speed sensor sensitive band was
30 MHz to 100 MHz. Based on the test results, the sensor coupling characteristics under
different signal acquisition forms were obtained by analyzing the working principle and
terminal circuit of the two sensors. A speed sensor is a kind of magnetoresistive sensor
that produces induced current in the coil through the magnetoresistive change between
the magnetic core and the phonic wheel. As an open magnetic circuit sensor, the LVDT
sensor generates the induced current in the secondary coil through the position change of
the moving magnetic core in the two-stage coil. The normal working flow of sensors is
shown in Figure 16.
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With the rotation of the phonic wheel, the speed sensor inputs a sinusoidal voltage
signal to the controller of the main fuel regulation control system and transmits it to the
single-chip microcomputer (MCU) through the signal filtering circuit. When the strong
electromagnetic pulse is coupled to the speed sensor, the electromagnetic pulse enters
the controller through the speed sensor connecting cable and forms a pulse voltage at the
terminal. Similarly, with the change of the position of the main fuel metering valve, the
LVDT sensor inputs a DC voltage signal after signal processing to the controller, which is
transmitted to the single-chip microcomputer through the signal filtering circuit. When
a strong electromagnetic pulse is coupled to the LVDT sensor, the electromagnetic pulse
enters the controller through the connecting beam of the LVDT sensor and creates a pulsed
voltage between the terminals.

However, the terminal circuits of the two sensors differ greatly in the strong electro-
magnetic pulse coupling effect, which is the reason for the difference in the electromagnetic
sensitivity of the two sensors. On the one hand, the speed sensor is a passive sensor
without signal excitation. In contrast, LVDT is an active sensor that needs to provide an
excitation signal to excite. Therefore, when strong electromagnetic pulse coupling occurs
in the sensor, the pulse will interfere with the LVDT excitation signal, resulting in LVDT
excitation signal changes and sensitivity phenomena. On the other hand, the terminal
circuit of the speed sensor identifies the input signal based on the zero-crossing detection
method and calculates the current speed of the phonic wheel by obtaining the number of
zero points. When the transient electromagnetic pulse couples into the terminal, the local
voltage signal distorts, and the amplitude and waveform of the signal change, as shown in
Figure 17. However, for the whole signal recognition cycle, the speed fluctuation over a
very short time will not cause serious harm to the control system. The LVDT terminal circuit
identifies the input signal of the sensor based on the quasi-linear relationship between the
voltage signal and the position of the metering gate and calculates the current position of
the gate by obtaining the signal level. When the strong electromagnetic pulse is coupled
into the terminal, the terminal signal is distorted, and the amplitude changes, as shown in
Figure 18. Moreover, due to the linear relationship between the level and the valve position,
the position obtained by the control system is misjudged. Under the action of the main fuel
control strategy, incorrect instructions are issued to the fuel pump, resulting in relatively
poor results for the control system.
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By analyzing the amplitude and frequency of the coupling signal of the cable terminal
in the BCI test, it is concluded that the coupling signal is the linear superposition of the
pulse injection signal and the sensor detection signal in the time domain. However, in the
speed signal detection period, the coupling signal has little influence on the speed signal of
the control system and will not cause the electromagnetic sensitivity of the control system.
In the displacement signal detection period, the coupling signal has a great influence on the
change of the displacement signal of the control system, thus causing the electromagnetic
sensitivity of the control system.

In general, the two sensors based on the principle of electromagnetic induction will
couple higher voltage at the controller under the action of a strong electromagnetic pulse,
which will cause interference to the main fuel regulation control system. However, due to
different forms of action, the electromagnetic pulse affects them quite differently, which is
why the LVDT is sensitive during the injection test and the speed sensor is not.

4. Conclusions

Based on the electromagnetic coupling effect of the main fuel regulation control
system, this study analyzed the equivalence of the radiation test method and the current
injection test method. The sensitivity thresholds of the sensors under the action of the force
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electromagnetic pulse were obtained. The sensitive frequency band of the LVDT sensor
was 1 MHz to 10 MHz. The sensitive frequency band of the speed sensor was 30 MHz to
100 MHz. We analyzed the interference effect of sensors on the control system. The signal
at the same monitoring port in the controller of the main fuel regulating control system
was compared and analyzed under two test methods. The results were consistent with
respect to amplitude and the main coupling frequency. The above method can prove the
equivalence of the two methods for determining the terminal electromagnetic pulse effect
on the controller.

In addition, based on the structure, working principle, and terminal circuit analysis of
the sensors, the electromagnetic effects of two different sensors under the action of a strong
electromagnetic pulse were obtained. Scholars can study the sensors’ coupling mechanism
by the electromagnetic coupling effect of the control system under a strong electromagnetic
pulse. It provides a basis for the measurement technology and sensor design improvement
of the control system and lays a foundation for electromagnetic pulse protection of digital
systems. In the future, the authors will conduct electromagnetic pulse sensitivity tests on
an actual aero-engine control system to obtain the electromagnetic effects of more aircraft
under the action of a strong electromagnetic pulse and to improve the safety of aero-engines
in complex electromagnetic environments.
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